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We develop a general theory of Fermi polarons at nonzero temperature, including particle-hole
excitations of the Fermi sea shakeup to arbitrarily high orders. The exact set of equations of the spectral
function is derived by using both Chevy ansatz and diagrammatic approach, and their equivalence is
clarified to hold in free space only, with an unregularized infinitesimal interaction strength. The correction
to the polaron spectral function arising from two-particle-hole excitations is explicitly examined for an
exemplary case of Fermi polarons in one-dimensional optical lattices. We find quantitative improvements at
low temperatures with the inclusion of two-particle-hole excitations, in both polaron energies and decay
rates. Our exact theory of Fermi polarons with arbitrary orders of particle-hole excitations might be used to
better understand the intriguing polaron dynamical responses in two or three dimensions, whether in free
space or within lattices.
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Fermi polarons, which are quasiparticles describing the
collective motion of an impurity as it interacts with and
shakes up a Fermi sea, manifest in various realms of
condensed matter physics [1]. This well-established con-
cept underlies a number of fantastic quantum many-body
phenomena, including Anderson orthogonality catastrophe
[2], the Fermi edge singularity in x-ray spectra [3,4], and
Nagaoka ferromagnetism [5–7]. The recent realization of
atomic Fermi gases with spin-population imbalance opens
a new paradigm to quantitatively explore Fermi polaron
physics in untouched territory [8,9], owing to the unprec-
edented controllability of ultracold atoms [10], particularly
in interatomic interactions [11]. Thus far, considerable
attention has been given to investigating the ground state
of Fermi polarons [8], known as attractive polarons,
through both experimental and theoretical means. The
attractive polaron energy has been calculated to great
accuracy by using methods such as variational Chevy
ansatz [12–14], diagrammatic T-matrix approach [14–
19], functional renormalization group [20,21], and quan-
tum Monte Carlo simulations [22–25]. The outcomes of
these predictions align remarkably well with spectroscopic
measurements, including radio-frequency (rf) spectroscopy
[26–28], Ramsey interferometry [29], Rabi cycle [30,31],
and Raman spectroscopy [32].
In contrast, describing the excited states of Fermi polar-

ons proves to be notably challenging [33], especially when
departing from the heavy impurity limit, where exact
numerical calculations might be feasible [9,34–36]. As a
result, the finite-temperature dynamical responses of Fermi
polarons related to excited states, as assessed by various
spectroscopic studies, are less well understood. Speci-
fically, in the case of unitary Fermi polarons with an
infinitely large scattering length at degenerate temperature,

state-of-the-art diagrammatic T-matrix theory [18,19] falls
short in explaining the spectral features observed in the rf
spectroscopy [28]. These features unveil the abrupt dis-
solution of the attractive polaron, leading to the emergence
of excited branches featuring either repulsive polarons or
dressed dimerons. The inadequacy of the theory at nonzero
temperature may stem from its insufficient description of
the Fermi sea shakeup, as it only includes one-particle-hole
excitations of the Fermi sea [15,19].
In this Letter, we present a formally exact finite-temper-

ature theory of Fermi polarons, incorporating arbitrary
numbers of particle-hole excitations of the Fermi sea.
We use two methods to derive an exact set of equations
for the fundamental quantity of the polaron spectral
function, which determines the rf, Ramsey, and Raman
spectroscopies. The first method of Chevy ansatz is
generally applicable to any interaction potential, while
the second diagrammatic approach is restricted to a contact
interaction in free space, whose unregularized strength is
infinitesimal. Remarkably, our diagrammatic theory
presents a very rare case in which a quantum many-body
system can be exactly solved by finding out the complete
series of Feynman diagrams. We establish the equivalence
of the two approaches when they are both valid and show
that the coefficients in Chevy ansatz can be directly
expressed in terms of the many-particle vertex functions
in the diagrammatic theory. A more comprehensive dis-
cussion of the derivations of these two approaches is
presented in [37].
The exact set of equations for the spectral function can be

truncated to enclose, to a particular order (i.e., nth order
with n particle-hole excitations). To illustrate, we focus on
Fermi polarons in one-dimensional lattices and analyze the
enhanced predictive capabilities of the spectral function
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when two-particle-hole excitations are taken into account.
Future studies with more involved numerical efforts would
be beneficial in providing quantitative predictions for the
finite-temperature spectral function of unitary Fermi polar-
ons in three-dimensional free space, and would offer
insights into elucidating the perplexing spectral features
observed in rf spectroscopy thus far [28,32], given the latest
technical advances both experimentally [38] and theoreti-
cally [39–41].
Chevy ansatz at finite T—Following the seminal works

