
Instantons, Fluctuations, and Singularities in the Supercritical Stochastic
Nonlinear Schrödinger Equation

Sumeja Bureković ,1,* Tobias Schäfer,2,3,† and Rainer Grauer 1,‡
1Institute for Theoretical Physics I, Ruhr University Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany

2Department of Mathematics, College of Staten Island, Staten Island, New York 10314, USA
3Physics Program, CUNY Graduate Center, New York, New York 10016, USA

(Received 2 February 2024; accepted 10 July 2024; published 15 August 2024)

Recently, Josserand et al. proposed a stochastic nonlinear Schrödinger model for finite-time singularity-
mediated turbulence [Phys. Rev. Fluids 5, 054607 (2020)]. Here, we use instanton calculus to quantify the
effect of extreme fluctuations on the statistics of the energy dissipation rate. While the contribution of the
instanton alone is insufficient, we obtain excellent agreement with direct simulations when including
Gaussian fluctuations and the corresponding zero mode. Fluctuations are crucial to obtain the correct
scaling when quasisingular events govern the turbulence statistics.
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Introduction—Understanding non-Gaussian statistics
and anomalous scaling in turbulent systems is one of the
outstanding challenges in classical physics [1]. Given that
the underlying probability distributions in such turbulent
systems are dominated by extreme fluctuations, different
toy models have been proposed, among them the stochastic
Burgers [2], the Kuramoto-Sivashinsky [3], and, more
recently, the nonlinear Schrödinger equation (NLS) [4–
6]. In this Letter, our work focuses on the NLS, although
the presented methods can be applied to a wide range of
turbulent models. Recall that the NLS naturally arises in a
variety of contexts, in particular in nonlinear optics [7–9]
and plasma physics [10,11], and has come into the focus
of novel applications in the context of Bose-Einstein
condensates [12], optical turbulence [13], and rogue
waves [14].
The one-dimensional stochastic focusing NLS on a

spatial domain of size l, as introduced in [6], is given by

∂tψ ¼ i
2
∂
2
xψ þ ijψ j6ψ − ν∂4xψ þ χ1=2 � η; ð1Þ

ψð·; t ¼ 0Þ ¼ 0; ð2Þ

where � denotes spatial convolution and χ1=2 � χ1=2 ¼ χ.
The first three terms of Eq. (1) describe the self-focusing
conservative NLS with a supercritical nonlinearity [15].
The remaining two terms constitute hyperviscous damping
with hyperviscosity ν and a complex Gaussian forcing
E½ηðx; tÞη�ðx0; t0Þ� ¼ 2σ2δðx − x0Þδðt − t0Þ that is white in

time and has large-scale spatial correlations χ with
amplitude σ.
In [6] it was proposed that the nearly singular collapsing

solutions of the NLS (1) provide a skeleton for the
emergence of intermittency in the strongly turbulent case.
In the present Letter, we will analyze the turbulence
statistics of the NLS (1) via instanton calculus to support
the notion of singularity mediated turbulence as introduced
in [6].
The general picture of [6] is consistent with the reason-

ing in hydrodynamic and magnetohydrodynamic turbu-
lence, where the nearly singular structures such as shocks,
vortices, or current sheets play a similar role. The important
role of structures in understanding turbulent systems has
already been suggested in the justification of the multi-
fractal picture of turbulence [16] and later incorporated in
phenomenological models of turbulence [17,18] and in the
understanding of anomalous dissipation [19]. Another
indication of the importance of the nearly singular struc-
tures is found in [20], where a combination of local
and nonlocal nonlinearity allows the regularity of the
singularity to change, leading to intermittency of varying
strength.
The NLS turbulence differs from the usual Navier-

Stokes turbulence in two major ways. First, the NLS has
two (instead of one, as in Navier-Stokes turbulence)
independent dimensionless parameters: In Eq. (1), one
can specify the system size and choose the viscosity ν
and forcing strength σ as independent parameters. Another
possibility would be to fix ν and vary the system size and σ.
This has also been discussed for the two-dimensional
focusing NLS [21].
The second, more important difference to the Navier-

