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The links of a physical network cannot cross, which often forces the network layout into nonoptimal
entangled states. Here we define a network fabric as a two-dimensional projection of a network and propose
the average crossing number as a measure of network entanglement. We analytically derive the dependence
of the average crossing number on network density, average link length, degree heterogeneity, and
community structure and show that the predictions accurately estimate the entanglement of both network
models and of real physical networks.
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Many complex networks, from the brain [1] to the
network of atoms or molecules in materials have true
physical manifestation, hence their nodes and links cannot
cross each other. While network science offers a series of
tools to explore abstract networks like social networks or
the World Wide Web, whose links are virtual and whose
structure is fully encoded by the adjacency matrix Aij,
lately there is a growing interest in understanding physical
networks, whose layout and properties are affected by the
material nature of their nodes and links [2]. Indeed, volume
exclusion and noncrossing conditions [3–5] can force such
networks into nonoptimal spatial layouts which they cannot
escape, thereby creating entangled networks.
Network entanglement refers to the interdependent

relationship between the links of a physical network, where
changes in the layout of part of the network affects the
positions of the other links. In highly entangled networks
the links frequently interfere with one another, leading to
knotted structures and nonoptimal layouts. In contrast, in
networks with low entanglement the links minimally
interfere with one another. Entanglement affects the physi-
cal properties of networks, like reducing the network’s
elastic energy [5], and polymer entanglement can be
directly linked with toughness and viscosity [6,7]. More
recently, network entanglement has been shown to induce
transitions in supercooled water [8]. Understanding the
mechanisms influencing entanglement will allow us to
design physical networks with predefined entanglement,
modulating certain physical properties, as well as help us
better understand the physical properties of real physical
networks.
Here we investigate how the network embedding,

defined by the detailed spatial layout of its nodes and
links, and the network topology, captured by Aij, affect
network entanglement. We begin by defining a network
fabric as a two-dimensional projection of a physical

network. As a physical network can have infinitely many
fabrics, depending on the projection angle, inspired by knot
theory [9,10], we propose the average crossing number
(ACN) [11,12] as a measure of its degree of entanglement.
We derive analytically the dependence of entanglement on
the network’s density, link length, degree heterogeneity,
and community structure. Finally, we show that the
developed analytical framework can predict changes in
entanglement of both network models and real physical
networks.
Previous work estimated network entanglement using

the graph linking number (GLN) [5], which has an
exponentially growing complexity OðeNÞ [13] and is not
easily amenable to mathematical treatment. Here we show
that fabrics allow us to introduce a new entanglement
metric, the average crossing number (ACN), which is
significantly faster, having complexity OðL2Þ. A network
fabric f is any two-dimensional projection of a physical
network such that each crossing point maintains the over
and under crossing information [Fig. 1(a) and [13] ]. The

FIG. 1. (a) Three possible fabrics of a simple five cycle. Each
projection to a different plane results in a different fabric with
different crossings. (b) The crossing matrix of the fabric in the left
projection. Each row and column corresponds to a link in the
physical network. To calculate the average crossing number, we
average the number of crossings in each fabric. For the three
fabrics shown in the figure, the five cycle has hmi ≈ 2.66.
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average crossing number (ACN) of a network is hmi ¼
ð1=4πr2Þ RS2 mðfÞdS [11], where mðfÞ is the number of
crossings in the fabric f, dS is the area form of the sphere
S2 and r is the radius of the sphere that holds the network.
In other words, hmi is the average number of link
intersections over all possible fabrics (projections).
To estimate hmi for a given physical network, we take a

projection and count the crossings in the resulting fabric
using the crossing matrix, R∈RL×L, whose entries are 1 if
the row link crosses over the column link, −1 if the row link
crosses under the column link, and 0 if the two links do not
intersect [Fig. 1(b)]. We then average mðfÞ over multiple
fabrics to estimate the average crossing number. We find
that the ACN is self-averaging for large system sizes [13]
and it correlates with the linking among loops [13],
suggesting that the crossings in a fabric directly informs
our understanding of network entanglement.
For simplicity and without loss of generality, we focus

on linear physical networks (LPNs), whose links are
straight lines, and assume that each link has infinitesimally
small thickness. This allows us to focus on the effects of the
network layout and topology on entanglement while
avoiding the effects of volume. Note that any nonlinear
physical network can be approximated with a LPN by
adding ghost nodes along curved links, hence our results
can be generalized to networks with curved links.
The network layout affects the probability that two links

can cross, which we can analytically calculate for random
layouts [13] using Sylvester’s four point problem [25].
However, real networks are not randomly embedded but
follow an optimal layout, obtained by minimizing the
network’s total link length, which captures the system’s
elastic energy [4,26–28].
The longer a link, the higher likelihood that it will cross

