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We study the defect solutions of the nonreciprocal Cahn-Hilliard model. We find two kinds of defects,
spirals with unit magnitude topological charge, and topologically neutral targets. These defects generate
radially outward traveling waves and thus break the parity and time-reversal symmetry. For a given strength
of nonreciprocity, spirals and targets with unique asymptotic wave number and amplitude are selected. We
use large-scale simulations to show that at low nonreciprocity α, disordered states evolve into quasista-
tionary spiral networks. With increasing α, we observe networks composed primarily of targets. Beyond a
critical threshold αc, a disorder-order transition from defect networks to traveling waves emerges. The
transition is marked by a sharp rise in the global polar order.
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Introduction—Constituents of active matter, biological or
synthetic, interact in complex ways [1]. These interactions
are realized through various mechanisms, for example,
chemical activity in colloids and enzymes [2,3], wake-
mediated interactions in complex binary plasmas [4], visual
perception in bird flocks [5], social communication in
crowds of humans [6–8] and microswimmers [9], tensorial
hydrodynamic interactions in active carpets [10], and
programmable logic in robots [11]. Breaking the action-
reaction symmetry leads to novel features that are absent in
equilibrium [4,12], including the possibility to engineer
multifarious self-organization of building clocks in a cho-
reographed manner [13]. Individuals in a chemically active
mixture can assemble into self-propelling small molecules
[2,14] or form large cometlike clusters [15,16]. Non-
reciprocal alignment interactions lead to a buckling insta-
bility of the ordered state in polar flocks [17], as well as a
wide range of other novel features [18–20]. In the recently
introduced nonreciprocal Cahn-Hilliard model (NRCH)
[21–23], parity and time-reversal (PT) symmetries break
spontaneously, which leads to the formation of traveling
density bands [21,22], coarsening arrest [21,24], and local-
ized states [25].Avariant of theNRCHmodelwith nonlinear
nonreciprocal interactions exhibits chaotic steady states
where PT symmetry is restored locally in fluctuating
domains [23]. Although the NRCH model was introduced
phenomenologically [21,22], it has been highlighted

recently that it is possible to derive it as a universal amplitude
equation that emerges from a conserved-Hopf instability,
occurring in systemswith two conservation laws [26].More-
over, it has been derived using systematic coarse graining of
a microscopic model of phoretic active colloids [27].
Here, we study the defect solutions of the NRCH model

[21,22]. We find two types of defects, spirals with a unit
magnitude topological charge and topologically neutral
targets (see Figs. 1 and 2). They are the generators of
traveling waves and thus break the PT symmetry. In
addition, spirals break the chiral symmetry. Spirals are
frequently observed and extensively studied in various
systems described by the complex Ginzburg-Landau
(CGL) equation, for example, the well-known Belousov-
Zhabotinskii reaction, and colonies of Dictyostelium [28–
32]. Topologically neutral targets are unstable in the
framework of the CGL equation but can be stabilized by
introducing spatial inhomogeneities [31,33–35]. In the

FIG. 1. Qualititative phase portrait for the NRCH model (1) in
the α space. A critical threshold αc marks the onset of a disorder-
order transition. When nonreciprocal interactions are weak
(α ≪ αc), we find defect networks with isolated and bound
spirals. With increasing α, targets begin to emerge and are the
dominant defects right below αc. Above αc, noisy global polar
order sets in. Fluctuations decay with time, which eventually
leads to traveling bands.
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context of nonreciprocal interactions, creation and annihi-
lation of spiral defects has been reported in the context of
active turbulence in wet polar active carpets [10].
Programmable robots are shown to break the chiral
symmetry and spontaneously rotate in clockwise or anti-
clockwise manner [11].
Summary of results—Our central finding is that the

NRCH model admits stable spiral and target defect sol-
utions. Remarkably, no additional spatial inhomogeneities
are needed to stabilize the targets [33,34]. For a given
strength of nonreciprocal interactions (α), defect solutions
with a unique asymptotic wave number ðk∞ ¼ C

