
Distinguishing Quantum Phases through Cusps in Full Counting Statistics

Chang-Yan Wang,1,* Tian-Gang Zhou,1,* Yi-Neng Zhou,1,* and Pengfei Zhang 2,3,4,†
1Institute for Advanced Study, Tsinghua University, Beijing 100084, China

2Department of Physics, Fudan University, Shanghai 200438, China
3Center for Field Theory and Particle Physics, Fudan University, Shanghai 200438, China

4Shanghai Qi Zhi Institute, AI Tower, Xuhui District, Shanghai 200232, China

(Received 15 January 2024; accepted 26 July 2024; published 19 August 2024)

Measuring physical observables requires averaging experimental outcomes over numerous identical
measurements. The complete distribution function of possible outcomes or its Fourier transform, known as
the full counting statistics, provides a more detailed description. This method captures the fundamental
quantum fluctuations in many-body systems and has gained significant attention in quantum transport
research. In this Letter, we propose that cusp singularities in the full counting statistics are a novel tool for
distinguishing between ordered and disordered phases. As a specific example, we focus on the superfluid-
to-Mott transition in the Bose-Hubbard model. Through both analytical analysis and numerical
simulations, we demonstrate that the full counting statistics exhibit a cusp singularity as a function of
the phase angle in the superfluid phase when the subsystem size is sufficiently large, while it remains
smooth in the Mott phase. This discontinuity can be interpreted as a first-order transition between different
semiclassical configurations of vortices. We anticipate that our discoveries can be readily tested using state-
of-the-art ultracold atom and superconducting qubit platforms.
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Introduction—Fluctuations are pervasive in quantum
many-body systems and serve as a window into funda-
mental physical principles. For example, in quasi-one-
dimensional electronic systems, charge transfer exhibits
nontrivial fluctuations around its expected value. This
phenomenon, indicative of charge quantization and known
as shot noise, has been extensively studied [1]. The full
counting statistics (FCS), a theoretical framework involv-
ing the Fourier transform of the charge distribution, has
been introduced as a comprehensive method for describing
these complex charge fluctuations [2–22]. The FCS is
defined as follows:

ZAðαÞ ¼ heiα
P

i∈A
ðn̂i−n̄Þi≡ e−FAðαÞ; ð1Þ

where α∈ ð−π; π� and n̄ ¼ hnii is the filling fraction of the
system. Up to a numerical factor, ZA is a Fourier transform
of pAðnÞ, the probability of finding n charges in the
subsystem A. Therefore, it provides complete information
of the charge distribution.
Although the FCS was originally introduced for studying

charge transport, it has gained crucial importance in
modern condensed matter theory, often referred to as
disorder operators [23]. The dependence of the FCS on
subsystem size has been systematically explored to

characterize quantum phase [24–31] and gapped topologi-
cal phases [32]. Nevertheless, the primary focus of these
works is directed towards the limit of small α. Recent
studies have expanded the application of FCS to explore
measurement-induced phase transitions [33,34], continuing
to establish its connection with entanglement entropy in
noninteracting systems [18–20].
In this study, we explore the α dependence of the FCS in

models that undergo order-disorder quantum phase tran-
sitions, focusing on systems possessing U(1) symmetry. To
reveal universal features, we concentrate on the α depend-
ency near α ¼ �π. We propose that the FCS displays
nonanalytic behavior in the ordered phase while maintain-
ing a smooth function in the disordered phase. In particular,
the discontinuity of the first order derivative for sufficiently
large subsystem size LA

Δ≡ lim
ϵ→0

lim
LA→∞

�
∂αFAðπ − ϵÞ − ∂αFAð−π þ ϵÞ�; ð2Þ

can serve as a witness of the superfluid phase, regardless of
dimensionality, as depicted in Fig. 1. This is intuitive since
phases with and without order exhibit different amounts of
fluctuation, making FCS a natural probe for distinguishing
quantum phases. We illustrate our proposition using the
example of the Bose-Hubbard model, combining analytical
analysis and numerical simulations. As we will elucidate,
the non-analyticity arises from the first-order transition in
the configuration of vortices in the superfluid phase as α
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varies across α ¼ �π, analogous to the Page curve as a
function of subsystem size [35,36]. Our theoretical pro-
posal can be readily tested in ultracold atom experiments.
Model—A prominent example for order-disorder tran-

sition is the superfluid-to-Mott transition for bosons in
optical lattices, described by the Bose-Hubbard model [37]:

Ĥ ¼ −J
X
hiji

ðb̂†i b̂j þ H:c:Þ þ U
2

X
i

n̂iðn̂i − 1Þ: ð3Þ

The first term describes the nearest-neighbor hopping of
bosons, and the second term represents the on-site inter-
actions. The model is defined on D-dimensional hyper-
cubic lattices, with our primary interests lying in D ¼ 1
(chain) and D ¼ 2 (square lattice). We focus on the integer
filling case. The system enters a superfluid phase when
J=U > rc, where charge fluctuations are coupled to a
gapless phonon mode. In one dimension (1D), the super-
fluid phase processes quasi-long-range order, and previous
studies suggest rc ≈ 0.28 [38–45] for unit filling n̄ ¼ 1. In
higher dimensions, the ground state experiences a sponta-
neous symmetry breaking, characterized by a nonvanishing
order parameter. On the contrary, the system is in a Mott
phase for J=U < rc, which preserves the U(1) symmetry
and displays a finite charge gap. The model has been
realized in ultracold atoms [46–54] and superconducting
qubits [55–57]. Notably, a recent experiment [54] probes
the phase transition in two dimensions (2D) by measuring
the brane parity order PA≡ZAðπÞ, focusing on scaling with

LA for a subsystem A containing LD
A sites [23,58–61].

Similar scaling behavior has been reported for the entan-
glement entropy of Fermi liquids [62–64] and the steady
states of free fermions under non-unitary dynamics [65–
67]. The measurement of the momentum-space FCS in the
Bose-Hubbard model has also been conducted in Ref. [68].
Nevertheless, the scaling with LA is not directly related to
the presence of cusps as a function of α, as they can be
tuned independently. Instead, the cusps in terms of α itself
are rooted in an intriguing physical mechanism that persists
in the thermodynamic limit, which can be explained as a
first-order transition between distinct semiclassical con-
figurations of vortices.
Superfluid phase—We first study the FCS in the super-

fluid phase. Since the dominant contribution comes from
the phonon mode, we adopt the field theory description
with an effective action [69]

Seff ¼
ρs
2
½ð∂τθÞ2=u2 þ ð∇θÞ2�: ð4Þ

Here, we employ the imaginary-time path integral
approach. θðx; tÞ∈ ð−π; π� is the field for phase fluctuation
of the superfluid. ρs is the superfluid density and u is the
phonon velocity. Let us first focus on the 1D case, where we
can identify the Luttinger parameter K ¼ πρs=u [39,70].
The generalization to higher dimensions will be discussed
subsequently.
We demonstrate the nonanalyticity of FAðαÞ in 1D

by providing two complimentary pictures, as shown in
Figs. 2(a)–2(c). We begin with a straightforward calcula-
tion of the FCS using the Luttinger liquid theory. In the

FIG. 1. The schematics depict the FCS in both the superfluid
andMott phases of the Bose-Hubbard model. The area marked by
the dashed line is subsystem A. In the superfluid phase, the FCS
displays a cusp near α ¼ �π, which serves as a witness of the
superfluid phase. In the Mott phase, the FCS is instead an
analytical function of α.

(a) (b)

(c) (d)

FIG. 2. Three different pictures are considered for the calcu-
lation of the FCS: (a) a two-point function on the infinite plane,
(b)–(c) two different semiclassical configurations of θðx; τÞ that
dominate the FCS near α ¼ �π. (d) Semiclassical configurations
of θðx; τÞ in 2D with a disklike subregion A. In (b)–(d), the
winding number of the vortices or the vortex loop can be
measured along the yellow loop.
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continuum limit, the density field can be approximated as
nðxÞ ¼ n̄ − ð1=πÞ∇ϕðxÞ [39,70,71]. Here, ϕðxÞ is the dual
field of θðxÞ, which satisfies the commutation relation
½∇ϕðxÞ; θðyÞ� ¼ iπδðx − yÞ. Therefore, the FCS can be
expressed as ZLL

A ðαÞ ¼ heiα½ϕð0;0Þ−ϕðLA;0Þ�=πip. Here, the
subscript p indicates that the correlator is computed on
a plane geometry, as we prepare the ground state by
employing an imaginary-time path integral over a half-
infinite plane and then insert the charge operator at τ ¼ 0.
An illustration is provided in Fig. 2(a). For the quadratic
action given by Eq. (4), the calculation yields [72]

