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We investigate the flow of an electrolyte through a rigid nanochannel decorated with a surface charge
pattern. Employing lattice Boltzmann and dissipative particle dynamics methods, as well as analytical
theory, we show that the electrohydrodynamic coupling leads to two distinct flow regimes. The
accompanying discontinuous transition between slow, ionic, and fast, Poiseuille flows is observed at
intermediate ion concentrations, channel widths, and electrostatic coupling strengths. These findings
indicate routes to design nanochannels containing a typical aqueous electrolyte that exhibit a digital on-off
flux response, which could be useful for nanofluidics and ionotronic applications.
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Ion transport through nanochannels often exhibits non-
linear effects such as gating and pressure sensing [1–3].
These mechanisms are generically present in biological
nanochannels. For example, channels can adapt their shape
in response to mechanical stresses and act as emergency
safety valves to avoid cellular damage [4], or change the fluid
flows to trigger electrochemical signals [5]. Much effort has
been made to mimic the capabilities of such biological
mechanisms. For example, conical nanopores with constant
surface charge exhibit gating as a function of the exerted
pressure, and have been extensively characterized, both
experimentally and theoretically [6–12]. Such geometrical
asymmetries can result in rectification [6,7] and particle
separation due to entropic transport [13]. Both molecular
sized pores and nanochannels can give rise to gating and
rectification, but the precise response and the physical
mechanisms at play may change drastically [8–11,14–16].
An alternative avenue to obtain nonlinear response is by

introducing charge heterogeneities. Theoretical investiga-
tions indicate that a discontinuity in the surface charge
causes a disturbance in the flow profile that can extend a
distance from the surface an order of magnitude larger than
the Debye screening length λD [17]. Indeed, surface charge
patterns in micron-sized channels can result in intricate
electro-osmotic flows [18] and complex flow patterns such
as vortex formation that enhance fluid mixing [19–21].
Hence, surface charge patterns can qualitatively alter
electrokinetic flows, opening up the possibility to exploit
this feature to control ionic transport in nanochannels.
Here we investigate the flow of an electrolyte through a

nanochannel slit of width w at low Reynolds numbers
(Re ≪ 1). In the absence of charge, pressure-driven flow

through a channel with slip length ls attains the parabolic,
Poiseuille velocity profile,

vPxðyÞ ¼
Gx

2η
ðw2=4 − y2 þ wlsÞ; ð1Þ

where Gx is the pressure gradient in the x coordinate, η the
dynamic viscosity, and the channel walls are positioned
at y ¼ �w=2. Charging the surface modifies this flow
profile due to electrokinetic coupling between the hydro-
dynamic flow and electrostatic interactions. The electro-
static interaction strength is controlled by the Bjerrum
length lB¼e20=ð4πε0εrkBTÞ, with e0 the elementary charge,
ε0 and εr the vacuum and relative permittivity, respectively,
kB the Boltzmann constant, and T the absolute temperature,
which yields a typical length lB ¼ 0.71 nm for an aqueous
solution at room temperature. We employ the simplest
charge pattern that preserves charge neutrality: an alter-
nating pattern of positive and negative charged sections
with pattern size l and fraction of the surface f with
symmetric surface charge density, σþ ¼ −σ− ¼ σ (Fig. 1).
The channel contains a symmetric monovalent electrolyte
solution at density ρ and ion concentration cion ¼ ccation ¼
canion. To investigate how the surface charge affects the
flow we employ two independent computational methods
that combine hydrodynamics with electrostatics, lattice
Boltzmann (LB) with electrokinetics [22] and dissipa-
tive-particle dynamics (DPD) [23] with explicit ions [24].
The analysis is further supported by analytical mean-field
theory.
We initially focus on the parameters corresponding to a

channel width w ¼ 5.16 nm, containing an aqueous salt
solution (ρ ¼ 103 kg=m3, η ¼ 10−3 Pa s, T ¼ 293 K) and
consider a typical slip length ls for electrolytes on surfaces
with different degree of polarity, which is generically small,*tcurk@jhu.edu
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ls ≈ 20 nm [25,26]. The surface charge pattern length is
l ¼ 5w with f ¼ 0.5, which makes the width of each
charged strip comparable to the width of the channel
(Fig. 1). The pattern charge density is σ ¼ 0.05e0=ðΔxÞ2 ≈
�0.5e0=nm2, which is typical of, e.g., silica or iron oxide
surfaces [27].
The LB method combined with a convection-diffusion

solver for ions [22] allows us to analyze the steady-state
flow of an electrolyte as a function of pressure gradient Gx
and ion concentration cion (Fig. 2). To model small ion
diffusion with typical diffusion constant D ≈ 10−9 m2=s,
we set D ¼ 10−3ν, with the kinematic viscosity ν ¼ η=ρ.
The slip length is introduced using a fractional bounceback
boundary condition at the walls [28]. The lattice size is set
to Δx ¼ w=16, which is sufficiently small to avoid finite
size effects [see Supplemental Material (SM) [29] ], and the
reduced viscosity is set to η� ¼ 0.2, which determines the
LB time unit Δt ¼ Δx2η�=ν.
Surprisingly, we find that at a threshold pressure gradient

