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We present a data-driven method to learn stochastic reduced models of complex systems that retain a
state-dependent memory beyond the standard generalized Langevin equation with a homogeneous kernel.
The constructed model naturally encodes the heterogeneous energy dissipation by jointly learning a set of
state features and the non-Markovian coupling among the features. Numerical results demonstrate the
limitation of the standard generalized Langevin equation and the essential role of the broadly overlooked
state-dependency nature in predicting molecule kinetics related to conformation relaxation and transition.
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Predicting the collective behavior of complex multiscale
systems is often centered around projecting the full-dimen-
sional dynamics onto a set of resolved variables. However,
an accurate construction of such a reduced model remains a
practical challenge for real applications such as molecular
modeling. While model reduction frameworks such as the
Koopman operator [1] and the Mori-Zwanzig projection
formalism [2,3] enable us to write down the dynamic
equations in terms of the resolved variables, the reduced
model generally becomes non-Markovian with a memory
term that may further depend on the resolved variables; the
direct numerical evaluation involves solving the expensive
full-dimensional orthogonal dynamics. In practice, one
common approximation is to ignore such state dependencys;
the reduced model is simplified as the standard generalized
Langevin equation (GLE) [4] with a memory kernel that
only depends on time. Several approaches [5-20] have
been developed to construct the memory kernel such that
certain dynamic properties (e.g., the two-point correlations)
can be properly reproduced. Despite its broad application,
the validity of the standard GLE for real multiscale systems
remains less understood [21,22].

Intuitively, the above model reduction problem is some-
what analogous to hiking on a mountain where the land-
scape map and the path roughness represent the free energy
and the memory term, respectively. In general, we should
not expect homogeneous path roughness at the different
locations (e.g., the valleys and the ridges), which, con-
versely, needs to be inferred from the hiking records.
Indeed, studies based on full molecular dynamics (MD)
simulations [23-33] and sophisticated projection operator
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construction [34-42] show that the extracted memory term
can exhibit a pronounced state-dependent nature, where the
implications for the collective behaviors remain under-
explored. For extensive MD systems, a recent study [43]
on reduced modeling of polymer melt shows that the
heterogeneous intermolecular energy dissipation (i.e., the
memory) can be crucial for transport on the hydrodynamic
scale. However, for canonical nonextensive problems such
as biomolecule systems, a quantitative understanding
of the state-dependent memory effect on the reduced
dynamics remains an open problem. Several recent works
[10,13,18,44-48] model the non-Markovian effect for
transition dynamics based on the standard GLE. While
elegant semianalytical studies [49-58] on idealized 1D
double-well potential provide theoretical insights into the
state-dependent nature, quantitative modeling that retains
the reduced dynamics consistent with the full MD model,
including collective properties such as transition and
conformation relaxation, relies on accurate construction
and efficient simulation of a reduced model beyond the
standard GLE.

This Letter presents a data-driven approach for learning a
new stochastic reduced model that retains a state-dependent
memory for nonextensive systems. Instead of dealing with
the orthogonal dynamics [6,40,43], the training only relies
on the trajectory samples and does not directly solve the
Mori-Zwanzig projection formalism. The main idea is to
seek a generalized representation of the memory as the
composition of a set of state-dependent features, which
encodes the coupling between the resolved and unresolved
variables and will be learned using three-point correlation
functions. Efficient training is achieved by constructing
the encoders using a set of sparse bases, whose correlations
can be efficiently precomputed. The time-dependent
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component is directly learned in the Fourier space that
enables the efficient evaluation of the convolution term via
the FFT and meanwhile ensures non-negative energy
dissipation (i.e., model stability). To simulate the model,
coherent noise can be introduced that strictly satisfies the
second fluctuation-dissipation theorem and retains a con-
sistent invariant distribution. The present model, with a new
memory form, essentially reveals a caveat in model
reduction of multiscale systems and provides a reliable
approach for simulating the stochastic reduced dynamics
beyond empirical models. It enables us to probe open
problems such as the effect of state-dependent memory on
molecular kinetics. Numerical results show that the broadly
overlooked state dependency can play a crucial role. In
particular, the standard GLE is insufficient to capture the
collective properties such as conformation relaxation and
transition rate distribution, which, fortunately, can be
reproduced by the present model.

