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Analog and digital quantum simulators can efficiently simulate quantum many-body systems that appear
in natural phenomena. However, experimental limitations of near-term devices still make it challenging to
perform the entire process of quantum simulation. The purification-based quantum simulation methods can
alleviate the limitations in experiments such as the cooling temperature and noise from the environment,
while this method has the drawback that it requires global entangled measurement with a prohibitively large
number of measurements that scales exponentially with the system size. In this Letter, we propose that we
can overcome these problems by restricting the entangled measurements to the vicinity of the local
observables to be measured, when the locality of the system can be exploited. We provide theoretical
guarantees that the global purification operation can be replaced with local operations under some
conditions, in particular for the task of cooling and error mitigation. We furthermore give a numerical
verification that the localized purification is valid even when conditions are not satisfied. Our method
bridges the fundamental concept of locality with quantum simulators, and therefore is expected to open a
path to unexplored quantum many-body phenomena.
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Introduction—Simulating quantum many-body systems
is a fundamental issue for quantum information science [1],
since it potentially has a significant impact on various fields
[2] including condensed matter physics [3–5], statistical
physics [6–9], quantum chemistry [10–12], and high-
energy physics [13–15]. In particular, simulation of thermal
equilibrium states, ground states, and nonequilibrium
dynamics for quantum many-body Hamiltonians has
attracted attention as a valuable application, since it is
believed to be an exponentially difficult task on a classical
computer. This has motivated the recent progress in
quantum simulations using cold atoms in an optical lattice
[16–20], nitrogen-vacancy centers in diamond [21], pho-
tonic devices [22], and superconducting qubits [23,24].
While it remains a challenge to perform all quantum

tasks in the current quantum devices, it has been proposed
that purification-based quantum simulation enables us to
break the limitations in experiments. The key idea is to
enhance the purity of a quantum state in a virtual way by
utilizing the classical postprocessing, rather than directly
realizing the purified quantum state. More specifically, one

computes the expectation value h•iFVP ¼ Tr½ρðnÞFVP•� corre-
sponding to ρðnÞFVP ¼ ρn=Tr½ρn� [which is denoted as fully
virtual purification (FVP) throughout this Letter] from an
original quantum state ρ using n copies. It has been pointed
out that, such an operation is capable of (i) simulating
the canonical Gibbs state of temperature T=n using that of
T [25], and (ii) suppressing the effect of noise in the context
of quantum error mitigation [25–36]. However, these
methods require multiple entangled measurement gates
that act globally among multiple copies. This imposes a
severe burden on the computation: nonlocal entangling
gates among copies and an exponentially large number of
measurements. It is crucial to seek whether we can alleviate
the overhead of purification-based methods in a way that
the accuracy of the simulation is maintained.
One promising direction is to utilize the geometrical

locality of target models, which is present ubiquitously in
condensedmatter systems. In particular, the locality of inter-
action yields an upper bound on the velocity of informa-
tion propagation: the Lieb-Robinson bound [37–40]. Recent
works show that this powerful bound can be applied to yield
various fundamental limits such as the finite correlation
length of a gapped ground state [38–40] and approximation
of time-evolution unitary in the interaction picture [41–43].
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Meanwhile, to our knowledge, there are very few frame-
works of practical quantum algorithms other than
Hamiltonian simulation [41–44] that incorporate the notion
of geometrical locality. This implies that we are not fully
harnessing the capacity of the quantum simulators for
practical use.
In this Letter, we fill in these gaps by proposing the

localized virtual purification (LVP) as a virtual purifica-
tion on local subsets of qubits, and present theoretical
guarantees and conditions that the method overcomes the
problems in FVP when the locality of the system can be
exploited. While the proposal itself was mentioned in the
original paper as a task for cooling [25], our contribution
is to clarify the conditions of the theoretical bounds and to
show a practical advantage to an effect of noise among the
entanglement measurement operations. While the output
from the LVP generally deviates from that of the FVP due
to a non-negligible correlation between purified and
unpurified regions, we find that the deviation can be
written as a generalized correlation function. In particular,
this reduces to the two-point correlation function in some
cases including cooling and error mitigation. Therefore, if
we further assume the clustering property, i.e., the
exponential decay of two-point correlation, we can derive
two bounds that assure the accuracy of the LVP for these
tasks. Finally, we verify our analytical results via numeri-
cal simulation, and also find that the LVP is capable of
unifying the two tasks, namely the simulation of low-
temperature Gibbs states from noisy high-temperature
states.
Setup—Let the Hamiltonian be defined on a

