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We theoretically show that the spin-spin interactions realized in two-dimensional Mott insulators of
large-spin magnetic atoms (such as Cr, Er, or Dy) lead to scalable spin squeezing along the nonequilibrium
unitary evolution initialized in a coherent spin state. An experimentally relevant perturbation to the
collective squeezing dynamics is offered by a quadratic Zeeman shift, which leads instead to squeezing of
individual spins. Making use of a truncated cumulant expansion for the quantum fluctuations of the spin
array, we show that, for sufficiently small quadratic shifts, the spin squeezing dynamics is akin to that
produced by the paradigmatic one-axis-twisting model—as expected from an effective separation between
collective-spin and spin-wave variables. Scalable spin squeezing is shown to be protected by the robustness
of long-range ferromagnetic order to quadratic shifts in the equilibrium phase diagram of the system that we
reconstruct via quantum Monte Carlo and mean-field theory.
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Introduction—The controlled production and certifica-
tion of many-body entangled states [1–5] is one of the most
promising potentials of current quantum devices, based on
quantum circuits or ultracold atoms [6–12]. Most of the
present platforms realize ensembles of interacting qubits,
i.e., S ¼ 1=2 spin systems, which can implement universal
models of quantum computation [13]. Yet working directly
with qudits [14], i.e., elementary degrees of freedom with a
higher-dimensional Hilbert space, offers several advan-
tages, both fundamental as well as practical. Systems of
qudits are realized in experiments using, e.g., photonic
platforms [15], molecular magnets [16], and ensembles of
large-S magnetic atoms [12]. N qudits can encode an
exponentially larger amount of quantum information than
N qubits; entangled states of qudits can be more resilient to
noise than entangled states of qubits [15]; and using qudits
as quantum sensors [4] instead of qubits can be very
advantageous, in that single qudits already possess highly
nonclassical states with increased sensitivity to unitary
transformations. The latter aspect also hints at a very
intriguing competition that qudit systems (unlike qubit
ones) can exhibit between single-qudit nonclassical states
and many-qudit nonclassical (i.e., entangled) states. This
competition will be a central aspect of the present work.
The focus of our work is the production of entangled

many-qudit states in ensembles of large-S magnetic atoms.
Relevant examples—that will be discussed later—include
52Cr atoms (S ¼ 3), 168Er atoms (S ¼ 6) and 162Dy atoms
(S ¼ 8), whose spin degrees of freedom have been manip-
ulated in a variety of recent experiments [17–25]. When the
atoms form a Mott insulator with one atom per lattice site,
their large spins interact at a distance via the dipolar
interaction, whose Hamiltonian (in the rotating frame of
an applied large Zeeman field) reads [12,18,22]
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z
j

�
þBq

X

i
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are spin-S operators, J is the overall strength of the dipolar
interaction, and Bq is a quadratic Zeeman shift, originating
both from the applied Zeeman field as well as from a
tensorial light shift [22,23]. In the following we shall
consider a square-lattice geometry (with periodic boundary
conditions) for which one can have Dij ¼ 1=r3ij when the
applied Zeeman field, defining the quantization axis z, is
perpendicular to the plane. Recent experimental studies on
dipolar atoms and molecules detected the appearance of
correlations induced by the dipolar interactions [20,26], but
they have not yet certified entanglement. In this work we
show that the dynamics of two-dimensional arrays of large-
S dipolar spins, initialized in a spin-coherent state in the xy
plane and governed by the Hamiltonian Eq. (1), can
produce massive multipartite entanglement in the form
of spin squeezing which is scalable, i.e., stronger the larger
the number of atoms, following the paradigm of the one-
axis-twisting (OAT) dynamics [27].
The collective OAT-like dynamics is robust to moderate

values of the quadratic Zeeman shift Bq, since the evolution
develops long-range correlations in the xy plane protecting
the collective-spin length. At larger values of Bq long-range
order still persists in the thermalized state, but the total spin
length is strongly reduced, altering significantly the squeez-
ing dynamics with respect to the OAT picture, and leading
to the disappearance of squeezing for realistic system sizes.
The above results stem from a combination of different
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techniques for the study of the quantum dynamics, includ-
ing a truncated-cumulant expansion of the quantum fluc-
tuations in the evolved quantum state; a recently introduced
approximation based on rotor/spin-wave separation; and
the reconstruction of the equilibrium phase diagram of the
system. Our results pave the way for the use of large-spin
dipolar arrays to produce metrologically useful, multipar-
tite entangled states.
Spin squeezing and entanglement; squeezing dynamics