FLL
A ðαÞ ¼ Kα2

4π2
ln

�
L2
A þ a2

a2

�
: ð5Þ

Here, a serves as a short-distance cutoff introduced for
regularization. Recalling that α∈ ð−π; π�, this result pre-
dicts a cusp near α ¼ �π, which gives Δ ¼ 2πK lnLA. A
similar phenomenon has been observed in the volume-law
entangled phase of non-Hermitian Hamiltonians [34].
Previous studies on 1D fermionic models [73] also unveils
a quadratic dependence of α using the Widom-Sobolev
formula or bosonization, although the main attention has
been paid to small α.
Finite-LA corrections—In the above calculation, the

periodicity of FðαÞ is enforced by hand, which can raise
concerns about whether the nonanalyticity at α ¼ π is an
artifact of the field theory calculation. Furthermore, there is
a general belief that all physical observables should exhibit
smooth behavior for finite system sizes, especially in lattice
systems. In other words, there should be corrections
accounting for finite LA=a. Last but not least, a direct
inverse Fourier transform shows that Eq. (5) predicts a
negative probability of finding a large number of charges in
subsystem A, which is unphysical. To address these
questions, we study the finite-size correction of the FCS.
The result further provides a semiclassical understanding of
the singularity’s presence.
To begin with, we express the insertion of

expðiπPi∈A n̂iÞ as a change in boundary conditions for
the phase field θðx; τÞ:

θðx; 0þÞ ¼ θðx; 0−Þ þ αΘðxÞΘðLA − xÞ; ð6Þ

where ΘðxÞ is the Heaviside step function. This is because
eiαn̂i b̂i ¼ e−iαb̂ieiαn̂i and the identification of b ∼ e−iθ.
Therefore, the computation of the FCS is mapped to
evaluating the path integral with the quadratic action
Eq. (4) under the boundary condition Eq. (6). For α ¼ 0,
vortex pairs are confined in the superfluid phase, and the
dominant contribution contains no vortices at long dis-
tances [69]. However, a finite α imposes a nontrivial
winding of θðx; τÞ. As an example, by integrating ∇θ
along the yellow loop enclosing (0,0) in Fig. 2, we find

W ¼
I
C
dl · ∇θ ¼ −αþ 2πn; n∈Z: ð7Þ

Therefore, a vortex exists at (0,0). Similarly, we expect the
presence of an antivortex at ðLA; 0Þ with a winding number
of −W. For each configuration of θðx; τÞ with fixed n,
FA ∝ Kð2πn − αÞ2 logLA=2 is equivalent to the increase
in free energy due to the presence of these vortices [74].
Summing up contributions with different n, we find

ZAðαÞ¼
X
n∈Z

ZLL
A ð2πn−αÞ¼

X
n∈Z

e−Kð2πn−αÞ2 lnLA=2π2þOðL0
AÞ:

ð8Þ

This result exhibits the 2π periodicity in α if we extend its
domain to α∈R, consistent with the microscopic
definition.
For sufficiently large LA, the FCS is dominated by a

single n that minimizes the interaction energy. Therefore,
away from α ¼ π, Eq. (8) is dominated by n ¼ 0 and
reduced to ZLL

A ðαÞ. However, for α ∼�π, two nearly
degenerate configurations become dominant, as illustrated
in Figs. 2(b) and 2(c), depicting θðx; tÞ as an in-plane spin.
In particular, (b) corresponds to a configuration with n ¼ 1
and W ¼ 2π − α, while (c) corresponds to n ¼ 0 and
W ¼ −α. Other terms in Eq. (8), representing configura-
tions where n ≠ 0, 1, become negligible due to the large
size of LA, even at α ¼ π. Thus, we observe that the first-
order transition between configurations (b) and (c) is the
origin of the nonanalytic cusp between π − ϵ and −π þ ϵ as
LA → ∞. With finite-LA corrections, the contributions from
both terms become comparable when jδαj≲ ðlnLAÞ−1,
effectively smoothing out the transition at α ¼ π. This is
very similar to the celebrated Page curve [35,36], which
receives Oð1Þ corrections when the subsystem comprises
exactly half of the total qubits. This analysis of the finite-size
correction explains the reason for choosing the specific order
of limits in our definition Eq. (2) for extracting the non-
analyticity of the FCS.
Higher dimensions—We then turn to higher-dimensional

