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The even-denominator fractional quantum Hall (FQH) states ν ¼ 5=2 and ν ¼ 7=2 have been long
predicted to host non-Abelian quasiparticles. Their present energy-carrying neutral modes are hidden from
customary conductance measurements and thus motivate thermal transport measurements, which are
sensitive to all energy-carrying modes. While past “two-terminal” thermal conductance (k2tT) measure-
ments already proved the non-Abelian nature of the ν ¼ 5=2 FQH state, they might have been prone to a
lack of thermal equilibration among the counterpropagating edge modes. Here, we report a novel thermal
Hall conductance measurement of the ν ¼ 5=2 and ν ¼ 7=2 states, being insensitive to equilibration among
edge modes. We verify the state’s non-Abelian nature, with both states supporting a single upstream
Majorana edge mode (hence, a particle-hole Pfaffian order). While current numerical works predict a
different topological order, this contribution should motivate further theoretical work.
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Introduction—The search for quantum states that host
non-Abelian quasiparticles (QPs), localized or propagating,
intensified in the past few years, stemming from their
unique characteristics and potential to serve as robust
qubits in a noisy environment. Among several proposed
implementations in the quantum Hall (QH) effect regime,
even-denominator fractional states, such as the ν ¼ 5=2 and
ν ¼ 7=2, are the leading candidates [1–12] with numerical
calculations predicting an anti-Pfaffian (A-Pf) topological
order [3,4]. This order supports a fractional downstream
“charged mode” (in addition to downstream integer modes)
and three upstream Majorana modes [2,7–17].
The ν ¼ 5=2 state has been studied extensively in the

experimental realm. Earlier tunneling measurements
pointed at various possible states, such as the A-Pf order
[10,18,19] or different Abelian and non-Abelian orders
[10,20]. However, more recent heat transport and shot noise
measurements observed a “particle-hole Pfaffian” (PH-Pf)
order [21–23]. The published works include measurements
of (i) the two-terminal thermal conductance coefficient k2t
for all participating edge modes (two integers and fractions)
[21]; (ii) k2t for the isolated fractional channel (fractional
charged and Majorana) [22]; and (iii) shot noise, testing the
chirality of the isolated fractional channel [23]. The
observed PH-Pf order differs from the A-Pf by supporting
a single upstream Majorana mode (central charge,
c ¼ −1=2) [21,22]. The less explored ν ¼ 7=2 state is also
expected to be non-Abelian [13–17]; however, its topo-
logical order was not established.

The “two-terminal” thermal conductance measurement
[24,25] relies on a small floating Ohmic contact (“source”),
with a known power being dissipated in it. The equilibrium
temperature (TH) of the source and k2t are related to the net
power (J2t) that leaves the contact by

J2t ¼ 0.5k2tðT2
H − T2

0Þ; ð1Þ

where T0 is the ground temperature. For a single ballistic
chiral Abelian mode, the thermal conductance (Gth ¼
dJ2t=dTH) is quantized to k2tT ¼ k0T, with k0 ¼ π2k2B=3h,
T temperature, and kB and h are Boltzmann and Planck
constants, respectively [26,27]. In quantum Hall states
featuring both downstream and upstream edge modes,
each with respective thermal conductances kdT and kuT,
the net thermally equilibrated thermal conductance is
k2tT ¼ ðkd − kuÞT. However, if the edge modes do not
interact, then k2tT ¼ ðkd þ kuÞT. Consequently, partial
thermal equilibration can lead to any value between the
two extremes of k2t [28,29]. For example, in the ν ¼ 5=2
state, if an existing Majorana mode (with thermal conduct-
ance k0T=2 [5,30–34]) will not interact, the two-terminal
thermal conductance would increase by k0T. Such a lack of
equilibration might create the impression of the fully
equilibrated PH-Pf order (k2t ¼ 2.5k0) [35–41], while
the true order is A-Pf (with equilibrated k2t ¼ 1.5k0).
To mitigate the ambiguity arising from partial or no