ffiffiffi
α

p Þ and
amplitude

�
R∞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2∞

p �
are selected (see Fig. 2). As a

consequence of the wave number selection, defect solutions
cease to exist beyond a crossover point α× ¼ 1=C2.
However, in our large-scale numerical simulations starting
from disordered states, defect solutions vanish for α well
below α× and we find a disorder-order transition at αc ≪
α× (see Figs. 1 and 3). Below αc, an initially disordered
state evolves into a quasistationary defect network with no
global polar order (see movie 2) in Ref. [36]. While both
kinds of defect are stable for a given α, defect networks
exhibit a clear preference for spirals or targets. At small α,
we exclusively find spirals. As we increase α, targets start
to appear as well, and close to the transition point α≲ αc,
we find target-dominated defect networks (see Figs. 3
and 4). Above αc, we find traveling waves that show global
polar order, rendered imperfect by mesoscopic fluctuations
that decay with time and eventually lead to traveling bands.
A sharp jump in the global polar order marks the onset of
this transition (see Fig. 3).
Model—We consider a minimal model of two conserved

scalar fields ϕ1ðr; tÞ and ϕ2ðr; tÞ with nonreciprocal inter-
actions. The complex scalar order parameter ϕ ¼ ϕ1 þ iϕ2

obeys the following nondimensional equation [36]

∂tϕ ¼ ∇2½ð−1þ iαÞϕþ jϕj2ϕ −∇2ϕ�; ð1Þ

where the parameter α quantifies the nonreciprocal inter-
actions and α > 0 implies that ϕ1 chases ϕ2. Conservation
of particle numbers for both species makes it impossible to
eliminate α using a global phase transformation as is
customarily done for the CGL equation [35]. The length
scales of interest are the system size L, the spinodal
instability cutoff length l which for (1) is set to unity,
and the length scale lα ¼ l=

ffiffiffi
α

p
that governs the oscil-

latory features of (1) [36]. Traveling wave solutions of (1)
have the form

ϕðr; tÞ ¼ Reiðk·r−ωtÞ; ð2Þ

with k ¼ jkj, R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p
, and ω ¼ αk2. For any α, an

infinite number of plane waves with k < 1 are possible.
Waves with k < 1=

ffiffiffi
3

p
are linearly stable and small

perturbations at wave number q decay with a rate

∝ Oðq2Þ, while beyond this threshold the Eckhaus insta-
bility sets in [23,35,38].
Defect solutions—We now show that the NRCH model

(1) admits defect solutions of the form

ϕðr; tÞ ¼ RðrÞei½mθþZðrÞ−ωt�; ð3Þ

where r and θ represent the polar coordinates, and r is
measured from the defect core. RðrÞ is the amplitude, ZðrÞ
is the phase, and m is the topological charge. Figure 2(a)
shows defect solutions for different m. Topologically
neutral target (m ¼ 0) and charged spiral ðm ¼ �1Þ are
stable, whereas defects with jmj > 1 are not and they
evolve into a bound pair of spirals. In Fig. 2(b), we plot
RðrÞ vs r for various values of α and m. An isolated spiral
core is singular and stationary, thus RðrÞ vanishes at the
origin and is independent of time. On the other hand, RðrÞ
is finite at the core of a topologically neutral target and
oscillates slowly with time [28,34,35]. At small r, we find
RðrÞ ∼ a1r − a3r3 for spirals and RðrÞ ∼ a0 − a2r2 for
targets. For both spiral and targets, we obtain kðrÞ≡
ðdZ=drÞ ∼ b1r − b3r3 at small r [36].
Defects are the generators of plane waves that propagate

outwards in the radial direction (see movie 1) [36]. Thus, at
large distances from the defect core (r ≫ 1), the wave front
approaches that of a plane wave, i.e., kðrÞ → k∞, and
RðrÞ → R∞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2∞

p
. We require ω ¼ αk2∞ to ensure

proper oscillations at all r and k∞ > 0 to have a radially

FIG. 2. (a) Defect solutions of the NRCH model. (b) RðrÞ vs r
for m ¼ 0 and 1 at different α≲ α×. Inset: Comparison of RðrÞ
with small r approximations [36]. (c) Selected wave number k∞
vs α. We find k∞ ¼ C

ffiffiffi
α

p
(dashed lines with same colours),

where C ∼ 0.76 for m ¼ 1 and C ∼ 0.7 for m ¼ 0. Inset: R∞ vs α
(dashed lines show