Stokes equations is the existence of a blow-up criterion for
the critical mass in the focusing NLS, which determines
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whether initial configurations remain regular or form
singularities in finite time (cf. [15]). This particular
property of the NLS has a significant impact on turbulence
characteristics such as the probability distribution of local
energy dissipation, as will become evident when discussing
the main result.
Since instantons are the most probable space and time

dependent field configurations for given strong events
associated with singular structures, their use in explaining
this type of singularity mediated turbulence seems a natural
choice. In contrast to fluid turbulence, where many other
complex dynamical processes can occur in addition to the
development of vortex tubes or sheets, e.g., topology-
changing reconnection events, the tendency for singularity
formation in the NLS is so robust that it dominates the
turbulent dynamics. Our analysis supports this viewpoint
and shows that NLS turbulence is accessible through the
instanton approach, when including Gaussian fluctuations
and zero modes.
In this Letter, we quantify the effect of extreme fluctua-

tions on NLS turbulence by considering the tails of the
probability density function (PDF) of the energy dissipa-
tion density ε [6], defined as

εðx; tÞ ¼ 2νj∂2xψðx; tÞj2: ð3Þ

We analyze the PDF ρ of ε, as further statistical quantities
can be derived from it. To compute ρ, we apply the
instanton approach (cf. [22] and references therein), which
consists of the following steps: (i) find the instanton as the
minimizer of the action in the corresponding path integral,
(ii) compute the Gaussian fluctuations around the instanton
that lead to a fluctuation determinant, (iii) add contributions
from possible zero modes. This approach corresponds to
large deviation theory in mathematics [23,24]. While the
road map (i)–(iii) has been known—in principle—for
decades, this program could not be successfully applied
in the context of turbulent systems due to the lack of
appropriate numerical methods and computational power.
Nowadays, however, both are available. Nevertheless, it
should be noted that in the case of the direct cascade in two-
dimensional Navier-Stokes turbulence fluctuations have
already been used to determine an effective action and
account for the universal exponential shape of the vorti-
city PDF [25].
All of these steps (i)–(iii) can be carried out in different

ways, and each method has its advantages for a particular
application. The path integral for stochastic differential
equations can, e.g., be formulated as the Onsager-Machlup
path integral [26,27] or the Janssen–de Dominicis path
integral [28,29] by applying a Hubbard-Stratonovich trans-
formation. In the following, limiting expressions for the
PDF are derived analytically and evaluated numerically.
Here, we use the path integral over all noise realizations,
since the noise considered here mimics a large-scale forcing

and hence, this formulation has computational advantages
over the more general approaches [30–32] when calculating
the fluctuation determinant (see Ref. [33] for details). Thus,
the PDF of the energy dissipation density ε at a value a
reads

ρðaÞ ¼
Z

Dη exp

�
−

1

2σ2
kηk2L2

�
δðF½η� − aÞ; ð4Þ

with h·; ·iL2 denoting the L2 product in space and time. The
central object in this path integral is the solution map F that
solves the NLS (1) for a given input noise η, and returns the
observable value: F½η� ¼ O½ψ ½η�ð·; TÞ� at a final time
T > 0. Here, we take the energy dissipation density as
O½ψð·; TÞ� ¼ εð0; TÞ, where the choice x ¼ 0 is without
loss of generality due to the homogeneity of the problem,
and T was chosen sufficiently large compared to the typical
collapse time.
In the constraint O½ψð·; TÞ� ¼ a, the interest is in

extreme events, i.e., in large values of a as it was introduced
for Burgers turbulence [34–37] almost 30 years ago.
Formally, we take the small noise limit σ↓0, which is
equivalent as long as a is sufficiently large (cf. [30]). By
Laplace’s method, the path integral (4) will have the
following asymptotic form:

ρðaÞ ¼ CðaÞ exp
�
−
SIðaÞ
σ2

�
ð1þOðσ2ÞÞ; ð5Þ

as σ↓0, where we call CðaÞ the algebraic prefactor, and the
exponential contribution stems from the instanton. While
there are results on instantons in the NLS [14,38–43]
neither the specific supercritical form (1), nor the energy
dissipation density observable, have been considered so far.
More importantly, to the best of our knowledge, the
computation of the PDF prefactor C for the NLS (1) is a
novelty as well and turns out to be crucial. In the following,
we briefly explain how we obtain both the instanton and the
prefactor contributions.
(i) Instanton—In the path integral (4), the instanton is

the minimizer of the action functional with observable
constraint:

SIðaÞ ¼ min
η s:t: F½η�¼a

S½η�; S½η� ¼ 1

2
kηk2L2 : ð6Þ

For increased numerical efficiency and stability, in order to
find the optimal η, we do not directly solve the correspond-
ing Euler-Lagrange or instanton equations, but use optimal
control methods with control variable η, similarly to [44].
By this we iteratively solve a deterministic forward and
backward PDE of very similar shape and perform uncon-
strained optimization as follows:
First, we write the constraint in Eq. (6) as a Lagrange

term in the functional Rλ½η� ¼ S½η� − λðF½η� − aÞ with a
Lagrange multiplier λ. Since the instanton action SI will
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turn out to be non-convex in a (cf. [43]), we use an
augmented Lagrangian [45] with a penalty parameter μ:

R½η� ¼ S½η� − λðF½η� − aÞ þ μ

2
ðF½η� − aÞ2: ð7Þ

For sufficiently large μ, the instanton solution of equa-
tion (6) for an observable value a, is ηa ¼ argminηR½η�. We
perform a gradient-based minimization of R, thus we
need δF=δη. To evaluate this complicated expression,
we employ the adjoint-state method [46] by using a
field-valued Lagrange multiplier z. Details are given in
the Supplemental Material [47]. In total, the gradient reads

δR
δη

¼ η − χ1=2 � z; ð8Þ

where z solves

∂tz −
i
2
∂
2
xz − ν∂4xz − 4ijψ j6zþ 3ijψ j4ψ2z� ¼ 0; ð9Þ

zðx; TÞ ¼ 4νðλ − μðεð0; TÞ − aÞÞ∂2xψð0; TÞδ00ðxÞ; ð10Þ

with ψ ¼ ψ ½η� through Eq. (1). At the instanton, by the
first-order optimality condition, the gradient (8) is zero, i.e.,
ηa ¼ χ1=2 � za. Substituting this expression for z in the
adjoint PDE (9) yields the instanton or Hamilton equations
with the optimal ηa corresponding to the optimal con-
jugated momentum of the system up to a factor χ1=2.
For a fixed observable value a, the instanton ηa, from

which SIðaÞ is obtained, is found by solving a series of
unconstrained optimization problems minη R½η� for increas-
ing values μðiÞ of the penalty parameter, and the Lagrange
multiplier is updated according to [ [45], p. 515]. For each
evaluation of the gradient (8), we first solve the forward
equation (1) and then the adjoint equation (9).
We implemented a pseudospectral code to solve these

equations with a 1=4 anti-aliasing [51]. In line with [44], we
use the L-BFGS scheme [52] for the minimization in real
variables. For this, we write all complex fields as two-
dimensional real vectors, as shown in the Supplemental
Material [47]. The optimization code has been consistently
discretized, with the Heun scheme with integrating factor
for the forward equation.
(ii),(iii) Gaussian fluctuations and zero mode—Now, we

compute an estimate of the prefactor C in Eq. (5). All
formulas are given for a > 0. For this computation, we
employ the approach based on Fredholm determinants
established in [33]. After calculating the instanton solutions
ψφ
a , η

φ
a , and zφa , we insert these fields as background fields

in the computation of the prefactor. Since the NLS (1) as
well as the observable function (3) are globally U(1)
invariant with respect to the complex phase φ ¼ argðψÞ,
the instanton solution is degenerate in φ and therefore gives
rise to a zero mode which we indicate by the superscript φ.