equilibration, we utilize a new measurement configuration
that directly determines the topological thermal Hall
conductance coefficient kxy, of the ν ¼ 5=2 and ν ¼ 7=2
states [42,43]. This method involves separately measuring
downstream and upstream heat flows (Jdown and Jup) to*Contact author: moty.heiblum@weizmann.ac.il
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determine the coefficients kd and ku, ultimately yielding
kxy ¼ kd − ku, which represents the topological order of the
states [42,43].
Device and setup—The devices under test (shown in a

false color SEM image in Fig. 1) were fabricated in a
two-dimensional electron gas (2DEG) confined in a
GaAs-AlGaAs heterostructure, with short-period super-
lattice (SPSL) type doping [44,45]. The 2DEG mobility
∼9.1 × 106 cm2=V:s and density ∼2.9 × 1011 cm−2, are
measured at 4.2 K in the dark.
The QH responses around the two states of interest,

measured in a Hall bar, are shown in Supplemental
Material-1 [46]. The tested devices (Fig. 1) consist of
two identical floating Ohmic contacts, denoted by L (left)
and R (right), each with an area of ∼49 μm2. Both contacts
are covered with ∼25 nm thick dielectric HfO2 followed by
a grounded thin metallic layer, which increases the contact
capacitance and thus suppresses the charging energy
[47,48]. The 2DEG (gray) under each floating contact is
grooved (purple), thus “forcing” the incident current to
enter the contacts [42,43]. Contacts L and R are separated
by 10 μm (or 30 μm) of the intermediate 2DEG bulk. A
side gate (SG, at the lower part of the intermediate bulk),
when “pinched,” guides the edge modes from L to R. When
the SG is not biased, the chiral modes flow to the ground.
Partial biasing of the SG directs chosen edge modes to the
ground. Contacts L and R are also attached to two separate
long mesa arms (∼120 μm long each), with two current
sourcing contacts (S1 and S2 or S3 and S4), amplifier
contacts (A1 and A2), and cold grounds (cg) maintained at

base temperature T0 (Fig. 1). The amplifiers amplify the
Johnson-Nyquist (JN) noise carried by edge modes (solid
red and blue arrows) emanating from the floating contacts,
facilitating the determination of the contact’s temperature
(refer to Supplemental Material-2 [46] for details) [42].
Each of the floating contacts is heated with a known

power supplied by equal and opposite dc currents (þI
and −I) emanating from contacts S1 and S2 (for contact L)
or S3 and S4 (for contact R). Each floating contact’s
potential remains zero, thus eliminating possible emanating
shot noise and assuring that the outgoing edge modes carry
only the JN noise. Under these conditions, the dissipating
power is Pd ¼ I2R, with R ¼ h=νe2 the QH resistance.
During measurements, one of the floating contacts is heated
and acts as the temperature source (S) (see Supplemental
Material [46], Fig. 2). The second floating contact is heated
by the arrival power (carried by the edge modes and the
bulk), thus acting as a power meter (PM). The increased
PM temperature is “translated” (via a calibration process) to
the arrival power from S (see Supplemental Material [46],
Fig. 3) [42,43]. In the “downstream configuration,” the
floating contact L plays the role of the source while the
floating contact R plays the PM role. In the “upstream
configuration,” the functions of L and R are interchanged.
We now briefly review the method of obtaining the

topological thermal Hall conductance. The arriving down-
stream heat flow to the PM, Jdown, and the exiting heat from
it, Jout ¼ Je þ Jγ (Je via edge modes, and Jγ via phonons)
leads to net dissipated power in the PM with an equilibrium
temperature TPM. This temperature is converted back to the
arriving power, Jdown, via a separate heating process by a
known power (as described above and also in Supplemental
Material-2 [46]). The same procedure is applied when the
upstream heat flow, Jup, is measured by interchanging the
heated and the absorbing contacts (L and R). The topo-
logical thermal conductance coefficient kxy is determined
from Jdown and Jup, using,