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2∞

p
).
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outward group velocity, i.e., vg ¼ 2αk∞ > 0 as α > 0. To
first order in 1=r, RðrÞ ∼ R∞ þ ð1=rÞ½ðα2 þ k4∞Þ=2αk∞R∞�
and kðrÞ ∼ k∞ þ ð1=rÞðk2∞=2αÞ [36]. Emitted plain waves
screen the defect core from outside perturbations [39] and
their stability implies that the defect solutions are also
stable at large distances from their core. In Fig. 2(c), we
show that k∞ increases with α and using a numerical fit we
find that k∞ ¼ C

ffiffiffi
α

p
; the inset verifies the relation between

R∞ and k∞. It is evident that R∞ vanishes for α ≥ α× ≡
1=C2 and the defect solutions cease to exist beyond α×.
Stability of the plane waves then implies a potential
crossover from defects to travelling waves for α ≥ α×.
The Eckhaus instability further reduces α× as the far field
wave fronts are unstable for k∞ > 1=

ffiffiffi
3

p
and we obtain

α× ¼ 1=3C2 ∼ 0.58.
Defect networks in simulations—At equilibrium (α ¼ 0),

a system quenched from a high temperature disordered
state to sub-critical temperatures undergoes bulk phase
separation. The phase separated domains grow with time
and a unique growing length scale characterizes this
coarsening dynamics [40,41]. The dense-dense (liquid-
liquid) or dense-dilute (liquid-gas) coexistence states are
determined by the reciprocal interactions between the two
scalar fields. For α ≠ 0, the interplay of non-reciprocity
with equilibrium forces allows for the emergence of a priori
undetermined complex spatiotemporal patterns; a hallmark
feature of nonequilibrium systems [10,42–44]. To under-
stand the dynamical features of the NRCH model, we
perform large scale simulations of (1) with varying

nonreciprocity α and system size L [36]. In Fig. 3(a),
we show the typical steady-state solutions obtained from
the evolution of a disordered state. A critical threshold of
nonreciprocal interactions, αc < α×, separates the phase
space into two distinct regimes—quasistationary defect
networks and traveling waves superimposed with local
fluctuations [36]. In what follows, we highlight the main
features of these nonequilibrium states; a detailed analysis
will be presented elsewhere.
For α < αc [see Figs. 3(a) (top panels) and 4(a)], after an

initial transient period in which numerous newly born
defects move around and merge, a quasi stationary steady
state emerges (see movie 2, Supplemental Material [36]).
This steady configuration is sensitive to the initial con-
ditions and shows limited dynamics. The arms of the
isolated spirals rotate, the targets pulsate, and bound pairs
of like-charged spirals orbit around a common center.
Along the disinclination lines, where the waves emitted
from spiral or target cores meet, we find small clusters of
additional defects that cannot be classified as spirals or
targets. These defects show dynamical rearrangement with
time and form locally unsteady patches in an otherwise
frozen network (see movie 2) [36]. The composition of
defect networks changes with α. For small α, we observe
isolated spirals and a few bound pairs of like-charged
spirals that orbit around a common center. As we increase
α, targets emerge as well and right below αc, we primarily
find targets. For a given α, targets show a strikingly higher
interdefect separation as compared to the spirals [see
Figs. 4(a) and 4(b)]. Because of the sensitivity to the initial

FIG. 3. (a) Transition from disordered defect networks to travelling waves on increasing the nonreciprocity strength α for L ¼ 6400
and N ¼ 4096 [36]. We plot the real component of ϕ at long times on smaller subdomains for a better visual representation. (b) Global
polar order in the steady state with varying α. At αc, we observe a sharp order-disorder transition. (c) Plot of the fraction of simulations
ðFTÞ that transition to traveling waves for different α [shaded region in (b)] and L. For α ≥ 0.28, almost all of the simulations show the
transition and hence we infer αc ¼ 0.28� 0.01. Smaller boxes can show transition at α≲ αc due to finite size effects [36].
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conditions, we observe variability in the defect density, but
the overall behavior exhibits an initial increase that is then
followed by a decrease, as α is increased [see Fig. 4(b)].
For α≳ αc, we find traveling waves [see Fig. 3(a)

(bottom panels)]. The transient period shows a mixture
of defects and growing patches of polar order, which
quickly washes away the defect cores. Afterwards, global
polar order, albeit marred by local spatial fluctuations,
emerges. These fluctuations decay with time and eventually
we find traveling density bands. To quantify the transition
from defect networks to traveling waves we compute the
average polar order J̄≡���Ĵðr; tÞ���, where Jðr; tÞ≡
ð1=2iÞðϕ�∇ϕ − ϕ∇ϕ�Þ ¼ ϕ1∇ϕ2 − ϕ2∇ϕ1 is the polar
order parameter and h…i implies averaging over space
and time in the steady state. For a monochromatic
plane wave of the form (2), J ¼ R2q, and thus J̄ ¼ 1.
On the other hand, for defect solutions (3), we have
J ¼ RðrÞ2�kðrÞr̂þ ðm=rÞθ̂�, which implies J̄ ∼ 0. Far
away from the defect cores ðr ≫ lÞ, we obtain
J ∼ R2

∞k∞r̂, which is independent of the value of m.
The defects emanate radially outward traveling waves
and J has a topological singularity with unit positive
charge at the defect core.

