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We provide evidence for a correspondence between the formation of black holes and the stability of
circular null geodesics around the collapsing perturbation. We first show that the critical threshold of the
compaction function to form a black hole in radiation is well approximated by the critical threshold for the
appearance of the first unstable circular orbit in a spherically symmetric background. We also show that the
critical exponent in the scaling law of the primordial black hole mass close to the threshold is set by the
inverse of the Lyapunov coefficient of the unstable orbits when a self-similar stage is developed close to
criticality.
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Introduction—Geodesic motions are crucial in determin-
ing the fundamental features of spacetime. Circular geo-
desics are particularly interesting in this regard. For
instance, the binding energy of the last stable circular
timelike geodesic in the Kerr geometry may be used to give
an estimate of the spin of astrophysical black holes [1–3].
Null unstable geodesics are also intimately linked to the
appearance of black holes to external observers and have
been associated with the characteristic quasinormal modes
of black holes [4–6] which can be thought of as null
particles trapped at the unstable circular orbit and slowly
leaking out [7–10]. The real part of the quasinormal
frequency is set by the angular velocity at the unstable
null geodesic, while the imaginary part has been shown to
be related to the instability timescale of the orbit [11,12].
Such a timescale is set by the Lyapunov exponent char-
acterizing the rate of separation of infinitesimally close
trajectories.
Unstable circular orbits might also help to describe

phenomena occurring at the threshold of black hole
formation in the high-energy scattering of black holes
[13]. Finally, there seems to be a correspondence between
the scaling exponent setting the number of orbits of two
Schwarzschild black holes before merging into a Kerr black
hole and the Lyapunov coefficient of the circular orbit
geodesics of the final state Kerr black hole [13], as if the
properties of the null geodesics of the final state are
connected to the dynamics leading to it.
In this Letter we would like to build upon these results

and propose some evidence of a correspondence between
the formation of black holes (BHs), specifically in the
radiation phase of the early Universe and the properties of
the null geodesics around the perturbation which eventually
collapse into the BH final state.

We will focus in the radiation phase as we will think of
BHs formed in the early Universe, the so-called primordial
black holes (PBHs). Indeed, they have become a focal point
of interest in cosmology in recent years. In the standard
scenario PBHs are formed by the gravitational collapse of
sizable perturbations generated during inflation (see
Ref. [14] for a recent review). However, our logical path
following the physics of null geodesics can be applied to
BHs formed in different environments and/or from different
fields.
By characterizing the initial perturbation with the cor-

responding compaction function, we will show that—
varying its amplitude—the critical value for which the first
circular orbit appears with vanishing Lyapunov coefficient
well reproduces the critical value for which a BH is formed.
Furthermore, the formation of BHs at criticality is sub-
sequent to a self-similar evolution which results in a final
mass following a scaling law with a universal critical
exponent [15,16]. We will be able to identify such critical
exponent with the inverse of the Lyapunov coefficient of
the unstable circular orbits during the self-similar stage of
the collapse. Before launching ourselves into the technical
aspects, let us set the stage in the next section.
Geodesics stability and Lyapunov exponent—In order to

investigate the physics of null geodesics and its relation to
the formation threshold of BHs, we find it convenient
to work with the metric in the radial gauge and polar slicing
(which we will call from now on radial polar gauge).
These coordinates are the generalization of the

Schwarzschild coordinates to the nonstatic and nonvacuum
spacetime and have been routinely used in the numerical
studies of the gravitational collapse resulting in the for-
mation of BHs [15,16]. The metric reads
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ds2 ¼ −α2ðr; tÞdt2 þ a2ðr; tÞdr2 þ r2dΩ2: ð1Þ

Let us consider a physics situation in which the time
dependence may be neglected and stationarity can be
assumed. Null geodesics are determined by the trajectories
which move along the equatorial plane such that

−α2ṫ2 þ a2ṙ2 þ r2ϕ̇2 ¼ 0; ð2Þ

where the dots indicate differentiation with respect to the
affine parameter and ϕ is the azimuthal angle. Because of
the spherical symmetry, one has ϕ̇2 ¼ L2=r4, where L is
the angular momentum. Similarly, stationarity gives
ṫ2 ¼ E2=α4, where E is the conserved energy. The equation
of motion can be written as

ṙ2 ¼ −VðrÞ ¼ −
1

a2

�
−
E2

α2
þ L2

r2

�
: ð3Þ

A circular orbit at a given radius rc exists if

VðrcÞ ¼ V 0ðrcÞ ¼ 0; ð4Þ

where the prime indicates differentiation with respect to
radial coordinate. These conditions impose, respectively