d-dimensional hypercubic lattice with the periodic boun-
dary condition that is represented as an undirected graph
G ¼ ðV; EÞ, where the number of vertices jVj is equivalent
to the total number of sites (or qubits) N and the edges E
denote the connectivity of each site. We assume that the
interactions in the Hamiltonian are geometrically local:
H ¼ P

X hX satisfying maxv∈V
P

X∶X∋v khXk ≤ g,
where X is a subset of V and g is a positive constant
independent of N. In the following, we will write each term
of the Hamiltonian as hAi

with a subset Ai denoting one
vertex i on the support, as long as there is no confusion. We
assume a spin-1=2 system that directly corresponds to
qubits, while we expect that our theory can be naturally
extended to higher-spin, fermionic, and bosonic systems,
since the underlying mechanism of cluster property is
commonly present. In fact, we numerically analyze two-
dimensional fermionic systems in the Supplemental
Material (SM) [45].
Localized virtual purification—We define the expect-

ation values of LVP by

hOðnÞ
LVPi ¼

X
i

TrAiþBi
½ðρðAiþBiÞ

i ÞnoAi
�

TrAiþBi
½ðρðAiþBiÞ

i Þn�
; ð1Þ

where O is an observable that can be decomposed into a

sum of local observables as O ¼ P
i oAi

. Here, ρðAiþBiÞ
i ¼

TrCi
½ρ� is the reduced density operator on regions Ai and Bi.

To be more specific, we divide all sites into three regions
[see Fig. 1(a)]: Ai is a region of the support of a local
observable oAi

and we perform the entangled measurement
operations between n copies in the Ai and Bi regions, while
we do not perform any operations on the regionCi. Without
loss of generality, we may focus on an arbitrary single term
oAi

and therefore we omit the index i for simplicity. Note
that the expectation values in Eq. (1) can be evaluated via
LVP by operating an entangled measurement circuit on the
region A ∪ B as shown in Fig. 1(b). This results in the
measurement costs of TrAþB½ðρðAþBÞÞn�−2 [45], where
measurement costs denote the increase of the variance
for estimating the expectation values. The increase implies
the greater number of measurements required.
In general, the estimation by the LVP is not equi-

valent to that of the FVP. Meanwhile, we find that we
can understand the performance of LVP qualitatively by
rewriting the difference of the expectation values
DðnÞðoAÞ¼f(TrAþB½ðρðAþBÞÞnoA�)=(TrAþB½ðρðAþBÞÞn�)g−
f(Tr½ρnoA�Þ=ðTr½ρn�)g into the integration of the general-
ized correlation function as

DðnÞðoAÞ ¼
Z

1

0

dλ
Z

1

0

dτCorrτρλðXn − Yn; oAÞ; ð2Þ

where we have introduced a generalized correlation func-
tion CorrτρðO;O0Þ ¼ Tr½ρτOρ1−τO0� − Tr½ρO�Tr½ρO0�. This
is also referred to as the two-point quantum correlation
function [68,69] or canonical correlation for thermal
Gibbs states [70–72] in literature. We have also defined
ρλ ¼ eHλ=Tr½eHλ �, Hλ ¼ Yn þ λðXn − YnÞ, Yn ¼ logðρnÞ,
and Xn ¼ log ½ðρðAþBÞÞn ⊗ ðσCÞn�, where σC is an arbitrary

(a) (b)

FIG. 1. Schematic description of our proposal, the localized
virtual purification (LVP), assuming two-dimensional system
with n ¼ 2 copies of quantum state. (a) Dividing the entire
lattice into three regions A, B, and C according to the local
observable oA and the distance dðA;CÞ ¼ 1. The number of sites
inside the regions A, B, and C are NA, NB and NC, respectively,
and the total number of sites is Nð¼ NA þ NB þ NCÞ. (b) The
entangled measurement operation applied to regions A and B to
perform the LVP.
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positive operator (see SM for derivation [45]). As we
discuss in detail in the following, we find that the
generalized correlation function reduces to the two-point
correlation function for some cases, and thus it decays
exponentially if the exponential clustering property holds.
Theoretical bounds for LVP—Now let us present our

main results: the performance guarantees and their condi-
tions for the LVP. We first discuss one of the most important
cases, namely the cooling of thermal equilibrium states