Let (q,p) €R?*" represent the resolved variables of a
high-dimensional Hamiltonian system, where q denotes the
coarse-grained coordinates as a function of the position
variables of the full model, and p denotes the coarse-
grained momenta. Following the Zwanzig’s formalism
[4,59], the reduced dynamics takes the form

/ Kq
where M is the mass matrix, U(q) is the free energy, v := q
is the velocity, K(q, ) is the memory, and R, is the noise
whose covariance function is related to the memory
following the second fluctuation-dissipation theorem [40].
Before proceeding to the construction of K(q, 7), we note
that the rigorous form based on Zwanzig’s formalism
depends on both q and p. Here, we focus on the state
dependence on q and assume it is independent of p (see
Ref. [59]). Furthermore, M generally depends on q; the
current choice of q leads to a constant mass matrix (see
Refs. [13,41] and Supplemental Material (SM) [60]). Also,
the construction of the free energy U(q) can be nontrivial;
several canonical methods based on enhanced sampling
[69-72] and temperature acceleration [73-76] have been
developed to facilitate the phase space exploration. We
assume the phase space can be effectively explored and
U(q) is known a priori.

Instead of rigorously constructing K(q, ¢) from the full
model, we ask the question of which forms of K can
generate a memory effect. One common approach is to
embed the memory in a larger Markovian dynamics with a
set of auxiliary variables. An essential observation is that
the memory term can be generally written as

q=M""p,

p=-VU(q Jt—1)v(r)dt +R,, (1)

K(q(7),t —7) ® C* o exp((t = 7) Lo ) oC™,  (2)

where L, is the Liouville operator corresponding to the
auxiliary dynamics and C* are channels representing the
coupling of the resolved and auxiliary variables. As a
special case, if the coupling and the auxiliary dynamics take
a linear form, the embedded memory recovers the standard
GLE kernel, i.e., K(q, ) = K(7) (e.g., see Refs. [19,77]).
Therefore, to construct the reduced model beyond
the standard GLE, the coupling channels need to properly
retain certain kinds of state-dependency nature. This
motivates us to represent C* by seeking a set of state-
dependent features ¢p(q) = [¢1(q), ..., $,(q)], where
¢: R™ — R™™ essentially encode the nonlinear coupling
between the resolved and unresolved variables and the
detailed form will be specified later. exp (¢£,,,) induces
the non-Markovian interactions among the features
with a time lag ¢ characterized by a kernel function,
e, Croexp((1—7)La)oC" = $(a(1)) O —7)p(q(v)),
where ®: R* — R™" and component ©;;(t — ) repre-
sents the dissipation between features ¢;(q(7)) and
#;(q(7)). In the remainder of this Letter, we use ¢, to
denote ¢(q(1)).

With the above observation, we propose the following
form to model the reduced dynamics (1), i.e.,

q :M_lpv

T /¢,T®r—r>¢f<>dr+Rn (3)

where encoders {¢;(q)}", and kernel ©(r) need to be
determined. As a special case, at the Markovian limit
O(1) « 6(t), Eq. (3) recovers the Langevin dynamics and
the quadratic form ¢” ¢ ensures positive energy dissipation.
Also, by choosing ©(¢) to be diagonal with individual
components corresponding to certain frequency modes,
Eq. (3) reduces to the heat bath model [35] with a nonlinear
coupling of bath coordinates. On the other hand, the present
model enables an adaptive choice of the number of spatial
features and a more general form of ©(f) with the off-
diagonal components capturing the non-Markovian cou-
pling among the features, which turns out to be crucial for
reproducing the collective dynamics (see SM [60]).

We emphasize that Eq. (3) should not be viewed as a
direct approximation of Zwanzig’s projection formalism.
Rather, it serves as a reduced model that faithfully retains
the state-dependent memory effect. To construct the model,
we represent encoders {¢;(q)}’ , and kernel ©(r) in
form of

¢i(q) = Hw(q),

N()
ot r cos(wyt), (4)

=0
where y(q) = [w(q), ..., Wy, (q)] is a set of sparse bases
and H = [H7,...,H] are trainable coefficients. In this
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work, we choose the piece-wise linear bases such that the
correlation between ¢; and ¢; can be efficiently evaluated;
other localized basis can be also used. ©(¢) needs to
preserve positive semidefiniteness. Hence, we represent
Fourier modes @k =I,I7, where T, €R™" is a low-
triangular matrix to be determined along with a > 0. For
this study, the full dynamics is reversible; a approaches 0
and serves as a regularization parameter. We note that ©(¢)
in Eq. (4) can be generalized by introducing an antisym-
metry part and refer to SM [60] for discussion.