[12,13], we take the following Chevy ansatz for a single
spin-down atom (i.e., impurity) immersed in a Fermi sea of
spin-up atoms with total momentum p,

jψi ¼
X∞
n¼0

jψni ¼
X∞
n¼0

X
fkqg

αk1k2���kn
q1q2���qn

ðn!Þ2 d†p−Pκ⃗n
jκ⃗ni; ð1Þ

where d†p and c†k are respectively the creation field
operators of the impurity and spin-up atoms, and jκ⃗ni≡
c†k1

� � � c†kn
cqn � � � cq1 jFSi is an operator describing n-

particle-hole excitations out of a mixed state of thermal
Fermi sea jFSi [42], with a momentum Pκ⃗n ¼
ðk1 þ � � � þ knÞ − ðq1 þ � � � þ qnÞ. The occupation of
each state k in the Fermi sea is given by the Fermi
distribution fðξkÞ ¼ 1=ðeξk=kBT þ 1Þ, where ξk ¼ εk − μ
is the dispersion of spin-up atoms, measured from the

chemical potential μ. Because of the anticommutation of
fermionic field operators, the coefficients αk1k2���kn

q1q2���qn are
antisymmetric upon exchanging ki and kj or qi and qj,
where i; j ¼ 1;…; n. The resulting redundancy is removed
by the factor 1=ðn!Þ2.
We solve an effective Schrödinger equation for the

polaron state jψi, Hjψi ¼ ðH0 þHintÞjψi ¼ Ejψi, as
derived in Supplemental Material [42]. Our solution is
based on a crucial observation thatHjψni can be expressed
by a combination of the terms d†p−Pκ⃗m

jκ⃗mi, where

m ¼ n − 1, n, and nþ 1 [42], so we may directly write
down a set of equations for the coefficients. The action of
the noninteracting, kinetic part of the Hamiltonian on
the wave function is easy to work out [37], H0jψni ¼
1=ðn!Þ2 P

fkqgðEFS þ εIp−P⃗κn
þ E⃗κnÞαk1k2���kn

q1q2���qn d
†
p−P⃗κn

j⃗κni,
where EFS is the energy of the thermal Fermi sea, Eκ⃗n ¼
ðεk1

þ � � � þ εkn
Þ − ðεq1 þ � � � þ εqn

Þ is the excitation
energy of n particles and holes, and εIp is the impurity
dispersion relation. The action of the interaction
Hamiltonian on jψni is also straightforward to obtain, after
some tedious algebra [37,42]. For the simple case of a
contact interaction (in free space) or an on-site inter-
action (in lattices) with strength U, i.e., Hint ¼
U
P

KK0QQ0 δKþQ;K0þQ0c†KcK0d†QdQ0 , we find

−EðnÞ
p;fkg;fqgα

k1k2���kn
q1q2���qn ¼ U

X
i;j¼1;…;n

ð−1Þiþjαk1���kn−ikn−iþ2���kn
q1���qn−jqn−jþ2���qn þ U

�X
K

�
αKk2���kn
q1q2���qn þ � � � þ αk1���kn−1K

q1q2���qn
�
fð−ξKÞ

−
X
Q

�
αk1k2���kn
Qq2���qn þ � � � þ αk1k2���kn

q1���qn−1Q
�
fðξQÞ

�
þU

X
KQ

αk1k2���knK
q1q2���qnQ fð−ξKÞfðξQÞ; ð2Þ

where EðnÞ
p;fkg;fqg ≡ −ðE − EFS − νUÞ þ εIp−Pκ⃗n

þ Eκ⃗n at the

density (or filling factor) ν, and the left-hand side of the
equation shows the coefficient of ðE −H0 − νUÞjψni. The
three terms on the right-hand side of the equation come
from ðHint − νUÞjψi, corresponding to the processes of
(i) creating a new particle-hole excitation, (ii) changing the
momenta of the particle-hole excitations, and (iii) removing
an existing particle-hole excitation, respectively [37,42].
The latter two processes involve a summation over the
particle momentum K and the hole momentum Q, which
carries either a distribution function fð−ξKÞ or fðξQÞ. It is
easy to see that Eq. (2) has a nice hierarchy structure. In
particular, once we discard the last term on the right-hand
side at a given order, the set of equations for the coefficients
αk1k2���kn
q1q2���qn closes.
At zero temperature, where the sharp Fermi surface at the

