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Max Prichard,1 André Eckardt,2 and David M. Weld 1,*

1Department of Physics, University of California, Santa Barbara, California 93106, USA
2Technische Universität Berlin, Institut für Theoretische Physik, Hardenbergstraße 36, Berlin 10623, Germany

(Received 14 December 2023; revised 29 May 2024; accepted 9 July 2024; published 22 August 2024)

Periodic driving can tune the quasistatic properties of quantum matter. A well-known example is the
dynamical modification of tunneling by an oscillating electric field. Here we show experimentally
that driving the phasonic degree of freedom of a cold-atom quasicrystal can continuously tune the
effective quasidisorder strength, reversibly toggling a localization-delocalization quantum phase transition.
Measurements agree with fit-parameter-free theoretical predictions, and illuminate a fundamental
connection between Aubry-André localization in one dimension and dynamic localization in the associated
two-dimensional Harper-Hofstadter model. These results open up new experimental possibilities for
dynamical coherent control of quantum phase transitions.
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Driving can modify the properties of quantum matter [1],
tune tunneling [2,3], and control both dynamic [4,5] and
Mott localization [6]. While such phenomena have mostly
been explored in the context of periodic crystals, richer
possibilities exist in non-translationally-symmetric matter.
Quasicrystals, which lack both translation symmetry and
true disorder, support “phasonic” modes not present in
ordinary crystals [7–10] as a consequence of their intrinsic
connection to a higher-dimensional superspace [8,11,12],
and can exhibit an Anderson-like Aubry-André localization
phase transition driven by quasidisorder [13,14]. These
properties open up fundamentally new possibilities in the
exploration of driven matter.
In this work we demonstrate experimentally and confirm

theoretically that driving a phasonic degree of freedom in a
cold-atom quasicrystal can tune the effective quasidisorder
strength and reversibly control a localization quantum
phase transition. As we show, this can be viewed as
phasonic Floquet engineering of Aubry-André localization
in a 1D quasicrystal, or, equivalently, as tunable dynamic
localization by an oscillating electric field in the higher-
dimensional quantum Hall system from which the quasi-
crystal is mapped. These results and complementary
perspectives illuminate fundamental connections between
apparently different forms of localization, and open up new
possibilities for Floquet-engineered matter and dynamical
quantum simulation.
The experiments we describe begin by loading an

optically trapped Bose-Einstein condensate of ≈200 000
84Sr atoms into a bichromatic optical lattice composed of a
primary lattice with wavelength λP ¼ 1063.9774ð23Þ nm

and a secondary lattice with variable depth VS and wave-
length λS ¼ 914.4488ð17Þ nm (Fig. 1). Ultracold atoms in
specialized optical lattices such as this have been shown to
provide an ideal platform for the study of quasicrystals
[7,15–17]. The experiment is initiated by suddenly extin-
guishing the confining optical dipole trap after ramping up
the bichromatic lattice. This realizes the noninteracting,
tight-binding Aubry-André-Harper (AAH) Hamiltonian
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FIG. 1. Experimental schematic and typical data. (a) An
optically trapped BEC is loaded into a bichromatic lattice and
allowed to evolve. A time-varying phasonic displacement be-
tween the two sublattices is controlled by varying the frequency
of the secondary lattice laser (λS ¼ 915 nm). (b) Absorption
images of the atoms taken after various evolution times in the
phasonically modulated bichromatic lattice, in the localized
regime (left panel) and delocalized regime (right panel).
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where J is the tunneling energy which gives rise to a
tunneling time TJ ¼ ℏ=J, b̂†i ðb̂iÞ is the bosonic creation
(annihilation) operator at the ith lattice site, Δ is the
secondary lattice depth, α ¼ λP=λS is the wavelength ratio
of the two lattices, and φðtÞ is the potentially time-
dependent relative phase between the two lattices. This
phasonic degree of freedom is controlled by modulating
the secondary lattice laser, as described in detail in the
Supplemental Material [18], and measured by an interfer-
ometer. For φðtÞ ¼ 0 or almost any constant [25], this
Hamiltonian exhibits a quantum phase transition at Δ ¼ 2J
between the localized and delocalized phases [13].
When driving the system, in order to avoid the strong
interband excitation observed for phasonic driving in [7],
we choose modulation frequencies in the optimal frequency
window [26] where the modulation is fast compared to the
bandwidth but slow compared to the band gap.
We investigate transport in the phasonically driven