superfluids, where a Luttinger liquid-type calculation is not
available. In such instances, the semiclassical picture
proves particularly valuable when extending our findings
to higher dimensions. Here, we exemplify the case with
D ¼ 2. Taking a finite subregion A, its boundary ∂A forms
a closed 1D loop, analogous to end points in 1D.
Consequently, the vortex pair is replaced by a vortex loop
situated at ∂A. An illustration for a disklike subsystem A is
depicted in Fig. 2(d), where we assume the configuration of
the phase field is independent of the azimuthal angle φ. It is
established that the excitation energy for a vortex loop with
a winding angle W can be approximated by W2LA lnLA
[74]. Therefore, upon summing up all conceivable con-
figurations characterized by different winding numbers, we
deduce
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ZAðαÞ ∼
X
n∈Z

e−Cðα−2πnÞ2LA lnLAþOðLAÞ; ð9Þ

with a coefficient C ∝ ρs. We include a potential local UV
contribution, which is proportional to the boundary length
j∂Aj ∼ LA. If we take the limit of large LA first, the result
reduces to a quadratic function for α∈ ð−π; πÞ similar to
1D, which leads to a cusp at α ¼ π. For large but finite LA,
the cusp gets smoothed out with a width jδαj≲
ðLA lnLAÞ−1, which is much narrower than its counterparts
in 1D. Results for more general spatial dimensions only
require replacing LA lnLA with LD−1

A lnLA, accounting for
the energy of a topological excitation with (spacetime)
codimension 2.
Mott phase—We now turn to compute the FCS in the

Mott phase. Since the charge fluctuation is heavily sup-
pressed, we perform a perturbative study in terms of
J=U ≪ 1. We introduce ĤJ ¼ −

P
hijiðb̂†i b̂j þ H:c:Þ. In

first-order perturbation theory, the ground state of the Bose-
Hubbard model in arbitrary space dimension with integer
filling is approximated as

jΨi ≈ 1

N

�
jΨ0i −

J
U
ĤJjΨ0i

�
; ð10Þ

where jΨ0i ¼
Q

iðb†i Þn̄j0i is the state with n̄ particles on
each site, and N is the normalization factor. The result is
valid in arbitrary space dimensions. By noticing that only
the hopping in the boundary changes the total particle
number in the region A, we have

ZAðαÞ ≈ 1 −
4J2

U2
n̄ðn̄þ 1Þð1 − cos αÞj∂Aj;

FAðαÞ ≈
4J2

U2
n̄ðn̄þ 1Þð1 − cos αÞj∂Aj: ð11Þ

This is a continuous function of α. As a result, we
determine that Δ ¼ 0 holds true for J=U ≪ 1.
For larger J=U, we should compute the FCS to higher

orders in J=U. The mth order perturbation theory may
excitem doublons near the boundary ∂A, which contributes

to a contribution F ðmÞ
A ðαÞ ∝ ðJ=UÞm½1 − cosðmαÞ�. It is

reasonable to assume the expansion converges absolutely in
the Mott phase. Based on this argument, we anticipate that
having a smooth FCS will be a generic characteristic within
the Mott phase, as verified by the numerical simula-
tions below.
Numerics—We conduct numerical simulations of the

Bose-Hubbard model in both one and two dimensions
using the matrix-product states (MPS) representation [75–
77], implemented through the ITensors.jl package [78]. We
fix the truncation error as ε ¼ 10−10 for 1D simulations and
ε ¼ 10−8 for two-dimensional simulations, which are
sufficiently small to ensure convergent results. In 1D, we

fix the system size at L ¼ 100 with unit filling n̄ ¼ 1 and
open boundary conditions and select subsystem A such that
it consists of LA ¼ 35 contiguous sites at the center. The
results of FAðαÞ in both phases are presented in Figs. 3(a)–
3(c). For clarity, we extend the plot range of α=2π slightly
to ½−0.6; 0.6� by utilizing its periodicity. Unlike the
effective theory Eq. (4) or the perturbative analysis
Eq. (10) which exhibits an emergent particle-hole sym-
metry, the microscopic Hamiltonian explicitly breaks this
symmetry. As a consequence, FAðαÞ acquires a nonuni-
versal imaginary part, whose magnitude is much smaller
than the real part.
In the superfluid phase, Re½FA� closely resembles a

quadratic function of α, as predicted by Eq. (5). We fit
Re½FA� with the functional form CRα

2 for
α=2π ∈ ½−0.4; 0.4�. The result is depicted as a dashed black
line in Fig. 3(b), which exhibits a high degree of accuracy
in matching the numerics away from α ¼ �π. Within the
same range of α, we observe that Im½FA� ¼ CIα, as
indicated by the black dashed lines in Fig. 3(b). In
Eq. (8), the imaginary part of FA is encompassed within
the nonuniversal contributionOðL0