Because of the zero mode, the Fredholm determinant in
[33] is ill defined and has to be regularized. For this, we
follow [53].
We split the domain of integration of the path integral (4)

into the submanifold M1 of the instanton (noise) solutions
ηφa , and the subspace NφM1 that is normal (with respect to
the L2 product) to the zero mode: η → ηφa þ ση̃. The
submanifold M1 ¼ argminηS½η� is one dimensional since
the zero mode stems from the scalar parameter φ. The split
of integration directions is usually done formally using
the Faddeev-Popov method [54]. As detailed in the
Supplemental Material [47], the leading-order prefactor
C in formula (5) then reads

CðaÞ ¼ 1

σ2
jλajdet0ðId − BaÞ−1=2: ð11Þ

The Lagrange multiplier λa ¼ dSI=da is obtained from the
optimization scheme given above. The regularized
Fredholm determinant det0 is approximated using the

largest eigenvalues κðiÞa ≠ 1 of the operator Ba, given by

Ba ¼ λaprη⊥a
δ2F
δη2

����
η¼ηa

prη⊥a ; ð12Þ

with the projection operator prη⊥a defined in the
Supplemental Material [47]. These eigenvalues are calcu-
lated iteratively [50] from the solution of second-order
equations [33], which are given in the Supplemental
Material [47]. In Fig. 1, we show the convergence of the
numerical approximation of det0ðId − BaÞ for an example
observable value.
Direct numerical simulations (DNS)—We also per-

formed Monte Carlo simulations of the NLS (1) with

FIG. 1. Result of numerically computing the m ¼ 1000

eigenvalues κðiÞa of Ba with the largest absolute value for
εð0; TÞ ¼ a ¼ 0.015. The figure shows the finite productQ

m
i¼1

�
1 − κðiÞa

�
approximating the regularized Fredholm deter-

minant det0ðId − BaÞ without the zero mode κa ¼ 1. The numeri-
cal approximation of det0ðId − BaÞ converges quickly. All
subsequent results in this Letter are obtained for m ¼ 1000.
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the same parameters as for the instanton and fluctuation
computations, which are given in Table I. Following [6], we
only force large length scales: χ̂k ¼ ð1=lÞ1½0<jkj<0.3ðl=2πÞ�
for k∈Z. To compute the PDF ρ from DNS data, we used
9.3 × 106 simulated fields and evaluated 3.7 × 108 statis-
tically independent samples.
Discussion of results—The main result is shown in

Fig. 2, which displays the PDF for the energy dissipation
density (3). In this figure, the noise strength is given by
σ2 ¼ 0.5. Other values of the noise strength (σ2 ¼ 0.4,
σ2 ¼ 0.75) were studied as well and show a very similar
behavior. Two regions can be identified: A region belong-
ing to smaller values of energy dissipation (a ≤ 2 × 10−5)
and a region of rare fluctuations of the energy dissipation
(4 × 10−5 ≤ a ≤ 10−2). In the first region, the PDF calcu-
lated from the DNS agrees almost exactly with the
asymptotic prediction of the instanton calculation including
the fluctuations. However, even the prediction of the PDF
using solely the instanton with a constant prefactor C in
Eq. (5), instead of the full expression (11), yields a result

indistinguishable from the DNS. A typical instanton
evolution is shown in the left part of Fig. 3.
To understand this observation, we analytically solved

the instanton equations and computed the prefactor in
case of vanishing nonlinearity, which is given in the
Supplemental Material [47]. The resulting prediction for
the PDF, an exponential distribution, is also shown in Fig. 2
and again agrees well with the DNS result in the first
region. This can be explained by the fact that in the first
region, the corresponding instanton is below the critical
mass that would lead to a collapse, such that the focusing
nonlinearity effectively vanishes. We tested this hypothesis
numerically by setting the instantons in this parameter
range as initial conditions in the deterministic conservative
NLS (σ ¼ ν ¼ 0). Indeed, the numerical solution produced
no collapse in this region. This range therefore corresponds
to an almost linear regime in which the instanton prediction
is nearly exact, i.e., the small noise limit is almost perfectly
fulfilled.
The result in the second region is even more surprising.