other links, suggesting that the probability that each link
pair will cross must scale with the average link length hli
[13]. Because real physical networks have widely different
length scales, we normalize hli by the average distance
between two nodes hli� ¼ hli=hdi. As random layouts with
higher hli should have more crossings than optimal layouts
with minimal hli, for random layouts hli� → 1 and for
optimal layouts hli� ≪ 1. We then write hmi ∼ hli�mmax,
where mmax is the maximum number of possible link pairs
and hli� scales with the probability that the pair crosses.
In a LPN, if two links connect to the same node, they

cannot cross elsewhere. Hence, mmax ¼ ðL
2
Þ −P

i∈VðGÞðki2Þ
[29]. Here the first term is the total number of link pairs and
the second term removes the pairs which connect to the
same node. We expand this bound to [13]

mmax ¼
LðL − 1Þ

2
−
N
2
hk2i þ N

2
hki; ð1Þ

where hki and hk2i are the moments of the degree
distribution PðkÞ.

Nodes in real networks often form communities, repre-
senting subgraphs whose nodes share some common
properties or roles [30], and hence tend to be connected
to each other. In optimal energy layouts, these communities
often separate in space [26]. As links within the same
community are more likely to cross each other than they are
to cross links in different communities, this suggests that
the presence of communities reduces mmax. To capture this
reduction, consider a network with C equal-sized com-
munities where each link in the network connects two
nodes in distinct communities with probability p. Then
ð1 − pÞL links only cross links within their own commu-
nity while pL links can cross any link, reducing mmax
to [13]

mmax ≈
ð1 − pÞ2L2

2C
þ 2pL2 −

X

i

�
ki
2

�
: ð2Þ

Combining (1) and (2), we arrive at our key result,
approximating the impact of the network layout and top-
ology on LPN entanglement. Defining hmi� ¼ hmi=L2 as
the normalized ACN, we obtain

hmi� ∼ hli�
�ð1 − pÞ2

C
þ 2p −

hk2i
Nhki2 þ

1

Nhki
�
: ð3Þ

This result highlights the combined impact of the net-
work’s embedding and topology on the network’s entan-
glement. Furthermore, it helps us understand the variables
which control entanglement. Indeed, networks where
hmi� → 0 leads to less entangled and more optimal layouts.
In contrast, networks with hmi� → 1 correspond to highly
entangled structures. To test the validity of (3), we examine
separately the role of the average link length, degree
heterogeneity, and community structure.
Average link length—Networks with the same adjacency

matrix Aij can have layouts with different hli�. To test the
effect of hli� on the ACN, we generate different embed-
dings of the same network, each with a specified average
link length hli�, using simulated annealing [13]. We
measure the normalized ACN hmi� for each embedding.
As shown in Fig. 2(a), we find a linear relationship between
hli� and hmi� for both ER, BA, and configuration model
networks, evidence that Eq. (3) correctly captures the
ACN’s dependence on hli� for networks with different
layouts.
Degree heterogeneity—A remarkable feature of Eq. (3)

is its dependence on hk2i, indicating the unexpected role of
degree heterogeneity and hubs in entanglement. Indeed,
while network robustness [31,32] and epidemic spreading
[33] are known to depend on hk2i, in physical networks the
role of degree heterogeneity remains unknown. Indeed,
heterogeneity’s role on LPNs emerges because links con-
nected to a hub cannot cross. Hence, hubs reduce the
number of possible crossings. In the extreme case of a star
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network, where all nodes are connected to a single hub, no
links can cross and the ACN is zero.
Equation (3) predicts the effect of heterogeneity for

different network models. Assume each model exhibits no
community structure. In regular or random regular net-
works (ki ¼ k) [34], we have hk2i ¼ hki2, hence as
N → ∞, hmi ∼ ðNhkiÞ2hli�. In ER random networks
[35], where each link exists with probability p,
hki ¼ hkið1þ hkiÞ, thus, the leading term becomes
NðN − 1Þhki2hli�. In a scale-free network where the degree
sequence is a power law with degree exponent γ [36],
we have hk2i ∼ N½1=ðγ−1Þ�; hence, ACN scales as
ðNhkiÞ2hli��1 − N½ð4−2γÞ=ðγ−1Þ� þ 1=ðNhkiÞ�. When γ < 3

the second moment diverges with the network size, result-
ing in a potentially significant reduction of the ACN.
To verify the role of degree heterogeneity, we generate

networks with N ¼ 105 using a hypercanonical configu-
ration model, which generates a network with a predefined
degree sequence drawn from a power-law degree distribu-
tion [37]. For each network we measure hmi�=hli�, finding
that the dependence of hmi� on hk2i is well captured by
Eq. (3) [see Fig. 2(b)].
Community structure—Optimal network embeddings