AÞ in Eq. (8). Although it
is an order of magnitude smaller than the real part Re½FA�,
it still introduces significant finite-size corrections when
compared to the numerics. We propose the following
expression for ZAðαÞ:

ZAðαÞ ¼
X
n∈Z

e−CRðα−2πnÞ2−iCIðα−2πnÞ; ð12Þ

(a) (b)

(c) (d)

FIG. 3. Numerical results for the FCS of the Bose-Hubbard
model in 1D, obtained through MPS simulation with a system
size of L ¼ 100 in both the superfluid phase (a)–(b) and the Mott
phase (c). In (a)–(b), the solid and black dashed lines represent
the theoretical predictions with and without finite-size correc-
tions, respectively, as elaborated in the main text. In (c), the solid
lines represent the fitting with CM½1 − cosðαÞ�. Additionally, in
(d), we plot Δ as a function of J=U for various small but finite ϵ,
and present the result of the finite-size scaling as ϵ → 0. The
shaded region indicates the transition point reported in previous
numerics [38]. For clarity, we extend the plot range of α=2π
slightly to ½−0.6; 0.6� by utilizing the periodicity of the FCS.
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which is plotted in both (a) and (b) as solid lines,
demonstrating good accuracy even near α ¼ �π. This
indicates the presence of nonanalyticity in the large LA
limit. For comparison, the FCS in the Mott phase can be
approximated by CMð1 − cos αÞ, which is a continuous
function near α ¼ �π. This is shown in Fig. 3(c).
Moreover, Im½FA� is smaller than 10−1 throughout the
Mott phase. Finally, we determine Δ for different J=U by
taking numerical derivatives at small but finite ϵ, and
present the result of the finite-size scaling as ϵ → 0. Our
proposal for using Δ as a witness of the superfluid phase is
supported by the results in Fig. 3(d).
To further test our proposal in higher dimensions, we

investigate the FCS in the 2D Bose-Hubbard model on a
strip with Lx ¼ 25 and Ly ¼ 6, with an open boundary
condition in the x direction and a periodic boundary
condition in the y direction. The subsystem A is a
rectangular region in the center of the system with LxA ¼
8 and LyA ¼ 3. Previous studies report the superfluid-to-
Mott transition occurs at rc ≈ 0.06 [79–81]. The numerical
results are presented in Fig. 4. In the superfluid phase, solid
lines correspond to theoretical predictions without finite-
size corrections Im½FA� ∝ α2 for α∈ ð−π; πÞ. Despite a
small subsystem size, we find that numerical results match
our theory with good accuracy. This demonstrates a para-
metrically smaller finite-size broadening compared to the
one-dimensional case in Fig. 3(a), consistent with Eq. (9).
We also present results in theMott phase in Fig. 4(b), which
can be well approximated by CMð1 − cos αÞ.
Discussions—In this Letter, we investigate the FCS of

U(1) conservation charges in systems undergoing quantum
phase transitions, using the Bose-Hubbard model as a
concrete example. By employing an effective theory
description, we demonstrate that the FCS exhibits a cusp
near α ¼ �π in the superfluid phase. This cusp originates
from a first-order transition between distinct vortex con-
figurations in the ordered phase. As a result, the disconti-
nuity in the first-order derivative acts as a witness of the

superfluid phase. Our theoretical proposal is supported by
MPS simulations in both 1D and 2D cases and can be
readily verified in state-of-the-art experiments [54].
To further strengthen our proposal, it would be beneficial

to conduct a Monte Carlo simulation in higher dimensions
with larger system sizes, a task we plan to undertake in
future studies. While we have focused on the superfluid-to-
Mott transition as an illustration, we anticipate that the
emergence of cusps in the ordered phase will be a general
characteristic in various systems exhibiting an order-to-
disorder transition of U(1) symmetry. This is due to the fact

that the insertion of eiα
P

i∈A
ðn̂i−n̄Þ always induces a phase

twist of charged particles, thereby exciting vortices with an
energy cost ∝ α2. In the Supplemental Material [72], we
offer additional numerical justification using the 1D XXZ
model. It would be intriguing to investigate whether this
phenomenon can be generalized to models with non-
Abelian symmetry groups, such as SU(2) symmetry, or
to systems with generalized symmetries.

Note added—Recently, we became aware of related
investigations on FCS [82–84].
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