E2

L2
¼ α2c

r2c
; ð5Þ

1 ¼ rc
α0c
αc

; ð6Þ

where the subscript c means that the quantity in question is
evaluated at the radius rc of the circular null geodesic.
If we slightly perturb the orbit taking r ¼ rc þ δr and

Taylor expand the potential, we get

δṙ2 ≃ −
1

2
V 00ðrcÞðδrÞ2: ð7Þ

Writing δṙ ¼ ð∂δr=∂tÞṫ, we obtain

δrðtÞ ¼ δrð0Þeλt; ð8Þ

where

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−V 00ðrcÞ
2ṫ2ðrcÞ

s
¼ 1

ac

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−αcα00c

p
ð9Þ

is the Lyapunov coefficient which determines the timescale
of the instability of the circular orbits against small
perturbations.
One fundamental point to notice is the following. Let us

write the condition (6) as gðrcÞ ¼ 0, where

gðrÞ≡ 1 − rα0ðrÞ=αðrÞ: ð10Þ

If we take the energy associated with the potential for
generic timelike orbits we notice that

E2 ¼ α

gðrÞ ¼
α2

1 − rα0=α
ð11Þ

which implies gðrÞ > 0 from the condition that this con-
served quantity is indeed the energy and it is real.
Furthermore, the condition of lightlike orbits corresponds
to the innermost timelike orbit at radius r ¼ rc, implying
gðrcÞ ¼ 0. Since gðrÞ is positive for timelike orbits, by
changing a parameter [which will be identified in Eq. (17)
as the amplitude of the compaction function A], one meets
the critical radius at which the orbit becomes lightlike. The
first time this happens is when the condition gðrcÞ ¼ 0 is
reached at the minimum of gðrÞ, i.e.

gc ¼ g0c ¼ −rc
α00c
αc

¼ 0 → λ ¼ 0: ð12Þ

Let us imagine to change the parameter A. Initially no
circular orbits are found (red lines of Fig. 2). The first
critical value rc is obtained when the minimum of the
function gðrÞ vanishes, which signals the point where the
Lyapunov coefficient vanishes. Further increasing the
parameter A, the curve gðrÞ vanishes for two critical radii
(blue lines) for which unstable orbits exist (on the right of
the minimum). The position of the stable and unstable
orbits can be understood as follows. The potential VðrÞ (3)
in this case goes to þ∞ for r → 0, having a minimum
closer to r → 0 and a maximum further away as can be seen
in Fig. 1. The depth of the minimum is related to the
parameter A and it is coincident with the maximum at
threshold. As the BH forms the potential will change shape,
developing the usual divergence to −∞ for small radii

FIG. 1. Plot of the potential obtained from Eq. (3) for multiple
values of the parameter A. At threshold we have no maximum or
minimum, but an inflection point, while further increasing the
values of A give rise to a stable and an unstable circular orbit.
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instead. This change of asymptotic behavior will get rid of
the closer minimum, so we can think of the depth of the
minimum as the one related to the mass of the future BH,
which at threshold gives exactly a zero mass BH, while the
outer maximum could be thought of as the one related to
the innermost stable circular orbit of the forming BH.
First evidence: The BH threshold from null geodesics—

Consider now a perturbation in the radiation energy density
which reenters the horizon after having been generated in a
previous inflationary stage. Our fundamental assumption is
that in the first stage of the dynamics we may consider
the fluid to be instantaneously at rest and we can neglect
pressure gradients. This assumption is supported by
numerical simulations which show that maximum infall
radial velocity remains rather small for a time considerably
after horizon crossing, till the perturbation has become
highly nonlinear [17].
The compaction function in the radial polar gauge is

CrpðrÞ ¼ 1 −
1

a2ðrÞ ¼
8πGN

r

Z
r

0

dx x2ρðxÞ; ð13Þ

where ρðrÞ is the energy density perturbation. (We use the
subscript “rp” for the radial polar gauge and “com” for the
comoving gauge.) Combining the ðrrÞ- and ðttÞ-Einstein
equations, the lapse function satisfies the following equa-
tion during the radiation phase [16]

r
α0

α
¼ 1

6

�
4Crp þ rC0

rp

1 − Crp

�
: ð14Þ

The condition for having a circular orbit therefore becomes

10CrpðrcÞ þ rcC0
rpðrcÞ ¼ 6: ð15Þ

This result is already encouraging as it provides values
Oð0.5Þ of the compaction function for which a circular
orbit exists, that is in the ballpark of the critical values for

which we know BHs may form [14]. The corresponding
expression for the Lyapunov coefficient is