Fermi wave vector kF separates the momenta jkij > kF and

jqij < kF, Eq. (2) was already derived, up to the second
order n ¼ 2 [13] and n ¼ 3 [49]. At nonzero temperature,
the first-order truncation of Eq. (2) was also recently
discussed [43]. All these studies emphasize that Chevy
ansatz is variational, so their focus is more on some
individual many-body eigenstates of the system. Here,
we are interested in attractive or repulsive polarons, which
may consist of a bundle of many-body eigenstates. The
polaron energy at nonzero temperature does not necessarily
become smaller as we increase the order of particle-hole
excitations. It is therefore more useful to describe Fermi
polarons using the polaron Green function. For this
purpose, we may take a continuous variableω≡ E − EFS −
νU and interpret Eq. (2) at the leading order, i.e.,
ðω − εIpÞα0 ¼ U

P
KQ αKQfð−ξKÞfðξQÞ, as the condition

for the poles of the polaron Green function. Indeed, we are
free to take an un-normalized ansatz with α0 ¼ 1 and
consequently identify the polaron self-energy,
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Σðp;ωÞ ¼ U
X
KQ

αKQfð−ξKÞfðξQÞ: ð3Þ

We will soon rigorously examine this identification by
using the diagrammatic theory. Thus, for a given p and ω, if
we are able to solve the set of Eq. (2) truncated to a
particular order n, we may directly calculate the polaron
Green function G↓ðp;ωÞ and hence the spectral func-
tion Aðp;ωÞ ¼ −ImG↓ðp;ωÞ=π.
Chevy ansatz with U ¼ 0−—In free space and in two or

three dimensions, the contact interaction should be

regularized by using an s-wave scattering length.
Formally, the interaction strength U becomes infinitesimal,
in order to remove the ultraviolet divergence at large
momentum. In this situation, in Eq. (2) the terms involving
a summation over Q vanish, as fðξQÞ ∼ e−ℏ

2Q2=ð2mkBTÞ is
exponentially small at large Q. We may simplify
the equation, by defining the variables, Gk1k2���kn−1

q1q2���qn ≡
U
P

K αk1���kn−1K
q1q2���qn fð−ξKÞ. It is then straightforward to

derive the following set of equations [37]:

Gk1k2���kn−1
q1q2���qn ¼

�
1

U
þ
X

K

fð−ξKÞ
EðnÞ
p;k1k2���K;q1q2���qn

�
−1
"Xn

j¼1

ð−1Þj−1αk1k2���kn−1
q1q2���qn−jqn−jþ2���qn

þ
X
K

P
n−1
i¼1 G

k1k2���kn−i−1Kkn−iþ1���kn−1
q1q2���qn

EðnÞ
p;k1k2���K;q1q2���qn

fð−ξKÞ −
X
KQ

Gk1k2���kn−1K
q1q2���qnQ

EðnÞ
p;k1k2���K;q1q2���qn

fð−ξKÞfðξQÞ
#
; ð4Þ

which are manifestly antisymmetric with respect to the
exchange of two momenta in ki or qi. As we shall see, these
seemingly complicated equations have an elegant explan-
ation in terms of Feynman diagrams.
Diagrammatic theory—To this aim, let us introduce the

(nþ 1)-particle vertex function Γnþ1ðfklg;p; fqlgÞ, which
describes the in-medium scatterings among n spin-up
atoms in the Fermi sea and the impurity. The collective
notation fklg stands for k1k2 � � � kn, where the incoming
four-momentum kl ≡ ðkl;ωlÞ and ωl is a real frequency.
The same notation is similarly taken for the outgoing
momenta fqlg. We require that the spin-up atom with the
incoming four-momentum kn interacts first with the impu-
rity. While it is not so obvious at this point, the vertex
function Γnþ1 does not depend on kn when n ≥ 2 [37]. As
such, Γnþ1 is antisymmetric when we exchange any two
momenta in fklgl≠n or fqlg.
We find that the coefficients in the Chevy ansatz are

related to the many-particle vertex functions Γnþ1 [37],

αk1k2���kn
q1q2���qn ¼ −

Γnþ1ðfklgl≠n;p; fqlgÞ
EðnÞ
p;fkg;fqg

; ð5Þ

where all the four momenta take the on-shell values, such
as p≡ ðp;ωÞ, ki ≡ ðki; ξki