ρβðHÞ ¼ e−βH

Tr½e−βH� ; ð3Þ

where β is an inverse temperature. In this case, we can re-
write Eq. (2) asDðnÞðoAÞ ¼ −nβ

R
1
0 dλ

R
1
0 dτCorr

τ
ρλðΔH; oAÞ

because simple relations Xn ¼ −nβðH þ ΔHÞ and
Yn ¼ −nβH hold for ΔH that is introduced to describe the
deviation of the Hamiltonian from a Gibbs state ρβðHðAþBÞÞ
tracing out the region C. Here, we assume that ΔH can be
approximated by a local operator supported on the boundary
of the region A ∪ B with exponentially small error, as shown
in SM [45]. Note that although previous results have proved
the above assumption based on a generalized linked-cluster
expansion in order to evaluate H þ ΔH [73–75], which is
related to the Hamiltonian of mean force for strong coupling
systems [76–79], a flaw in its proofwas pointed out later [80].
While the proof is to be fixed, we reasonably expect that the
locality ofΔH is valid in high-temperature regime, as proven
in commuting Hamiltonians [81]. By noting that the support
of oA is separate from that of ΔH under this assumption, we
prove the following theorem:
Theorem 1 (informal summary). Assuming the expo-

nential clustering of the two-point correlation function
[82–86], the deviation jDðnÞðoAÞj is exponentially small
in terms of dðA;CÞ:

jDðnÞðoAÞj ¼ Oðe−dðA;CÞÞ: ð4Þ

The formal statement and its proof are shown in SM [45].
One of the most outstanding points of our LVP protocol
applied to Gibbs states is the suppression of measurement
costs: TrAþB½ðρðAþBÞÞn�−2≃exp½2nβðNAþNBÞðfnβ−fβÞ�,
where fβ ¼ −½ð1Þ=ððNA þ NBÞβÞ�Tr½e−βHAþB � is a free
energy density of the Hamiltonian HðAþBÞ at an inverse
temperature β. This implies that the measurement costs of
LVP are exponentially small regarding NC compared with
those of FVP [45]. Our LVP protocol for Gibbs states
induces an exponentially small bias from FVP regarding
dðA;CÞ, while it exponentially reduces the measurement
costs. Whereas it seems that the above assumption regard-
ing ΔH only holds for an extremely high-temperature
region, as we later confirm in numerical simulations, this is
expected to hold even for a low-temperature region [87].
Next, we discuss another interesting application of the

LVP: error mitigation. Here, we first provide a theoretical

bound when ρ is pure, and then present results when the
noise is present.
When the target state is pure, the deviation jDðnÞðoAÞj

can be written as a simpler form of the two-point correlation

function: DðnÞ
0 ðoAÞ ¼ TrAþC½ðρðAþCÞ − ρðAÞ ⊗ ρðCÞÞoA ⊗

ðρðCÞÞn−1=Tr½ðρðCÞÞn�� [45]. Here, DðnÞ
0 ðoAÞ denotes the

deviation DðnÞðoAÞ for a pure state ρ0, and ρðAÞ and ρðCÞ
denote the reduced density operator of the region A and C.
Regarding the deviation DðnÞðoAÞ for pure states and noisy
states under global depolarizing noise channel, we prove
the following theorem.
Theorem 2. If the ground state is unique with a finite

energy gap between the first excited states, the deviation for
a noiseless pure state ρ0 can be rewritten as

jDðnÞ
0 ðoAÞj ≤ ckoAk

kðρðCÞÞn−1k
Tr½ðρðCÞÞn� exp

�
−
dðA;CÞ

ξ

�
; ð5Þ

where c and ξ are constants independent of N. In particular,
if the system of interest is a one-dimensional system, the
term kðρðCÞÞn−1k=Tr½ðρðCÞÞn� can be bounded by a constant
independent of dðA;CÞ for any n, which leads to

jDðnÞ
0 ðoAÞj≤c0koAkexpð−dðA;CÞ=ξÞ¼Oðe−dðA;CÞÞ, where

c0 is a constant independent of N. Furthermore, the
deviation for the noisy ground state under the global
depolarizing noise can be bounded as jDðn¼2ÞðoAÞj ≤
jDðn¼2Þ