AAH model by imaging the width σ of the atomic
density distribution after some evolution time using in situ
absorption imaging. Here φðtÞ ¼ 2ksA sinðωtÞ, where
kS ¼ 2π=λS, A is the phason modulation amplitude, and
ω is the phason modulation frequency. A natural question
to explore is what happens as the amplitude of phasonic
modulation is increased from zero in a regime where the
unmodulated system is localized. The first main exper-
imental result of this work is shown in Fig. 2: as the
amplitude of phason modulation is increased, the late-time
width is greatly enhanced, indicating delocalization, but
only at certain modulation amplitudes. The system appears
to switch back and forth between localized and delocalized
phases as the drive amplitude increases, with late-time
width a nonmonotonic function of phason drive amplitude.
As a crucial clue to the origin of these delocalization
peaks, their peak positions coincide within the resolution
of the experiment for three different frequencies, in clear
contrast both to dynamic localization [2] and to expected
heating behaviors.
To understand this somewhat counterintuitive result, it is

helpful to expand the second term in Eq. (1) [7]:

Δ cos½2παiþ 2kSA sinðωtÞ�

¼ Δ
X∞

n¼−∞
Jnð2kSAÞ cosð2παi − nωtÞ; ð2Þ

where Jn are Bessel functions of the first kind. n ≠ 0 terms,
which can lead to multiphason interband transitions [7],
can be neglected if the shaking amplitude 2kSA is suffi-
ciently small, and we chose the shaking amplitude A
accordingly. More detailed discussion on the effects of
the n ≠ 0 terms is given in Supplemental Material [18].
Keeping only the static n ¼ 0 term gives rise to a time-
averaged Hamiltonian which is a static AAH Hamiltonian
with Δ replaced by a modified effective pseudo-disorder

strength Δeff ¼ ΔJ0ð2kSAÞ. The primary effect of phason
modulation is thus to renormalize the effective strength of
the incommensurate potential, which becomes a nonmono-
tonic function of the drive amplitude. If the effective
quasidisorder strength falls below 2J, the system undergoes

FIG. 2. Phasonic modulation causes dynamic delocalization.
(a) Absorption images of the atomic density distribution after 10 s
evolution for varying amplitudes of a 314 Hz phason modulation,
showing peaks in the late-time width at several drive amplitudes.
(b) Width of the atomic density distribution after 10 s evolution
versus phason modulation amplitude, for three different driving
frequencies. The delocalized regions are observed to be inde-
pendent of drive frequency. The primary and secondary lattice
depths are 10 Er;P and 0.5 Er;S. Here Er;P ¼ h2=2mλ2P and
Er;S ¼ h2=2mλ2S are the recoil energy for the primary and
secondary lattice, m is the atomic mass, and h is Planck’s
constant. Shaded areas show the regime of theoretically predicted
delocalization described in the text. (c) Quasi-disorder strength
can be inferred from transport. Plot shows a normalized form of
the late-time width σ versus phason modulation amplitude, for
primary (secondary) lattice depth 8.5 Er;P (0.124 Er;S), corre-
sponding to the delocalized regime. In this regime the expansion
speed is approximately proportional to the quasidisorder strength,
so the expected functional form is the absolute value of a Bessel
function jJ0ðkSAÞj, shown here as a solid line with no fit
parameters. All of the panels share the same x axis scaling,
measured in the dimensionless shaking amplitude 2kSA (panel
top) and in the actual shaking amplitude A (panel bottom).
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a quantum phase transition of the Aubry-André type into
the delocalized phase. Figure 2 provides support for
this interpretation of the results: the gray shaded areas in
Fig. 2(a) indicate the predicted regions of phason drive
amplitude whereΔeff < 2J, and correspond very well to the
observed delocalization peaks.
As a more quantitative probe of the Floquet-induced

rescaling of quasidisorder, we measured transport starting
in a delocalized regime with a lower secondary lattice
depth. In this regime, the speed of the ballistic expansion is
approximately proportional to the dimensionless distance
from the localization phase transition 2 − Δeff=J, a feature
we have confirmed numerically [18]. For this reason, a plot
of the appropriately normalized late-time width of the
density distribution as a function of kSA should take on
the exact form of a Bessel function, with an absolute value
since such transport measurements do not distinguish
positive from negative quasidisorder. Figure 2(c) shows
just such a plot of normalized late-time widths; the
measured data are overall in excellent agreement with a
jJ0j Bessel function without any fit parameters. The slight
theory-experiment disagreement at low shaking amplitudes
is not completely understood.
An intriguing connection emerges when these results are

interpreted in terms of the higher-dimensional superspace
associated with any quasiperiodic system. The 1D AAH
model can be obtained by dimensional reduction from
the 2D anisotropic Harper-Hofstadter model with lattice
spacing a describing a 2D electron gas in a high magnetic
field [11,27,28] [18], in a gauge where the vector potential
A ¼ ½0; 2παx=aþ φðtÞ; 0� and zero scalar potential:

Ĥ2D;HH ¼
X

x;y

− Jĉ†xþ1;yĉx;y

þ
X

x;y

Δ
2
e−i½2παx=aþφðtÞ�ĉ†x;yþ1ĉx;y þ H:c: ð3Þ

Here the quasidisorder strength Δ becomes the tunneling
strength along the extra dimension in the superspace, the
incommensurate ratio α describes the magnetic flux
per plaquette, and the time derivative −∂tφðtÞ of the
phasonic parameter appears as an applied electric field
along the extra dimension. The sinusoidal modulation
φðtÞ ¼ 2ksA sinωt thus corresponds to a driven Harper-
Hofstadter model strongly irradiated by light linearly
polarized along the extra dimension in the superspace.
In particular, the rescaling of the quasidisorder Δ which we
observe in the 1D model corresponds to a rescaling of
tunneling along that dimension. This provides a comple-
mentary picture of the destruction of localization we
observe, which in the higher-dimensional space appears
as coherent destruction of tunneling along the extra
dimension [29], causing the 2D square lattice to decompose
into a set of decoupled one-dimensional chains that cannot
support localized modes. Besides providing an alternative

perspective, the superspace picture can also be used [30]
to design modulation protocols which perfectly destroy
localization in a generic bounded quasiperiodic system,
by connecting to the concept of exact dynamic localization
[31,32]. This higher-dimensional mapping extends the
applicability of our results to other quasiperiodic systems
[33,34] and also implies an interpretation of our results as
the observation of dynamic localization in a strongly driven
Harper-Hofstadter model.
Because dynamic localization is coherent [6], phasonic

modulation can be used as a tool to reversibly and
coherently control transport. To experimentally test this
possibility we performed transport measurements for sev-
eral different driving sequences during which phason
modulation is turned on and off at different times during
the course of an experiment. Figure 3 shows the results
of these experiments, compared to evolution in a static
primary lattice and in a static bichromatic lattice. In a
bichromatic lattice subjected to continuous phason modu-
lation, the system evolves in a delocalized way, with width
growing nearly as fast as when the secondary lattice was
entirely absent. This further supports the notion that the
quasiperiodic potential effectively vanishes at these reso-
nant amplitudes. For a modulation protocol where phasonic
driving is present only for the first 0.5 s of the evolution, the
width grows rapidly in accordance with the delocalized
expectation until the drive ceases, at which point the system
localizes and the width becomes static. This observation
indicates that the drive-induced delocalization is not due
to significant heating or interband excitation, but rather
represents coherent control of the localization properties.
Anderson-type localization requires wave packet coher-
ence, and dephasing across lattice sites generally leads to
delocalization as the coherence is destroyed [35,36]; the
fact that the atoms relocalize when the phasonic modulation
is turned off indicates that coherence is maintained
throughout the experiment. Finally, if phasonic modulation
is applied only during the middle 0.5 s of the sequence,
the width evolves in a localized way before the drive, then
grows rapidly during the delocalized segment, then ceases
to grow when the drive is removed. The last two coherent
control protocols result in an identical width at the end of
the experiment despite their different modulation histories.
Together these results clearly demonstrate that phasonic
driving can reversibly and coherently control a localization
quantum phase transition.
A new direction opened up by this capability is inves-

tigation of the interplay between dynamic localization
(induced by a time-varying electric field) and Aubry-
André localization (induced by quasidisorder) [37,38].
Using the capabilities demonstrated above, both these
types of localization can now be Floquet tuned. In a final
set of experiments we investigated this interplay, using
phase modulation of just the primary lattice. For this
experiment, we modified the setup of Fig. 1 so that the
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primary lattice could be phase modulated using paired
acousto-optic modulators controlling the two beams com-
prising the lattice. In the co-moving frame of the shaken
primary lattice, the atoms then experience both a phasonic
modulation of the secondary lattice, which tunes Aubry-
André localization, and an alternating inertial force, which
tunes the tunneling matrix element and drives dynamic
localization. In the higher-dimensional picture described
above, this corresponds to irradiation with elliptically
polarized light.
Figure 4 shows the results of these experiments. The