Þ, and qi ¼ ðqi; ξqiÞ. By inte-
grating over kn on both sides of the equation and recalling
the fact that Γnþ1 does not depend on kn, we obtain
Gk1k2���kn−1

q1q2���qn ¼ Γnþ1ðfklgl≠n;p; fqlgÞ for n ≥ 2.
The relations Eqs. (3) and (5) are the key results of our

Letter, as they clearly demonstrate the powerfulness of
Chevy ansatz in the case of just a few impurities, which
may provide useful insights into further developing accu-
rate diagrammatic theories for strong correlated systems.

To establish the relations, let us first examine the Dyson
equation, which is diagrammatically shown in Fig. 1.
There, as the impurity line can only propagate forward
[3,4], the vertex function Γ2 can be fully represented by
three diagrams, where T2 is the standard T matrix that sums
up the infinite ladder diagrams. Similarly, the three-particle
vertex function Γ3 is completely represented by four
diagrams as given in Fig. 2.
From Fig. 2, it is not difficult to write down the on-shell

expression of Γ3, after we sum over two internal frequen-
cies [37],

Γ3ðk;p; qq0Þ
T2ðpþ qþ q0 − kÞ ¼ A1 þ A2 þ B1 þ C; ð6Þ

where T−1
2 ðpþqþq0−kÞ¼1=UþP

k0fð−ξk0 Þ=Eð2Þ
p;kk0;qq0

is the inverse T matrix, and A1 ¼ −Γ2ðk;p; qÞ=Eð1Þ
p;k;q ¼

αkq and A2 ¼ Γ2ðk;p; q0Þ=Eð1Þ
p;k;q0 ¼ −αkq0 are the

FIG. 1. Polaron self-energy ΣðpÞ expressed in terms of the
vertex function Γ2ðk;p; qÞ (see the upper panel), whose dia-
grammatic contributions are explicitly listed in the lower panel,
with building blocks of the T matrix T2ðpþ qÞ and the three-
body vertex function Γ3ðkk0;p; qq0Þ.

PHYSICAL REVIEW LETTERS 133, 083403 (2024)

083403-3



contributions from the diagrams (A1) and (A2), respecti-
vely. Finally, the remaining two diagrams give rise

to B1 ¼
P

k0 fð−ξk0 ÞΓ3ðk0;p; qq0Þ=Eð2Þ
p;kk0;qq0 and C ¼

−
P

k0q00 fð−ξk0 Þfðξq00 ÞΓ4ðkk0;p; qq0q00Þ=Eð2Þ
p;kk0;qq0 . It is

easy to check that, in Eq. (6) by further replacing
Γ3ðk0;p; qq0Þ by Gk

qq0 and Γ4ðkk0;p; qq0q00Þ by Gkk0
qq0q00,

we indeed recover Eq. (4) at the second order n ¼ 2.
Quite generally, the diagrams of the many-particle vertex
function Γnþ1 can be categorized into types A, B and C,
which exactly correspond to the three terms on the right-
hand side of Eq. (4), respectively [37]. The on-shell
expression of Γ2 can be similarly determined using
Fig. 1. In particular, the Dyson equation reads [37],

Σðp;ωÞ ¼ −U
P

kq fð−ξkÞfðξqÞΓ2ðk;p; qÞ=Eð1Þ
p;k;q, which

is precisely Eq. (3) once we use the relation Eq. (5) to

replace −Γ2=E
ð1Þ
p;k;q with αkq .