0 ðoAÞj þ jδ1j þ jδ2j, and δ1 ¼ Oðe−NÞ and δ2 ¼
Oðe−ðNAþNBÞÞ. The global depolarizing noise channel is
defined by D½ρ� ¼ ð1 − pÞρþ pðI=2NÞ, where p
(0 ≤ p ≤ 1) is the error rate.
Proof. The nontrivial part of this theorem has been

done by explicitly showing the expression of Eq. (2)
and rewriting Eq. (2) as the two-point correlation
function for pure state cases. The proof can be done
by applying the exponential clustering property [90],
which is derived from Lieb-Robinson bounds using the
Fourier transformation [38–40]: jTr½ρðAþCÞMA ⊗ MC�−
Tr½ρðAÞMA�Tr½ρðCÞMC�j ≤ ckMAkkMCk exp ð−dðA;CÞ=ξÞ.
When we choose MA ¼ oA and MC ¼ ðρðCÞÞn−1=
Tr½ðρðCÞÞn�, the correlation function is equivalent to

DðnÞ
0 ðoAÞ. For one-dimensional systems, the area law of

entanglement entropy SðρCÞ ≔ −Tr½ρðCÞ log ρðCÞ� holds;
SðρðCÞÞ ≤ const:, as shown in Ref. [95]. This implies that
the term kðρðCÞÞn−1k=Tr½ðρðCÞÞn� can be bounded by a
constant value independent of dðA;CÞ for any n [45],

which leads to jDðnÞ
0 ðoAÞj ¼ Oðe−dðA;CÞÞ. For the case of the

noisy ground state under the global depolarizing noise
channel [96], the derivation of the inequality and the
explicit forms of δ1 and δ2 are shown in SM [45]. ▪
Numerical simulations—Next, we present the results

of numerical simulation to justify our expectation that the
LVP is widely valid, even when the conditions for theoretical
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guarantees do not hold such as the cases of a low-
temperature region or gapless (critical) systems [45]. For
numerical simulations, we consider the transverse-field Ising
(TFI) Hamiltonian on one-dimensional periodic lattice as

HTFI ¼ −
XN
i¼1

ZiZiþ1 − λ
XN
i¼1

Xi; ð6Þ

whereXi andZi denote the Pauli-X and Z operators acting on
the ith site, and λ is the amplitude of the transverse
magnetic field.
First, we evaluate the performance of the LVP in the

context of cooling. As a metric of the performance of LVP,
we introduce the mean square error (MSE) χ [97] of the
energy of the low-temperature state ρnβðHTFIÞ that is
estimated using the high-temperature state ρβðHTFIÞ. The
MSE χ is composed of two contributions, namely the
variance obtained by Nshot and the bias from the true value,
and also the square root MSE can be understood as the
estimation precision under Nshot measurements.
Figure 2 shows the MSE χLVP and χFVP against the

number of qubits N for various dðA;CÞ. We find that our
LVP protocol only requires the number of measurements
proportional to N, while the original FVP suffers the
exponential number of measurements. We can also see
that χFVP; χLVP ∝ ðNshotÞ−1 widely holds, which implies
that the contribution from the bias is negligible unless Nshot
is taken to be a significantly large number.
Second, we verify the performance of the LVP in the

context of error mitigation. Concretely, we prepare the
ground state of HTFI in Eq. (6) at λ ¼ 2 (noncritical) so that
two-point correlation functions as well as Eq. (5) decay
exponentially. We consider the single-qubit local depola-
rizing noise, often employed to explain the experimental
results [98], which is defined by EðkÞ½ρ� ¼ ð1 − pÞρþ
ðp=3ÞðXkρXk þ YkρYk þ ZkρZkÞ for the kth qubit, where
p is the error rate.
Figure 3 shows the measurement costs to perform the