top panel shows the calculated effective tunneling matrix
element as a function of the shaking amplitude K0 ¼
πΔνmax=4fr;P, where Δνmax is the frequency modulation
amplitude for the modulated primary lattice beam and
fr;P ¼ Er;P=2πℏ as defined in [2,39]. The alternating
inertial force rescales tunneling, controlling the overall
expansion dynamics, and leading to dynamic localization at
K0 ≃ 2.4. However, since the modulation of the primary
lattice also gives rise to phasonic driving, Aubry-André
delocalization can compete with this overall localizing
trend, as modulation of the secondary lattice in the
comoving frame rescales the secondary lattice depth by
the factor J0ð2kSAÞ. Since the phasonic modulation ampli-
tude A is related to K0 by A ¼ ðλPfr=π2fÞK0, the same K0

can correspond to different shaking amplitudes of the
secondary lattice depending on the frequency of the phase

FIG. 3. Reversible coherent control of localization. Symbols show measured late-time width of the density distribution versus hold
time for five different experimental protocols: no secondary lattice (diamonds), continuous phasonic driving of secondary lattice
(upward triangles), phasonic driving for the first 500 ms (rightward triangles), phasonic driving only between 500 and 1000 ms
(downward triangles), and no driving of the secondary lattice (squares). For all protocols the primary lattice depth is 6 Er;P, and for all
but the first plot the secondary lattice depth is 0.5 Er;S. At these values in the absence of driving the system is Aubry-André localized.
Note especially that width evolution under the second “coherent control” protocol shows evidence of localization for times less
than 0.5 s and greater than 1 s, and evidence of delocalization between those times, indicating reversible coherent control. Shaking
frequency is 628 Hz and phason amplitude is 2kSA ≈ 5.52, near the second Bessel zero.

FIG. 4. Interplay between dynamic localization and Aubry-
André localization revealed by phase modulation of only the
primary lattice. Top panel shows calculated effective tunneling
strength as a function of modulation amplitude K0. Lower panels
show measured width of the density distribution after 1 s
expansion in a bichromatic lattice with only the primary lattice
shaken, for various modulation frequencies as indicated. Gray
lines indicate theoretically expected values of zero effective
quasidisorder, as described in the text.
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modulation. The bottom panels of Fig. 4 show the late-time
density distribution width after expansion in a bichromatic
lattice with the primary lattice shaken at different frequen-
cies f. While all of the panels in Fig. 4 share the same K0

axis, A depends on the drive frequency. At each drive
frequency, we observe an array of delocalizing peaks
superimposed upon the overall trend towards dynamic
localization as K0 increases. The arrangement of delocal-
ized peaks varies with the drive frequency, and the position
of all observed delocalized peaks matches well to zeros of
J0ð2kSAÞ, indicated by gray lines in each panel. This close
match to fit-parameter-free theory provides strong support
for the interpretation of these delocalized peaks as being
due to phasonic rescaling of the secondary lattice depth to
zero in the comoving frame.
These results highlight the rich interplay between two

distinct forms of localization, and open up additional
possibilities. While in this work both phenomena were
tuned with a single lattice modulation, a full exploration
of the phase diagram of matter subjected to both dynamic
localization and Aubry-André localization, as envisioned
in [40], would require separately controlling dynamic
localization and the rescaling of the secondary lattice.
In summary, in this work we have demonstrated exper-

imentally, and confirmed theoretically, that phasonic modu-
lation in a quasicrystal can coherently control transport and
reversibly tune across a localization-delocalization quantum
phase transition. We have shown that these results can be
interpreted as manifestations of dynamic localization in the
higher-dimensional lattice associated with the quasicrystal,
opening up a pathway to simulation of strongly driven
quantum Hall systems [41–43]. Combining both phasonic
and dipolar driving would allow for complete control of
the polarization (linear, elliptical, or circular) of the driving
radiation which appears in the superspace, enabling quantum
simulation of laser-irradiated integer quantum Hall systems
with tunable incident polarization. The interplay between
topology and modulation would be a natural direction for
further investigation, as the minigap collapse which drives
localization also signifies a topological transition [12].
Finally, the sign change of multiple Hamiltonian parameters
across Bessel zeros opens up the possibility to design a
modulation protocol which reverses the direction of time.
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