Gt, the flow velocity exhibits a discontinuous transition
characterized by nearly an order of magnitude change in the
average flow velocity [Fig. 2(a)]. This transition is associated
with a discontinuous change in the ion distributionmeasured
by the net charge density ρq in the channel. The slow flow
regime shows localized counterion clouds that reflect the
surface charge pattern [Fig. 2(b)], whereas the charge density
is largely uniform in the fast flow regime with only a scant
signature of the counterion layer [Fig. 2(c)]. This suggest that
at Gx < Gt the counterions are localized in a pattern
reflecting the surface charge, which results in a high drag
on the fluid and thus a distinct slow flow regime. Conversely,
at Gx > Gt, the drag becomes sufficiently large to pull the
counterions away from the patterned surface charge, leading
to ion mixing and associated reduction in local net charge
density, which in turn substantially reduces the ion drag and
results in a discontinuous transition. For G ≫ Gt, electro-
kinetic effects become negligible and the average flow
velocity is determined by the Poiseuille flow:

vP ¼ hvPxðyÞi ¼
Gxw2

12η

�
1þ 6ls

w

�
: ð2Þ

The discontinuous transition is observed only at inter-
mediate ion concentrations, whereas both higher and lower

salt concentrations result in a nonlinear, but continuous, flow
dependence onGx. This peculiar behavior is a consequence
of many-body electrokinetic effects. At low ion concen-
trations, cion → 0, electrostatic interactions become irrel-
evant and the flow attains the Poiseuille profile. In the
opposite limit the electrostatic effects become confined
to a narrow boundary layer since λD ¼ ð8πlBcionÞ−1=2.
Conversely, at intermediate ion concentrations the counter-
ion clouds from the opposite walls partially overlap and
electrokinetic effects lead to a discontinuous transition that
separates the fast and slow flow regimes. The same argument
implies the transition occurs only at intermediate Bjerrum
lengths. Moreover, to observe the transition, we expect the
charge pattern length l should be larger than the Debye
length, l > λD, otherwise, neighboring counterion clouds
overlap and are neutralized.
Although the LB calculations clearly point to a discon-

tinuous transition in the flow, the method does not include
thermal fluctuations and assumes a continuous charge
distribution. To establish whether the observed transition
is affected by thermal fluctuations or unit charge

�
�

FIG. 2. Steady-state flow velocity obtained fromLB simulations.
(a) Average velocity at different ion concentrations, c�ion ¼
cionΔx3 ¼ ½0.0001; 0.001 25; 0.01�, corresponding to the Debye
length relative to channel width, λD=w ¼ ½0.83; 0.24; 0.08�.
The dashed line corresponds to ideal Poiseuille flow [Eq. (2)].
(b),(c) Net charge density, ρ�q ¼ ρqΔx3=e0, at coexistence con-
ditions for the (b) slow and (c) fast flow profiles at
Gx ¼ 3.25 × 10−7ρΔx=Δt2 and Gx ¼ 3.26 × 10−7ρΔx=Δt2, re-
spectively. c�ion ¼ 0.00125, σ ¼ 0.05e0=ðΔxÞ2.

FIG. 1. Schematic of an electrolyte flow through a charge-
patterned nanochannel under a pressure gradient Gx. Channel
width w with a charge pattern of size l of alternating positive σþ
and negative σ− charge density.
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discretization, we turn to DPD, which is an off-lattice
method that models the solvent as a fluid of soft particles
and allows the introduction of explicit ions.
We use standard DPD parameters corresponding to an

aqueous solution [23,30] with DPD particle density
ρs ¼ 3=λ3, at λ ¼ 0.645 nm, and hydrodynamic coupling
γ ¼ 4.5kBTτ=λ2. We introduce electrolyte ions as charged
spheres with diameter λion ¼ λ [Fig. 3(a)]. The short-range
ion-ion and ion-wall repulsion ismodeled using the standard
Weeks-Chandler-Andersen potentialwith strength ε ¼ kBT.
The same Weeks-Chandler-Andersen form is used to
describe the smooth channel wall interaction with DPD
particles and ions. To separate thermodynamic and hydro-
dynamic parameters, ions and DPD particles have no
conservative pair interaction and interact only through the
DPD thermostat [24]. The ion-DPDhydrodynamic coupling
is set to γion ¼ 5γ, which yields the desired diffusion
constant of ions, D ≈ 1 nm2=ns, where the time unit,
τ ¼ 0.077 ns, is determined from reduced viscosity
η�DPD ¼ 0.85 [30] via η ¼ η�DPDkBTτλ