To learn the reduced model (3), we need to choose
appropriate metrics such that the state-dependent non-
Markovian nature can be manifested. While autocorrela-
tions such as ¢,,(t) = (v(t)v(0)7) merely characterize the
overall memory effect, a crucial observation is that the
correlations conditional with different initial state q further
depends on the local energy dissipation and therefore
naturally encodes the signatures of the heterogeneous
memory effect. Accordingly, we right-multiply the second
equation of (3) by v(0) and take the conditional expectation
on ¢y = q*, i.e.,

t
g(tq) = A (@10, .V, V|ao = q*)dr
t
~ [ (e My vy Ty = e
t
_ / Tr[®,_ HC,,, (1.7:q")H']dz,
0

where  g(r;q7) = ([p, + VU(q,)]vjlqo = q*)  and
C,,(t.7:q%) = (w,v.v{yl|qo = q*) is a three-point cor-
relation characterizing the coupling among the bases. Since
w(q) is sparse, ! can be evaluated with O(1) complex-
ity and hence C,, , (1, 7;q*) can be efficiently precomputed.
Accordingly, we can train the reduced model in terms of
coefficients H for encoders ¢(q) as well as matrices
{Tc} 2, and a for kernel ©(r) by minimizing the empirical
loss

=z
=

2

’

h
|

|&(t:q") — g(ti:qV)|
1

~
Il

1
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g(1;:q") =) Tr[®(t, — 1, HC,, , (1. 1;:q")HT |61,

1

[
Il

(5)

where {q”) }?]:11 represent configuration samples within the
phase space. For systems with pronounced free energy
barriers, q'/) can be collected along with free energy
construction (e.g., see Ref. [76]), whereas the conditional
correlations for each q¥) need to be sampled from unbiased
equilibrium trajectories. g(-) represents the prediction by

the reduced model that depends on the trainable variables
and the precomputed correlation C,, , (see SM [60]). ot is
the time step.

To simulate the reduced model (3) and (4) on
t €10, T], we generate coherent noise R, = ¢! R(t), where

R: R" - R" is a Gaussian random process. Specifi-
cally, we can show that by choosing (R(7)R(7)") =
kgTO(r — 7), the reduced model retains a consistent equi-
libium  density, ie., peq(q.p) xexp{-p[U(q) +
1p"™™'p]} (see proof in SM [60]). Accordingly, we
can generate {R(#;)}Y, by

2N
R(1) =72 6 [cos(@pt)& + sin(wnt)ni. (6)
k=0

where ©, are the Fourier (essentially cosine) modes of
O(|7]) on [T, T] (see Refs. [78,79] and SM [60] for the
analytical form); &, and #; are independent Gaussian
random vectors. In practice, R(7) by Eq. (6) can be
generated using FFT [80] and the convolution term
Je@IO(r — )¢, v(7)dz in Eq. (3) can be efficiently evalu-
ated using the fast convolution algorithm [81], both of
which only require O(N log N) complexity.

The present model enables us to simulate the reduced
dynamics beyond the standard GLE and systematically
investigate open problems like the state-dependent memory
effect on the collective dynamics of complex systems such
as molecule kinetics. In this Letter, we consider the
molecule benzyl bromide in an aqueous environment.
The MD model consists of one benzyl bromide molecule
and 2400 water molecules. The isothermal-isobaric thermo-
stat [82] is used to equilibrate the system at 298 K and
1 bar; a canonical ensemble with a Nosé-Hoover thermostat
[83,84] is used in the production stage (see SM [60] for MD
setup and units). The resolved variable q characterizes the
interplay between the substituent and the benzene group
and is defined as the distance between the bromine and the
ipso-carbon atom.

Let us start with the standard GLE by setting features
¢(q) =1 in Eq. (3), which capture the dynamics on the
resolved scale considered in Refs. [47,48]. We right-
multiply q(0) to Eq. (3) and compute the correlation
functions, ie., h(t) = [[O(t—1)c,,(z)dz,  where
h(t) = ([p, + VU(q,)]q}). The standard GLE kernel
O(t) [i.e., K(#) in Eq. (1)] can be obtained using the
Fourier transform of the integral equation. If the reduced
dynamics (1) can be simplified as the standard GLE, then
¢,4(t) should be accurately reproduced. Figure 1 shows the
prediction of ¢, () from the standard GLE and the full MD
model. The apparent deviations imply non-negligible state
dependency. To further probe this effect, we compute
h'(t;q*) = ¢ (t;q*) conditional with different initial
states q". Unlike a unified short-time correlation

077301-3



PHYSICAL REVIEW LETTERS 133, 077301 (2024)

0.01 B
1000
0 —
= =
= 0o =
& -0.01 =
—A— Gminl ‘
O Qsaddle
002 —ol 1000
0 1 2 0.1 1

time

FIG. 1. Correlation functions predicted by the standard GLE
and the full MD: (a) overall c,,(¢) and (b) —¢/(#; q*) conditional
with q* representing various initial states (gray lines), including
two local minima and the saddle point [see inset of Fig. 2(a)]. The
large dispersion implies the limitation of the standard GLE,
which predicts a single curve in short time.

[i.e., ¢(0;g%) = —kgT®(0)/m] predicted by the standard
GLE, the large dispersion reveals the heterogeneous nature
of the energy dissipation process.