from RSW separation—The paradigmatic example of
many-body dynamics giving rise to scalable squeezing is
offered by the one-axis-twisting (OAT) model, whose
Hamiltonian is that of a planar rotor whose angular
momentum along the z axis is given by the collective
spin, namely, ĤOAT ¼ ðĴzÞ2=ð2IÞ. Here we have intro-
duced the collective spin operator Ĵ ¼ P

N
i¼1 Ŝi for the

ensemble of N quantum spins; and I ∼OðNÞ is the
extensive moment of inertia of the rotor. When the
system of N spins of length S is initialized in a cohe-
rent spin state (CSS) along x, jCSSxi ¼ jS; xi⊗N

(where
ŜxjS; xi ¼ SjS; xi), the collective spin is of maximal length
Ĵ2 ¼ JmaxðJmax þ 1Þ with Jmax ¼ NS. The Hamiltonian
evolution governed by HOAT remains in the Jmax sector,
and it produces squeezing of the collective spin, captured
by the squeezing parameter ξ2R ¼ ½2NSVarðĴminÞ=hĴxi2�
where VarðĴminÞ is the minimal variance of the collective
spin components in the yz plane. The initial CSS has
ξ2R ¼ 1, while ξ2R < 1 indicates squeezing of the uncertainty
along one direction in the yz plane with respect to this
reference state. The OAT dynamics is known to produce
an optimal squeezing ðξ2RÞmin ∼ ð2NSÞ−2=3 at a time
tmin ∼ S−2=3N1=3. Yet, for S > 1=2 the condition ξ2R < 1

can also be satisfied at the level of individual spins—as e.g.,
generated by a collection of single-spin OAT models,
Ĥ1s−OAT ¼ Bq

P
iðŜzi Þ2. Therefore spin squeezing per se

is not necessarily a witness of entanglement. Yet the minimal
squeezing parameter for uncorrelated S spins is ðξ2RÞSQL ¼
ð1þ SÞ−1 (for S > 1=2) [4], corresponding to the standard
quantum limit (SQL) for large-S spins. Hence the condition
ξ2R < ð1þ SÞ−1 certifies the presence of entanglement; and
the stronger condition ξ2R < ½ð1þ kSÞ�−1 signals (kþ 1)-
partite entanglement.
The OAT model offers an important paradigm for the

squeezing dynamics of dipolar Hamiltonians in 2d such as
Eq. (1) [28–32]. Indeed, under dipolar dynamics the
collective spin length Ĵ2, albeit not conserved, may only
decrease moderately with respect to its maximum value.
This property justifies a scenario of rotor/spin-wave (RSW)
separation, as proposed in Refs. [33,34]. In a nutshell, the
dipolar Hamiltonian, when projected onto the Jmax sector of
symmetric states, takes the form of a OAT Hamiltonian with
effective moment of inertia 1=ð2IÞ ¼ ðJ=2N2ÞPi≠j Dijþ
ðBq=NÞ, which would govern the dynamics if it remained

confined to the Jmax sector. Leakage out of this sector can be
accounted for by the production of spin-wave excitations,
described as finite-momentum Holstein-Primakoff (HP)
bosons. If such bosons form a dilute gas, they can be
described as a system of free quasiparticles, effectively
decoupled from the collective spin projected on the Jmax
sector (hereafter called rotor). The dynamics of the system
can therefore be cast as the independent dynamics of a rotor
variable K̂ of length K ¼ Jmax, governed by the OAT
Hamiltonian ĤR ¼ ðK̂zÞ2=ð2IÞ; and of linearized spin
waves (SWs) at finite momentum, with Hamiltonian Ĥsw ¼P

k≠0ðb̂†k; b̂−kÞhkðb̂k; b̂†−kÞT , where hk is a 2 × 2 matrix and

b̂k are HP boson operators (see Supplemental
Material [35] for further details). Within RSW theory
[33,34], the squeezing parameter is expressed as ξ2R≈
ð2NSÞVarðKminÞ=ðhK̂xi−NbosÞ2, where Nbos¼