with community structure reduce entanglement by forcing
links into distinct communities. To test the role of com-
munity structure on the ACN, we generate networks with C
isolated, homogeneous communities. Each link is then
rewired to a random node in the network with probability p,
representing an intercommunity link. As shown in Fig. 3,
we find that when p → 0, hmi ∼ C−1 as predicted in
Eq. (3). For p → 1, C has no effect. For intermediate p
values, we find that hmi ∼ ð1 − pÞ2C−1 þ 2p offers an
excellent approximation, as predicted by Eq. (3) [13].
Taken together, we find that both degree heterogeneity

and communities reduce network entanglement. To test the
accuracy of Eq. (3) as a whole, we generated networks

using a variety of network models exhibiting varying levels
of degree heterogeneity and community structure. For each
network, we predict the ACN using (3) and calculate the
true ACN numerically. We embed each network with an
optimal noncrossing layout offered by an accelerated force-
directed layout [26] and FUEL algorithm [4] as well as in a
random layout. We estimate C with the number of con-
nected components. Each network’s ACN is then predicted
for p ¼ 0 and p ¼ 1, obtaining a range of possible
estimated ACN values. For each network model, the
prediction (3) is close to the true ACN for both optimal
and random layouts (Fig. 4).
Finally, we repeat the above procedure for real physical

networks [13] and for the flavor network, a network with
high heterogeneity and strong community structure, using a
previously published optimal layout [26]. In general, we
have a range of methods to identify communities
[30,38,39]. Here, we estimate the number of communities
C by maximizing the modularity of the network. Again, we
find a good agreement between the predicted and true ACN
(Fig. 4), results that hold for the normalized ACN as
well [13].

FIG. 2. (a) The average link length for networks, generated by
the ER, BA, and configuration models with N ¼ 103 and
hki ¼ 6, embedded using simulated annealing and compared
with the normalized ACN. The black dashed line corresponds to a
linear fit y ¼ 0.06x − 0.01. (b) We generate networks with N ¼
105 and PðkÞ ∼ k−γ using a hypercanonical configuration model
with γ ¼ 2.01. The plot shows hk2i versus ðhmi�=hli�Þ and the
dotted line is the analytical prediction (3).

FIG. 3. The normalized ACN for networks (N ¼ 5000) with
varying degree of intercommunity connections (p). The dashed
line corresponds to the prediction of curve Eq. (3).

FIG. 4. The predicted ACN by Eq. (3) (vertical axis) for various
real datasets, the flavor network, a BA network, an ER network,
and two hypercanonical configuration models versus the empiri-
cally measured ACN (horizontal axis). Each synthetic network
has 1000 nodes with average degree hki ¼ 6. The black dashed
line is the diagonal. For each dataset we compute the ACN for
p ¼ 0 and p ¼ 1, represented by the error bar (one for each
dataset). For datasets, the data point is for p ¼ 1.
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We find that the ACN is strongly correlated with the
graph linking number (GLN), an earlier measure of net-
work entanglement, making it a suitable alternative.
The GLN suffers from high computational complexity,
OðeNÞ. In contrast, the complexity of the ACN if
O
�ðL2 − Nhk2i þ NhkiÞf�, where f is the number of

fabrics averaged over. For example, in a sparse network
withN ∼ L ¼ 20, computing the GLN takes approximately
the same time as computing the ACN on a network with 20
000 nodes. Finally, GLN ¼ 0 for loopless networks, while
the ACN captures the entanglement of networks without
loops as well and can be analytically estimated via
Eq. (3) [13].
Also note that degree heterogeneity reduces the compu-

tational complexity of the ACN. To test this prediction, we
generated networks with degree distribution drawn from a
power law with varying degree exponent γ, finding that
small γ has lower computational cost [13].
In conclusion, we have shown how the entanglement of a

physical network is simultaneously affected by the network
layout and the network topology. While network density
ðNhkiÞ2 sets the magnitude of entanglement, hubs and
community structure reduce its value.
We also want to emphasize some limitations and avenues

for improvement. Because of the simplifying assumptions
of hmi [13], the predictions in Fig. 4 are designed to unveil
the scaling of the ACN rather than exact value of the ACN.
Furthermore, for neurons, tropical trees, and the flavor
network, the community structure must be accounted for to
obtain a more accurate estimate.
Therefore, our results can be further improved by

examining how to measure the community structure and
estimate p using both the network layout and topology,
further enhancing the predictive power of Eq. (3). Presently
Eq. (3) only offers a bounded range on the possible ACN.
Also, we assumed that hli�, degree heterogeneity, and
community structure are independent variables, which is
not generally true [13,40]. Furthermore, understanding the
impact of degree heterogeneity and community structure on
hli� will glean better insight into the full role of network
topology on the ACN. Additionally, these results should be
further examined using a larger variety of realistic network
models, including hyperbolic networks [41,42], where both
degree heterogeneity, community structure, and clustering
can be simultaneously controlled, as well as other real
systems with greater degree heterogeneity [13]. Finally,
there is need to further investigate the role entanglement
has on physicality in order to inform network designs in
novel material systems.
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