To capture the state-dependent memory, we train the
present model (3) with a different number of features.
Figures 2(a) and 2(b) shows the obtained encoder ¢(-)
using one feature and ©(r) is scaled with ®(0) = 1. ¢
exhibits apparent deviation from a uniform distribution. In
particular, it shows a peak value near the saddle point
q = 3.65, implying a larger effective friction near the
regime. This result supports a similar assumption in semi-
analytical studies [55] on improving Kramers’ theory [85].
Also, it explains the short-time dispersion shown in Fig. 1,
where ¢(f;q*) at the saddle point is significantly larger
than the local minima. Figures 2(c) and 2(d) shows the
obtained encoders {¢;(-)}?_, with n = 4 features and the
diagonal components of ®(z). Compared with the case of
n = 1, the larger variation of ¢, enables a better represen-
tation of the state-dependent memory.

FIG. 2. The state features ¢ and diagonal components of the
matrix-valued kernel ©(f) for the present model with state-
dependent memory (SD-GLE) trained using (a),(b) one feature
and (c),(d) four features. Inset plots: (a) probability density
function (PDF) of ¢, where ¢(q) near the saddle point shows
a peak; (b) Fourier modes of O(1).
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FIG. 3. Overall and conditional correlation functions predicted
by the full MD and various reduced models for two local minima
and the saddle point: (a),(b) ¢,, and (¢),(d) c,,. Shaded regimes
represent the 95% confidence interval; same for Fig. 4.

Next, we examine the conditional correlations ¢, (t; q*)
and c,,(#;q*). As shown in Fig. 3, for both local minima
and the saddle point, the predictions of the present model
using four features agree well with the MD results. In
contrast, the predictions of the standard GLE show appar-
ent deviations for q* at the saddle point. Also, the present
model using four features with a diagonal O(r) (see
SM [60]) shows improved short-time predictions but
remains insufficient for long-time correlations. This indi-
cates the complex global variation of the memory term,
which can not be represented by a simple state-dependent
rescaling of a kernel function; the non-Markovian coupling
among multiple features is crucial to capture the hetero-
geneous energy dissipation over the full space.

Finally, we examine the collective behavior related to
molecule kinetics. Figure 4(a) shows the position correla-
tion c,,(t) characterizing the molecule conformation
relaxation. Compared with the MD results, the standard
GLE shows a significant underestimation of the relaxation
time. This discrepancy is possibly due to the larger effective
friction near the saddle point [see Fig. 2(a)], which
essentially dampens the transition between the two local

(a)j\(b) [—MD —=SD-GLE(=1)

—e GLE -O- SD-GLE(n=4) L
0.13 107 o
2
—~ +
Nad) 3
Son 10742
5
&

0.09 10-5

0 20 40 60 0 2000 4000
time transition time

FIG. 4. Collective molecule behaviors predicted by the full MD
and the various reduced models: (a) overall conformation
relaxation and (b) distribution of the transition time between
the two local minima.
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minima. The standard GLE overlooks such state depend-
ency and therefore yields a faster relaxation. This limitation
is consistently reflected in the distribution of the transition
time. For this system, the free energy barrier is approx-
imately 3.5 k3T (see SM [60]); the transition time is
obtained from the simulation trajectories of the MD and
various reduced models. As shown in Fig. 4(b), the
standard GLE predicts a larger probability for the short
transition time, indicating a smaller overall friction than the
local (i.e., saddle point) value. Fortunately, the hetero-
geneous non-Markovianity can be faithfully retained in the
present model. In particular, the constructed model using
one feature yields a better prediction than the standard
GLE. As we increase to four features, the predictions
recover the MD results.

In summary, to plan an optimal hiking trail on a
mountain, a landscape map is generally insufficient; the
local path roughness needs to be properly considered.
Similarly, to predict the reduced dynamics of a multiscale
system, the state-dependent memory may need to be
modeled to account for the heterogeneous energy dissipa-
tion arising from the unresolved dynamics, which, how-
ever, has been broadly overlooked. While the crucial role of
the non-Markovian effect that complements the
conservative free energy has been gradually recognized,
the formulation of the memory term remains largely
empirical (e.g., the standard GLE). The current work
focuses on this caveat and presents a data-driven approach
to learning such a stochastic reduced model beyond the
standard GLE, where the complex state-dependent memory
can be naturally encoded in the non-Markovian interactions
among a set of features in terms of the resolved variables.
The training does not rely on the explicit knowledge of the
full model and only utilizes the trajectory samples, where
the three-point correlations can be efficiently precomputed.
Numerical results of a molecule system demonstrate the
crucial role of the state-dependent non-Markovianity on
collective behavior, where the standard GLE shows limi-
tations due to the oversimplified assumption of a homo-
geneous memory kernel. In contrast, the present model
accurately predicts the molecule kinetics including the
transition time distribution, and provides a reliable
approach to simulate stochastic reduced dynamics of
multiscale problems that faithfully retains the collective
behaviors and rare event properties [86] beyond empirical
models.
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