As shown in Fig. 3(b), the transition from defect net-
works to traveling waves is marked by a sharp increase in
the average polar order J̄ at α ¼ αc. We find that J̄ ∼ 0 for
defect networks ðα < αcÞ, while it acquires a finite value
for the traveling wave states α > αc. Spatial fluctuations
decrease with increasing α, thus J̄ < 1 for α≳ αc, while it
saturates close to its maximum permissible value J̄ ¼ 1 for
α ≫ αc. From Fig. 3(b), we expect 0.25 < αc < 0.30,
however, in the vicinity of αc, finite size effects can
influence the steady states, especially for smaller box sizes.
To obtain a better estimate of αc, we have performed an
ensemble of numerical simulations with varying box sizes
(L) spanning 2 orders of magnitude. In Fig. 3(c), we show
the fraction of simulations that reached a traveling wave
steady state for various L and α. From these simulations,
we infer αc ∼ 0.28 < α×.
Discussion—Nonreciprocal interactions emerge natu-

rally in nonequilibrium systems with complex interactions
[2,4,45], and this effective breaking of the action-reaction
symmetry leads to a variety of novel features. Here, we
have unveiled a new feature of nonreciprocal interactions,
namely, the emergence of topological defects in binary
mixtures of conserved scalar densities. We find two kinds
of defects for the NRCH model, spirals with a unit
magnitude topological charge and neutral targets. For a
given α, defects with a unique wave number are selected,
which immediately predicts a crossover from defects to
plain waves at α ¼ α×. However, our large-scale numerical
simulations show a disorder-order transition from quasista-
tionary defect networks to imperfect global polar order
α ¼ αc < α×. These states show a rich phase space
behavior. While both charged and neutral defects are
allowed for any α < α×, at low values of α the system
prefers topologically charged disorder, where the chiral
symmetry is broken, and we find isolated and bound pairs
of spirals. Close to αc, disorder is topologically neutral and
targets are the preferred defects. Above αc, noisy traveling
waves with spontaneously broken polar symmetry emerge.
The fluctuations in these states decay with time, but can
persist for a very long duration especially for α≳ αc.
Our study uncovers important features concerning the

phenomenology of active matter with non-reciprocal inter-
actions. We note here that while the isolated defect
solutions are stable in the presence of persistent noise,
wave interaction and finite size effects can result in
interesting pattern formation (see movie 3) [36]. A natural
next step will be to study the stability of isolated defect
solutions to small perturbations, as has been in the case of
the CGL equation [28,35], for which it has been observed
that the defect network states are not static but evolve
extremely slowly [46]. It will be interesting to investigate if
the defect networks in the NRCH model exhibit the phases
of vortex liquid and vortex glass with intermittent slow
relaxation observed in CGL equation. We have focused
here on a simplified version of the NRCH model with

FIG. 4. (a) Scatter plot of spiral and target cores for two
different values of α over the entire simulation domain L ¼ 6400.
Targets show strikingly higher separation compared to spirals.
(b) Defect density ρD, defined as the number of spirals and targets
per unit area, decreases with increasing α, in the vicinity of αc,
ρD ∼OðL−2Þ and it vanishes above αc. Further, it is sensitive to
the initial conditions, as shown by different lines for the same
value of L. Inset: Target fraction increases with α (L ¼ 6400).
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purely nonreciprocal interactions at the linear level and
restored global rotational symmetry in the ϕ space [36]. In
the Supplemental Material [36] we show the defect
solutions in the presence of linear reciprocal interactions.
In the future, our study could be extended to the study of
the properties of these defect solutions and to include
nonlinear nonreciprocal interactions [21]. Finally, in our
studies here we have neglected the naturally occurring
noise in the NRCH equation, which is conserved and has
been found not to affect the stability of long-range polar
order in the traveling-bands phase [47]. We note that the
existence of noise can help introduce defects in the layered
phase, which may (or may not) destabilize the smectic
order in the system, as examined in a number of related
studies [48–50]. Such considerations will be relegated to
future work.
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