λrc ¼ αc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

6
½11rcC0

rpðrcÞ þ r2cC00
rpðrcÞ�

r
; ð16Þ

which, for the argument of the previous section, vanishes at
the first value of rc for which Eq. (15) is satisfied.
The logic now is the following. The condition of

vanishing Lyapunov coefficient selects a critical radius
rc, while the condition (15) selects the amplitude of the
compaction function at that rc. Larger values of the
compaction function will have nonvanishing Lyapunov
coefficients and therefore unstable circular orbits.
Let us take as an example the compaction function of the

form

CrpðrÞ ¼ Arpðr=r0Þ2 exp ½ð1 − ðr=r0Þ2kÞ=k�; ð17Þ

which is the same as in Ref. [18], but in the radial polar
gauge. The condition λ ¼ 0 gives

ðrc=r0Þ2k ¼
1

2

�
7þ k −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ 14kþ k2

p �
; ð18Þ

which gives rc ∼ 0.9 r0 for k ≃ 0 and rc ∼ r0 for k ≫ 1.
[We choose the − branch of the square root because the
other solution as k → 0 gives a vanishing compaction
function CrpðrcÞ.] Imposing the condition (15) fixes the
value of Arp and correspondingly of CrpðrcÞ, which turns
out to be CrpðrcÞ ≃ 0.6 for k ≪ 1 and CrpðrcÞ ≃ 0.5
for k ≫ 1.
Our goal is now to compare the maximum value of the

compaction CrpðrÞ determined in this way with the critical
value of the compaction function to form a BH calculated
numerically in the comoving gauge and on superhorizon
scales and well fitted by the formula [18–20],

Cc
comðr̃mÞ ¼

4

15
e−1=q

q1−5=2q

Γð5=2qÞ − Γð5=2q; 1=qÞ ; ð19Þ

where rm is the location of the maximum of the compaction
function and q ¼ −r̃2mC00

comðr̃mÞ=4Ccomðr̃mÞ.
To do so, we have to go from the radial polar gauge to the

comoving gauge [21] defined with spatial coordinates
r̃ by knowing that the compaction function is coordinate
invariant [22]

Ccomðr̃Þ ¼ Crp½rðr̃Þ�: ð20Þ

Explicitly,

Cnull
rp ðrÞ → Cnull

comðrÞ ¼ 1 −
1 − Cnull

rp ðrÞ
αðrÞ : ð21Þ

FIG. 2. A schematic representation of the appearance of
circular lightlike orbits by increasing amplitude of the compac-
tion function from the red to the blue region.
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By evaluating it at its maximum r̃mðrmÞ for which we have
calculated the corresponding value of q, and by demanding
the existence of the critical value rc such that λ ¼ 0 in the
radial polar gauge, we obtain the critical compaction
function in Fig. 3 (see Supplemental Material for more
details [23]).
The red solid line indicates the value (19), while the

dotted green line indicates the compaction function in the
comoving gauge corresponding to the appearance of the
first unstable circular orbit. Admittedly, our correspon-
dence fails for values of q ≪ 1. Luckily, realistic models
for BH formation do not have values in this regime. This is
an impressive result given our assumption of neglecting the
initial radial velocity. We have also checked that the result
is stable against changing the parametrization (17). We also
notice that the two critical values depart more for q ≫ 1 as
the threshold value from the expression (19) tends to
2=3 ≃ 0.66, while the one from the circular orbit reasoning
increases up to ∼0.6. This discrepancy is not surprising as
more peaked compaction functions are characterized by
larger pressure gradients and our approximation is sup-
posed to lose its validity in this regime.
Second evidence: The critical exponent from null self-

similar geodesics—The gravitational collapse can be
briefly described as follows. During its growth, when
the comoving Hubble radius reaches the same size of a
given overdensity, if the latter is larger than a critical
threshold, a BH will form. It is also the moment when the
spacetime metric and the energy momentum tensor quickly
approach a self-similar behavior [15] which depends only
on the variable

z ¼ r
ð−tÞ ; t < 0 ð22Þ

and is independent from the time variable

τ ¼ − lnð−tÞ: ð23Þ

At later times, self-similarity is broken, leading eventually
to the formation of a BH if the evolution is supercritical,
that is if the compaction function at its maximum is larger
than a critical value (for a review, see Ref. [24]). The
resulting BH mass follows a scaling relation of the type
[15,16,25]