LVP for the noisy ground state of the Hamiltonian HTFI in
Eq. (6) at λ ¼ 2 (noncritical). We can see that the growth of
the measurement costs for LVP is significantly slower than
that of FVP. For example, the measurement costs of FVP
for p ¼ 0.15 in Fig. 3 are more than 100 while those of
LVP are around 10, and thus we have a cost reduction by a

factor of 10. Note that there is a trade-off between the bias
and measurement cost regarding dðA;CÞ [99].
Finally, we consider a unification of these two protocols:

cooling and error mitigation. Namely, we consider a
situation that any Gibbs state cannot be prepared perfectly.
In order to describe the imperfection, we assume that the
input state is a Gibbs state subject to the local depolarizing
noise channel on all qubits. Figure 4 shows the expectation
values of HTFI in Eq. (6) for Gibbs states with local
depolarizing noise. We see that the purification-based
approaches are capable of performing both cooling and
error mitigation simultaneously, and also that the deviation
between LVP and FVP decreases exponentially with
dðA;CÞ while the measurement costs are also suppressed
significantly.
Discussion and conclusion—In this Letter, we have

introduced the localized virtual purification (LVP) that
incorporates and utilizes the property of geometrical local-
ity to enhance the utility of purification-based quantum
simulation. We have given theoretical guarantees that the
LVP significantly alleviates the severe measurement over-
head of the FVP when the two-point correlation function
decays exponentially. This includes the cooling of the
Gibbs states of local Hamiltonians (Theorem 1) and error
mitigation of ground state simulation in gapped systems
(Theorem 2). We have also verified our findings via
numerical simulation, and also shown that the LVP is
capable of unifying both tasks.

FIG. 2. MSE χLVP and χFVP against the number of qubits N for
various dðA;CÞ at a temperature β ¼ 1.0 and Nshot ¼ 214. Inset:
MSE against Nshot for various dðA;CÞ with N ¼ 138.

FIG. 3. Measurement costs to perform error mitigation by FVP
and LVP for a ground state of HTFI in Eq. (6) with λ ¼ 2. Here,
we take n ¼ 2 copies of noisy ground state for N ¼ 12 qubits
under local depolarizing noise of error rate p.

FIG. 4. Unifying cooling and error mitigation to simulate
hHTFIi for λ ¼ 2. The LVP and FVP is performed for n ¼ 2
copies of noisy Gibbs state at β ¼ 1 for N ¼ 12 qubits.
Horizontal dashed and dotted lines indicate the results from
the FVP with and without noise, respectively. Inset: total
deviation of the expectation values Dðn¼2ÞðHÞ, where we define

jDðnÞðHÞj by jDðnÞðHÞj ¼ jhHiðnÞLVP − hHiðnÞFVPj, between FVP and
LVP against dðA;CÞ.
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We comment that an additional advantage of our LVP
protocol is to alleviate the noise effect among the entangled
measurement operations. A previous study [100] has shown
that the measurement costs of FVP increase exponentially
with the number of qubits due to errors in the entangled
measurement circuit. Using our LVP method, the meas-
urement costs do not exponentially increase because the
controlled derangement circuit is operated only in a local
region. This is true not only for error mitigation but also for
cooling achieved from FVP.
The LVP for the high-temperature regions of Gibbs states

in Eq. (3) is one of the most effective cases of our protocol
for practical quantum advantages. For many practical cases,
calculating thermodynamic properties for large system
sizes of two- or higher-dimensional quantum systems is
a challenging task on classical computers even with tensor
network methods such as projected entangled-pair states
[101]. On the other hand, there exists an efficient quantum
algorithm for preparing thermal states [102], under the
assumption of the exponential clustering of two-point
correlation functions and approximating quantum Markov
property, using quantum belief propagation [102–105].
That situation completely matches that of our LVP protocol
and therefore LVP works on a practical situation using
quantum computers.
Last but not least, we comment on other promising

applications of the LVP: the detection of topological orders
[106,107], the measurement of a characterized quantity of
quantum chaos [108], and an entanglement measure for
mixed states [109]. These quantities are well-known as
fundamental concepts in condensed matter physics and
quantum information and must be measured efficiently on
quantum computers. By applying our protocol, it may be
possible to not only detect such physical quantities but also
to incorporate error mitigation or cooling simultaneously.
We believe that these are important issues for future
research.
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