P
k≠0hb̂†kb̂ki

is the population of HP bosons, renormalizing the polari-
zation of the collective spin. Hence the squeezing dynamics
of the system is akin to that of the OAT model so long as
Nbos remains a small correction to the rotor magnetization up
to the time tmin. The SW dynamics develops instabilities (i.e.,
imaginary frequencies) for negative values of Bq (see
Supplemental Material [35]), due to a ground-state transition
occurring for Bq ≲ −J (for all the values of S we explored)
—see further details below. Therefore we shall focus on
Bq > 0 in the following.
OAT-like regime and its breakdown—Figures 1(a)–1(c)

shows indeed that, for sufficiently small and positive Bq
values, the picture offered by RSW theory applies to the
dynamics generated by the Hamiltonian Eq. (1). The
predictions of RSW theory are indeed found to only
moderately deviate from those of a pure-rotor dynamics,
for a Bq range that grows with the spin length S. This means
that SWs are dilute, justifying the separation of variables.
Most importantly, at short times, the RSW predictions are
corroborated by a completely alternative approach based on
a truncated cumulant expansion (TCE)—up to 2nd order
cumulants—for the multivariate quantum fluctuations of
the spin ensemble. This represents our most stringent test of
the RSW predictions. The TCE approach (described in
detail in the Supplemental Material [35]) is a variant of
similar approaches developed for quantum many-body
systems and in quantum optics [39–43]; the specificity
of our formulation for large-S systems is that it can describe
exactly the physics at the single-spin level, in spite of the
large local Hilbert space—a trait that is essential when
single-spin physics competes with many-body physics. The
assumption of truncation of the cumulant hierarchy leads to
unphysical results after a given time, restricting this
approach to short times when strong squeezing appears,
driven by the many-body physics.
An extensive comparison of the predictions of the RSW

and TCE approaches for the scaling of squeezing is offered
in Figs. 1(d)–1(f). There we plot the value of the squeezing
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parameter at an earlier time with respect to the optimal
squeezing one tmin, due to the breakdown of the TCE
approach mentioned above. We choose the time of obser-
vation as 0.3tmin, where tmin is the time at which the OAT
model with coupling constant 1=ð2IÞ reaches its minimum
squeezing. Scalable squeezing is expected in the OAT
model at this earlier time as well, albeit with a slower
scaling than at tmin (see Supplemental Material [35]). As
one can see, RSWand TCE results agree well for all system
sizes over the ranges Bq ≲ 2J for S ¼ 3; Bq ≲ 5J for
S ¼ 6; and Bq ≲ 7J for S ¼ 8. These ranges correspond
therefore to OAT-like scalable squeezing. For larger Bq

values, the two theories (TCE and RSW) start to deviate,

signaling that the picture of separation of variables under-
lying RSW theory breaks down. Nonetheless, as we shall
also discuss in the next section, squeezing appears to
remain scalable for a larger range of Bq values, but
following a behavior which can no longer be understood
starting from the OAT paradigm.
Scalable vs nonscalable spin squeezing, and relationship

to thermodynamics—To understand the evolution in the
scaling of the squeezing parameter upon increasing Bq, it is
useful to consider the limit Bq ≫ J, in which the dynamics
is dominated by the quadratic Zeeman shift. In this limit
(denoted by the dashed curves in Figs. 1 and 2) each spin
behaves as a OAT model, exhibiting a fast depolarization
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FIG. 1. Scalable spin squeezing in dipolar large-S arrays. (a)–(c) Time evolution of the squeezing parameter for various system sizes
and S ¼ 3, Bq=J ¼ 2 (a), S ¼ 6, Bq=J ¼ 4 (b), and S ¼ 8, Bq=J ¼ 6 (a). Each panel shows the comparison between the single-spin
limit; the rotor dynamics with effective moment of inertia 1=ð2IÞ (see main text); the rotor/spin-wave theory (RSW) and the truncated
cumulant expansion. The shaded region marks the regime ξ2R ≥ ð1þ SÞ−1, in which squeezing does not witness entanglement.
(d)–(f) Squeezing parameter at the time 0.3tmin (see main text) for various system sizes as a function of Bq=J for S ¼ 3 (d), S ¼ 6 (e),
and S ¼ 8 (f). Significance of symbols in panels (d),(e), and (f) is the same as in panels (a),(b), and (c), respectively.