−3. The pressure gra-
dient Gx is introduced as an external body force on the
solvent DPD particles. The system size is Lx ¼ l ¼ 40λ,
Ly ¼ Lz ¼ w ¼ 8λ, with periodic boundary conditions in x
and z coordinates. The partial-slip boundary condition at the
walls is implemented by introducing immobilized particles
at the wall with surface density ρw ¼ ρsλ that interact with
DPD particles only via the thermostat with coupling γw,
which is determined by the desired slip length ls.
Electrostatic interaction are calculated using particle-
particle particle-mesh Ewald summation.
Using this DPD model we find that the steady-state

flow in a charge-patterned nanochannel exhibits a doubly
peaked velocity distribution [Fig. 3(b)] which implies a
discontinuous transition between slow and fast flow
regimes. Moreover, the transition becomes sharper at
higher surface charge densities, in quantitative agreement
with LB (Fig. 4). The agreement is remarkable given that
LB does not account for either thermal fluctuations or
discrete charges. This indicates that the existence and the
location of the discontinuous transition is robust and is not
sensitive to the details of the model.
Based on the simulation results, we propose a mean-field

theory that captures the essential features of the electro-
hydrodynamic coupling. The flow velocity is determined
by both the drag of ions localized in the channel and the
viscous drag of the walls. Specifically, the viscous drag
force density of the two confining walls Fw is determined
by the shear rate at the walls:

Fw ¼ 2η

�
∂vx
∂y

�
y¼−w=2

: ð3Þ

The Stokes drag per ion is Fd ¼ −ðkBT=DÞvion, where
vion is the velocity of the ion relative to the surrounding
fluid. At small pressure gradients ions are confined to the

charged regions [Fig. 3(a)], the relative velocity is thus
vion ¼ −vxðyÞ. The total ion drag Fi on the fluid is obtained
by integrating over all counterions in the charged channel
section. Approximating that the counterion charge density
ρq does not vary with x within each charged section,

Fi ¼
kBTf
D

Z
w=2

−w=2
vxðyÞ

ρqðyÞ
e0

dy; ð4Þ

where ρqðyÞ=e0 is the counterion concentration profile.
We can now analytically estimate the ratio of drag forces

due to bound counterions and the channel walls. Assuming
the flow profile remains parabolic and the counterion
density follows the exponential Debye-Hückel screening
profile, we find that for overlapping counterion layers,
λD > w=3, and small pressure gradient limit,

R0 ¼ Fi

Fw
¼ 3πλh min½σf=e0; wcion�

�
ls þ

w
6

�
: ð5Þ

which takes into account that the counterion charge density
is limited by the surface charge density or the electrolyte
concentration, and the hydrodynamic diameter of ions
λh ¼ kBT=ð3πDηÞ; see SM for detailed derivation [29].
In the opposite, wide-channel limit we find
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FIG. 3. Steady-state flow from DPD simulations. (a) Nano-
channel configuration where cations and anions are shown as red
and blue spheres, respectively, while channel walls are shown in
gray with embedded surface charges (at Gx ¼ 0.003kBT=λ4).
DPD particles are represented as small black dots. (b) Average
velocity; error bars mark the standard deviation of the velocity
distribution. Inset shows the velocity distribution at coexistence
(Gx ¼ 0.013 536kBT=λ4). cion ¼ 0.01λ−3 at which λD=w ¼ 0.24.
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R0ðλD < w=3Þ ¼ 3πλh min½σf=e0; wcion�
�
ls þ

λD
2

�
: ð6Þ

The average flow velocity in the channel hvxi ∝ Gx=
ðFw þ FiÞ can be written as

hvxi ¼
vP

1þ R
; ð7Þ

where R ¼ R0 for Gx < Gt, and R ¼ 0 for Gx > Gt, with
the transition at Gt. For R ≪ 1, the ion contribution is
negligible and the flow attains the Poiseuile profile
[Eqs. (1) and (2)], whereas for R > 1, the ion drag
dominates and we call this regime “ionic.”
The transition between the two flow profiles occurs

when the hydrodynamic force is sufficiently large to pull
the ions away from the charge pattern. This can be
calculated analytically by approximating each surface
patch by a line charge and each counterion cloud by
another line charge located in the center of the channel
(see SM [29]). The transition occurs at a pressure gradient
Gt that can overcome the electrostatic restoring force:

Gt ¼
2σflcionkBTlB

e0w
min½1; σf=ðcionwe0Þ�: ð8Þ

This theory is able to semiquantiatively predict both the
flow velocity hvxi and the location of the transition Gt
(Fig. 4). Moreover, the theory predicts general regions of
parameter space where different flow regimes are expected
to be observed [Figs. 5(a) and 5(b)], supported by LB
simulations data [Figs. 5(c) and 5(d)]. The ionic regime is
found at sufficiently large cion and w, while the discon-
tinuous transition is found only in a limited range of cion
and w at which both ion drag and screening length relative

to channel size are appreciable. The larger the slip length,
the larger the relative drag of ions [Eq. (5)] and thus the
larger the jump at the transition [Eq. (7)].
For non-neutral charge patterns the fluid attains a net

charge and the electro-osmotic flow can be induced by an
external electric field Ex instead of a pressure gradient.
For a pattern consisting of only one polarity we again
observe a discontinuous transition (Fig. 6). The only
notable difference is a lower limit for the counterion
concentration hρqi ¼ 2fσ=w, at which the transition
remains discontinuous even in the absence of extra salt
density cion;ex. The net body force, Gx ¼ Exhρqi, is
determined by the net charge density hρqi. The location
of the transition Et is well predicted by the theory, Et ¼
Gs

t=hρqi¼ 1.4×10−4½ρðΔxÞ4=ðΔtÞ2e0� [for a single polar-
ity charge the transition Gs

t ¼ Gt=2 and σf=ðcionwe0Þ ≤ 1;
see SM [29] ]. Thus, we expect the flow-regime diagrams
(Fig. 5) are qualitatively applicable to flows driven by
electric fields.
The observed flow transition occurs at pressure gradient

Gt ≈ 10−2kBT=λ4 ≈ 2 bar=nm in Figs. 2–4, and electric
field Et ≈ 10−4ρðΔxÞ4=½e0ðΔt2Þ� ≈ 20 mV=nm (Fig. 6),
both of which are very large. These values can be
substantially reduced by increasing the slip length ls
[see Eqs. (5) and (8) and Fig. 5]. For example, at constant
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FIG. 4. Steady-state flow at different surface charge densities σ.
Comparison between DPD (symbols), LB (solid lines), and
analytical prediction for the Poiseuille regime [dotted line,
Eq. (2)] and ionic regime [dashed line, Eq. (7)], which terminates
at the transition [star symbol, Eq. (8)]. Parameters are
cion ¼ 0.01λ−3, λ ¼ 2Δx, λD=w ¼ 0.24.

FIG. 5. Diagrams delineating the Poiseuille and ionic flow
regimes: (a) constant cion, (b) constant w. The lower bounds
cmin and wmin (dotted lines) are determined by R0 ¼ 1 [Eqs. (5)
and (6)]. The transition occurs atGt [Eq. (8)] and is discontinuous
(solid line) below cmax and wmax (determined by w ≈ 10λD), and
gradual (dashed line) above these bounds. (c),(d) Comparison to
LB simulation data showing a heat map of logR, withR computed
according to Eq. (7). Parameters are σ ¼ 0.1e0=ðΔxÞ2, f ¼ 0.5, in
(c) w ¼ 16Δx, while in (d) cion ¼ 0.001 25=Δx3.
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cion the minimum Gt ∝ l−2
s . For a superhydrophobic

surface (ls ¼ 10 μm) [26,31], we predict a minimum
Gt ≈ 0.01 bar=μm and Et ≈ 40 mV=μm. Conversely, the
distinct flow regimes are observed even if the slip length is
smaller than channel width, ls < w, although in this case
the transition is not discontinuous (see SM [29]).
In summary, we have investigated the flow of an

electrolyte solution through a rigid nanochannel decorated
with a surface charge pattern and demonstrated the
capability of effective gating for overall electroneutral
channels. Simulation results and analytical theory predict
two distinct flow regimes, a slow ion-drag dominated flow,
and a faster Poiseuille flow, separated by a discontinuous
transition. This discontinuous transition occurs only at
intermediate ion concentrations, channel widths, and
electrostatic coupling strengths and appears to be qualita-
tively different from both the Coulomb blockade effect [32]
in nanochannels and the continuous laminar-turbulent
transition in pipe flow [33].
While mechanosensitive nanochannels are common in

biology, their nonlinear response is typically coupled to
structural changes in the channel such as protein conforma-
tional changes [34]. Our findings imply that such structural
changes are not necessary to obtain two distinct (on-off)
flow profiles. Moreover, the principles that drive the
discontinuous flow transition open venues for the design
of nanochannel devices, an alternative to those based on
conical pores [9,12] and angstrom-scale slits [35], that
could also result in a memristive response. Hence, the
possibility to control ionic transport through charge-
patterned nanochannels makes them potential components
in iontronics and the design of brain-inspired neuronal
circuits.
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