In this region, there is initially no agreement between the
results of the DNS and the prediction of the PDF by the
instanton without the fluctuations. Note that this curve can
be shifted arbitrarily on the vertical axis, since the nor-
malization of the PDF is not determined by the instanton
itself. In this range (4 × 10−5 ≤ a ≤ 10−2), the PDF of the
energy dissipation shows a power law behavior (cf. [4,5]),
i.e., it is completely dominated by the prefactor and the
exponential part due to the instanton alone is subdominant.
The agreement of the power law scaling prediction of the
instanton calculation including the fluctuations and
the DNS is almost perfect (with convergence of the two
curves—instanton prediction and extrapolated DNS data—
for even larger a). Our interpretation of this result is given
by the special characteristic of the focusing NLS to form
strongly localized structures. Also, in this parameter range,
we used the instantons as initial conditions in the
conservative and deterministic NLS. Here, unlike the first
region, these initial conditions led to a collapse. A typical
instanton in this regime is depicted in the right of Fig. 3. In
contrast to other turbulent systems, the NLS turbulence is
characterized by the occurrence of localized, spatially

TABLE I. Parameters that enter the DNS, the optimization
scheme for the instanton computation, and the computation of the
Gaussian fluctuations.

Parameter Definition Value

l Length of periodic spatial domain 153.6
ν Hyperviscosity 10−2

T Time interval ½0; T� 2.0
Nt Time resolution 212

Nx Spatial resolution 212

FIG. 2. Comparison of instanton predictions and DNS results
for the PDF ρ of the energy dissipation density (3). The dashed
line indicates the leading order contribution expð−SI=σ2Þ in
Eq. (5) with a constant prefactor instead of Eq. (11). The shaded
regions for the DNS data are 99% Wilson score intervals [55].
The DNS data and full instanton prediction show a power-law
decay for large a with scaling exponent ≈1.88.

FIG. 3. Spatiotemporal surface plots of instanton fields ψa for
a ¼ 2 × 10−5 (left) and a ¼ 0.015 (right). As a scale reference,
maxx;tjψaj2 ≈ 0.34 (left) and maxx;t jψaj2 ≈ 1.55 (right).
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barely interacting nearly singular structures. This is par-
ticularly well illustrated in Fig. 1 of the work of Josserand
et al. [6]. We can also interpret this property of the
collapsing NLS as the fact that the action landscape in
the path integral formulation exhibits strongly localized
extrema, which can be very well represented by a Gaussian
approximation around the instanton.
Conclusions and outlook—In this Letter we illuminated a

promising pathway to understand intermittency in turbulent
system from first principles. In the case of the stochastic
supercritical NLS considered here, the instanton formalism
is able to capture precisely the PDF of the energy
dissipation (3), which is far from a Gaussian distribution,
and gives the correct scaling in the strongly nonlinear
region. The decisive factor was the inclusion of the
Gaussian fluctuations around the instanton and the con-
sideration of the zero mode in our analysis. In contrast to
phenomenological approaches incorporating singular struc-
tures, we obtain all information of the system like prob-
ability densities directly from the underlying equations of
motion. In some way, this case can be considered as a
paradigm for turbulence that is dominated by isolated
weakly singular structures. This differs from the situation
in real turbulence as it occurs, for example, in the Navier-
Stokes equations. But even in the simpler case of shock-
dominated Burgers turbulence, the situation is more com-
plex, so that there are significant deviations in the gradient
statistics at higher Reynolds numbers between the predic-
tions of the instanton formalism and the results of numeri-
cal simulations. For instance, shocks can merge in the
Burgers turbulence and thus have a further influence on the
gradient statistics. The situation is even more complex in
Navier–Stokes turbulence, where reconnection of vortex
tubes and other, more complex processes can occur.
Such events are not yet included in the instanton formalism.
The transition between Gaussian PDFs in the realm of
small observable values and the PDFs associated with
large observable values dominated by singularities re-
mains a challenge. Our approach paves the way to move
in this direction. One possibility would be to weaken
the nonlinearity in the NLS towards the critical case.
This would reduce the nature of the extreme singularities
and could therefore systematically lead towards more
complex interactions. Research in this direction is in
progress.
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