(a) (b) (c) (d)

FIG. 2. Squeezing dynamics at large Bq. Time evolution of the spin squeezing parameter for S ¼ 3 and three values of Bq=J ¼ (a) 5,
(b) 7, (c) 10, and (d) 14. All symbols are as in Fig. 1(a).
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over a time ∼Bq

ffiffiffi
S

p
which is system-size independent—

this is the dynamics realized in recent experiments on single
Dy atoms [23]. How is this single-spin dynamics connected
with the collective-squeezing dynamics at small Bq?
Figure 2 shows that when leaving the OAT-like regime,
scalable squeezing persists, albeit with very large fluctua-
tions in time. For sufficiently small Bq these fluctuations
are partly reproduced by RSW theory [Fig. 2(a)], which
attributes them to SWs—although the proliferation of
finite-momentum SWs leads to the breakdown of the
separation-of-variable assumption underlying RSW theory
[35]. As Bq increases, the competition between single-spin
and many-body physics becomes manifest [see, e.g.,
Figs. 2(c) and 2(d)]: under the effect of the Bq term, at
short time ξ2R reaches a nearly size-independent first
minimum, followed by antisqueezing dynamics (i.e., ξ2R
increases). At later times, at least for the largest system
sizes, antisqueezing stops, and ξ2R begins to decrease again
developing a second minimum, deeper the larger the size.
This later dynamics is clearly the result of many-body
physics—as revealed by its scaling nature—and it can be
understood in relationship to a fundamental trait of dipolar
spins in two dimensions, namely, their ability to develop
long-range order at low energy [44].
At this point it is instructive to inspect the equilibrium

phase diagram of the dipolar large-S Hamiltonian Eq. (1) in
two dimensions, which we have reconstructed in the
temperature-vs-Bq plane using numerically exact quantum
Monte Carlo, as well as mean-field theory. The results are
shown in Fig. 3 for the case S ¼ 3 (see Supplemental
Material [35] for analogous phase diagrams for S ¼ 6 and
8, and details about the calculations). For a large Bq region,

0≲ Bq ≲ 54J, the thermodynamics exhibits long-range
ferromagnetism in the xy plane up to finite critical temper-
ature Tc; while for Bq ≲ −1.1J the system exhibits long-
range Néel antiferromagnetism along the z axis. When
initialized in the CSS, the unitary evolution driven by the
(nonintegrable) Hamiltonian Eq. (1) at long times is
expected to thermalize the state of the system [45], so
that the time average of local observables reproduce their
equilibrium expectation values (denoted by h…iTCSS

) at a

temperature TCSS such that hCSSxjĤjCSSxi ¼ hĤiTCSS

[46]. The unitary evolution at long times is therefore
sensitive to the equilibrium behavior along the TCSSðBqÞ
line in the phase diagram (see Fig. 3) where the state goes
from xy ferromagnetic to paramagnetic for Bq;c ≈ 18J. In
particular, this transition is marked by a drop of the
collective spin length hĴ2i from macroscopic values
[∼OðN2Þ] to microscopic ones [∼OðNÞ]—see inset
of Fig. 3.
Spontaneous breaking of the U(1) symmetry of Eq. (1) in

the thermodynamic limit can have important consequences
on the squeezing dynamics [31]: indeed it implies that, on
finite system sizes, the initial polarization hĴxi associated
with the CSS persists for increasingly long times the larger
the system size (and never vanishes in the thermodynamic
limit). This is shown by our data (see Supplemental
Material [35]), and was also observed experimentally in
dipolar qubits [32]. As a consequence, in spite of the
depolarizing effect coming from the Bq term, ferromag-
netism can protect the spin-squeezing parameter from
blowing up, because it prevents the denominator in the
expression of ξ2R from vanishing rapidly; and it can delay or
even reverse the antisqueezing dynamics. Moreover the
collective spin remains of macroscopic length, as guaran-
teed by the fact that hĴ2i ∼OðN2Þ throughout the evolution
—although it may depart significantly from its (initial)
maximum value NSðNSþ 1Þ, as shown in Fig. 3.
In spite of long-range ordering, the fast depolarization