MBH¼Oð1ÞMHðCcom−Cc
comÞγ; γ≃ð0.35÷0.37Þ; ð24Þ

accounting for the mass of the BH at formation written in
units of the horizon massMH at the time of horizon reentry.
The critical exponent γ is universal reflecting a deep
property of the gravitational dynamics. During the self-
similar solution the dynamics depends only on the variable
z and not on the variable τ ¼ − lnð−tÞ. The metric (1) is
equivalent to

ds2 ¼ −fðzÞdτ2 þ a2ðzÞdz2 − 2a2ðzÞzdz dτ þ z2dΩ2;

fðzÞ ¼ α2ðzÞ − z2a2ðzÞ: ð25Þ

We can now repeat the same procedure as before to find the
Lyapunov coefficient for the perturbed orbit around the
critical “radius” zc which satisfies the conditions

E2

L2
¼ fc

z2c
and 2fc ¼ zcf0c; ð26Þ

where now the prime indicates the derivative with respect to
z. The Lyapunov coefficient reads

λ ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fc

z2cα2ca2c
ð2fc − z2cf00cÞ

s
ð27Þ

and determines the timescale of the unstable circular orbits

δz ¼ δz0eλτ: ð28Þ

We now note that δz0 will be proportional to ðCcom − Cc
comÞ

for a family of geodesics that approach the unstable orbit
when Ccom ¼ Cc

com. Perturbation theory breaks down when
δz ≃ 1, which sets the time when the geodesic will depart
from the circular orbit [13]. We find from Eq. (28)

ðCcom − Cc
comÞð−tÞ−λ ∼ 1: ð29Þ

On the other hand, the BH mass MBH inside the apparent
horizon is related to its radius by MBH ¼ rH=2GN.
Replacing −tH ¼ rH=zH, we find

MBH ∼ ðCcom − Cc
comÞ1=λ: ð30Þ

Now, the value of the Lyapunov coefficient can be extracted
running the self-similar simulations following Ref. [16]
(and whose results we will report elsewhere [26]) and we

FIG. 3. The comparison between the critical value of the
compaction function from Refs. [18–20] (red line) and the one
obtained from the existence of the first circular orbit (dotted
green line).
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have found λ ≃ 2.9, giving γ ¼ 1=λ ≃ 0.35, which is very
close to the value observed numerically in the literature
[15,16,25].
An estimate to understand this result is the following.

From Fig. 4, obtained by reproducing the results of
Ref. [16], one can appreciate that zc ≃ 1 and fðzÞ≃
−z2a2ðzÞ. Under these approximations, the Lyapunov
coefficient turns out to be λ ∼ ðz2c=αcÞ

ffiffiffiffiffiffiffiffiffiffi
a00cac

p
. One can

estimate ac ≃ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Crp

p
≃

ffiffiffi
2

p
since Crp is always

around 0.5. Similarly, a00c ≃ ac=z2c. Taking αc ≃ 1=2, the
Lyapunov coefficient is λ ≃ 2

ffiffiffi
2

p
≃ 2.8. This gives γ ¼

1=λ ≃ 0.36, which well approximates the numerical value.
Further comments and conclusions—There is one more

piece of evidence of the correspondence we have proposed.
Consider the moment when the BH has finally formed. Its
mass follows the relation (24) with the critical exponent
γ ≃ 0.36. For a BH, using the Schwarzschild metric, one
easily finds that the circular orbit—or photon ring—exists
at rc ¼ 3GNMBH. Following the same logic to find the
geodesics with α2 ¼ a−2 ¼ 1–2GMBH=r in the metric,
the corresponding Lyapunov coefficient is, in units
of the horizon radius rH ¼ 2GNMBH and independently
from the BH mass,

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fc
2r2c

ð2fc − r2cf00cÞ
s

; fc ¼ 1 −
rH
rc

; ð31Þ

which corresponds to

λrH ¼ 2

3
ffiffiffi
3

p ≃ 0.38: ð32Þ

The approximate equality between this value and the value
of the critical exponent γ (not its inverse) is striking.
Furthermore, this (maybe only apparent) coincidence
resembles the similarity—which we have mentioned in
the introduction—between the scaling exponent setting the
number of orbits of two Schwarzschild BHs before merging
into a Kerr BH and the Lyapunov coefficient of the circular
orbit geodesics of the final Kerr BH final state [13]. While
we honestly do not have at the moment an understanding of
such similarity, it will be interesting to investigate whether
it is further evidence of the correspondence between the
formation of BHs and null geodesics. Other possible
directions are to check if the correspondence works for
other equations of state or other matter collapsing fields,
e.g., massless scalar fields.
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