Fermi polarons in lattices—The exact sets of Eqs. (2)
and (4) could be implemented to calculate the polaron self-
energy in Eq. (3) and hence the polaron spectral function.
However, numerical calculations at finite temperature are
challenging, due to the zeros of EðnÞ

p;fkg;fqg that make the
coefficients αk1k2���kn

q1q2���qn and Gk1k2���kn−1
q1q2���qn highly singular. As a

result, the truncation to one-particle-hole excitations was
only recently considered [17–19,43]. Further improve-
ments to the level of two-particle-hole excitations have
never been attempted.
Here, we focus on Fermi polarons in one-dimensional

lattices with an on-site attractionU < 0, a situation that can
be readily realized in cold-atom experiments. We solve
Eq. (2) with the inclusion of two-particle-hole excitations
[37]. The singularities in the coefficients are removed by
introducing a finite broadening factor η to the frequency,
i.e., ω → ωη ≡ ωþ iη. We take several values of η and
eventually extrapolate to η ¼ 0þ.

In Fig. 3, we report the polaron self-energy at zero
temperature and at T ¼ 0.2t, calculated with one-particle-
hole excitations only (red dot-dashed lines) and with two-
particle-hole excitations (black solid lines). We find

FIG. 2. Diagrammatic contributions to the three-body vertex
function Γ3ðkk0;p; qq0Þ, classified into three different types of
diagrams, A, B, and C, which correspond to the three terms on the
right-hand side of Eq. (4). The diagrammatic contributions to Γ4

are provided in [37].

FIG. 3. The real part (a) and imaginary part (b) of the polaron
self-energy Σðp ¼ 0;ωÞ, with the mean-field shift νU subtracted.
The solid lines and dash-dotted lines correspond to the results
with and without two-particle-hole (2ph) excitations, respec-
tively. The blue dotted line in (a) shows ω − Ep¼0 and its crossing
points with ReΣ give rise to the polaron energies. Here, we take
ν ¼ 0.2, U ¼ −4t, and td ¼ t. Both Σ and ω are measured in
units of t.

FIG. 4. (a) The polaron spectral function Aðp ¼ 0;ωÞ at the
temperature T ¼ 0.2t. (b),(c) Highlight the repulsive polaron
responses at ω ∼ 1.5t, at T ¼ 0, and at T ¼ 0.2t, respectively.
The black solid lines or red dash-dotted lines show the predictions
with or without two-particle-hole excitations. The other param-
eters are the same as in Fig. 3.
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quantitative improvements when we incorporate two-par-
ticle-hole excitations at T ¼ 0. For example, the attractive
polaron energy obtained with two-particle-hole excitations

Eð2phÞ
p¼0 ¼ −1.139t agrees excellently well with the exact

result from Bethe ansatz, EðBAÞ
p¼0 ¼ −1.148t, as discussed in

Supplemental Material [42]. The improvement could also
occur at T ≠ 0. However, it becomes less significant with
increasing temperature. In Fig. 4(a), we present the polaron
spectral function at T ¼ 0.2t, which clearly shows the
attractive branch (at ω ∼ −1.3t) and repulsive branch (at
ω ∼ 1.5t). The inclusion of two-particle-hole excitations
leads to a larger decay rate for the attractive polaron and
thereby a reduced attractive polaron peak. It also slightly
increases attractive polaron energy. In contrast, for the
repulsive polaron, two-particle-hole excitations enhance
the peak height, as revealed by Fig. 4(c). This enhancement
is particularly evident at zero temperature, as shown in
Fig. 4(b).
Conclusions—In summary, by using both Chevy ansatz

and the diagrammatic approach, we have derived an exact
set of equations, to determine the finite-temperature spec-
tral function of Fermi polarons, which can hardly be
simulated by the state-of-the-art diagrammatic
Monte Carlo (DMC) approach [22–25]. Our exact theory
incorporates arbitrary numbers of particle-hole excitations,
allowing a systematic check of the importance of particle-
hole excitations at different levels and providing insights on
understanding the unexpected expansion convergence
problem observed in the DMC [25,42]. We have calculated
the spectral function of Fermi polarons in one-dimensional
lattices and have examined the improvement due to the
inclusion of two-particle-hole excitations. The extension of
our calculations to a unitary Fermi polaron, with more
elaborate numerical techniques learned from the DMC
[42], might be used to quantitatively understand the
puzzling spectral feature observed in recent measurements
[28,32]. Furthermore, our exact formalism is also directly
applicable to investigate the few-body (i.e., nþ 1) bound
states, which emerge as the poles of the many-particle
vertex functions Γnþ1, both in vacuum or in the presence of
the Fermi sea.
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