imposed by the Bq term can push the squeezing parameter
to values ξ2R, which are systematically higher than the
entanglement threshold ξ2R ¼ ð1þ SÞ−1 (for Bq ≳ 10J), or
even higher than the proper squeezing threshold ξ2R ¼ 1
(for Bq=J ≳ 13J [35]). This is clearly observed in Figs. 2(c)
and 2(d) (see also the Supplemental Material [35] for
further data), for the system sizes we explored (up to N ¼
400 for S ¼ 3). Hence collective spin squeezing—namely
squeezing exceeding what can be achieved with single
spins—can be lost for Bq values well below Bq;c. This
situation may coexist with a persistent scaling of the
squeezing parameter to lower values—namely, with per-
sistent scalable squeezing; but extremely large system
sizes, beyond the reach of current experimental setups,
may be required to bring ξ2R to values which are compatible
with entanglement, and which therefore offer many-body
metrological advantages compared to single spins (see
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FIG. 3. Equilibrium phase diagram of the S ¼ 3 dipolar XXZ
model on the square lattice. The diagram shows the mean-field
(MF) and quantum Monte Carlo (QMC) estimates of the transition
temperature to xy ferromagnetism (XY-FM), to Néel anti-
ferromagnetism (Z-Néel), and of the coherent-state temperature
TCSS. Inset: collective-spin square modulus hĴ2i along the
ðBq; TCSSðBqÞÞ line, evaluated for a system of N ¼ 48 × 48 spins.
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Ref. [23]). Long-range ferromagnetism in the thermalized
state is only a necessary condition for scalable squeezing
[47]; indeed scalable squeezing requires as well that
VarðĴminÞ=N scales to ever lower values with increasing
size. Such a behavior is apparent in our data [35], and even
persisting for Bq > Bq;c, although a power-law decay of
VarðĴminÞ=N with N is not revealed by our results.
Therefore our results are not inconsistent with the con-
jecture of Ref. [31] that scalable squeezing persists up to
the transition in the thermalized state; yet, for the system
sizes we explored, the scaling behavior close to the
transition appears to be very different from (and much
slower than) that of the OAT model.
Conclusions—In this work we have shown that the

nonequilibrium dynamics of 2D arrays of dipolar large-S
spins, initialized in a coherent spin state, features multi-
partite entanglement in the form of scalable spin squeezing.
For a sufficiently small quadratic Zeeman shift, squeezing
follows the scaling of the one-axis-twisting model, in
agreement with a scenario of separation of variables
between collective-spin and spin-wave degrees of freedom.
Our results point at the crucial role played by the quadratic
Zeeman shift on the squeezing dynamics of large-S
spins—and, more generally, at the competition between
single-qudit vs many-qudit Hamiltonian in the entangling
dynamics of qudit ensembles. To achieve collective spin
squeezing in 2D dipolar arrays, the quadratic Zeeman shift
should be controlled at the level of ∼10J via magnetic
fields and tensor light shifts [22,23]. The two-dimensional
geometries we explored in this work are essential for spin-
squeezing dynamics to occur: indeed, due to its angular
dependence the dipolar interaction averages to zero in three
dimensions, so that the collective-spin dynamics is sup-
pressed in three dimensions. Nonetheless purely 2D arrays
of atoms can be realized either by loading a single layer in a
three-dimensional optical lattice, or by trapping in quan-
tum-gas-microscope setups, as recently demonstrated for
Er [48] (see also [49,50] for recent Dy experiments). Hence
our work paves the way for the realization of scalable
multipartite entanglement in arrays of magnetic atoms (Cr,
Er, or Dy), representing a most promising platform to
realize quantum simulation and quantum information
processing with ensembles of qudits.
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