Jdown − Jup ¼
ðkd − kuÞ

2
ðT2 − T2

0Þ ¼
kxy
2

ðT2 − T2
0Þ; ð2Þ

where T is the source (contact L for downstream and
contact R for upstream) temperature [42]. It is important to
stress that thermal equilibration between modes, or lack of
it, as well as the contributions of the bulk or due to edge
reconstruction, are eliminated by the subtraction process of
Jdown − Jup [42,43]. However, the energy loss of the
“down” and “up” propagating modes, not necessarily being
equal, cannot be recovered. Hence, the L-R separation is
kept short.
Results—We first test the configuration at the well-

understood filling ν ¼ 2, performing the measurements
at the conductance plateau’s center (B ¼ 6 T) on a device
with a L-R separation of 10 μm. Figure 2(a) shows the
measurement configuration with a fully pinched SG gate

FIG. 1. The device and measurement setup: An SEM image of
the device showing the floating contacts (orange), L (with
temperature TL), and R (with temperature TR), the continuous
side gate, SG (yellow, charged by VSG), and the mesa arms (gray)
defined by etching grooves (purple) in the GaAs. The arrowed
lines represent the QH edge modes. Red dashed arrows show
current-carrying edge modes (injected from contacts S1 and S2 or
S3 and S4) that heat the floating contacts. Solid red and blue
arrows represent the outgoing edge modes from contacts L and R,
respectively, and they terminate at cold ground contacts con-
nected to the dilution mixing chamber plate at base temperature
T0. The white arrow represents edge modes originating from cg
A1 and A2 are amplifier contacts.
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(VSG ¼ −2 V), with two downstream edge modes leaving
contact L (source) and reaching contact R (PM). Increasing
the gate voltage to VSG ¼ −0.85 V (and to 0 V) enables the
outer (and also the inner) modes to reach the ground as
shown in Fig. 2(b) [and Fig. 2(c)]. Supplemental Material-3
[46] shows gate transmittance as a function of VSG for the
studied filling factors. Figure 2(d) shows the dependence of
the (calibrated) incoming power Jdown (reaching contact R)
as a function of T2

L − T2
0 (T0 ∼ 11 mK), where TL is the

temperature of contact L. The red, blue, and black
dots correspond to downstream heat flow by two modes
plus the bulk, one mode plus the bulk, and only the bulk
(VSG ¼ 0 V), respectively. With Eq. (1), we find
kd ¼ 2.07k0 � 0.03k0 for two propagating edge modes
and kd ¼ 1k0 � 0.01k0 for a single edge mode. The heat
flow through the bulk and the upstream heat flow are both
negligibly small; hence, kxyðν ¼ 2Þ≊2k0, as expected. To
assess the impact of bulk’s heat conductance, we also
measured kxy, away from the center of the ν ¼ 2 plateau (at
5.6 T) (see Supplemental Material-4 [46]). Here, despite
having finite bulk heat conduction, we find similar values
for kxy, thus reassuring our method’s effectiveness in
determining the topological order of the states.
Having established the method’s effectiveness, we now

focus on the even-denominator states. Starting with the
ν ¼ 5=2 state, Fig. 3(a) shows the Jdown vs T2

L − T2
0

(T0 ∼ 9 mK) plots measured at the center of ν ¼ 5=2
plateau (B ∼ 4.64 T) for different SG voltages (refer to
Supplemental Material-3 [46]). Figure 3(b) shows the Jup
vs T2

R − T2
0 plots for fully pinched SG (all edge mode

participating) and of the bulk conduction when SG is fully

transparent (see Supplemental Material-5 [46] for partially
closed SG). Here, TR is the temperature of contact R.
Figures 3(c)–3(f) show the edge mode configurations
between the two floating contacts with different SG
voltages. The solid and dashed red arrows in these figures
represent the downstream integer and the 1=2 fractional-
edge mode, respectively. The blue arrows represent the
upstream edge modes. For fully pinched SG (at
VSG ¼ −2 V), all the edge modes move between the
floating contacts [Fig. 3(c)]. The outermost integer modes
are directed to the ground, with the outer at VSG ¼ −1 V
[Fig. 3(d)] and the inner at VSG − 0.52 V [Fig. 3(e)],
leaving only the fractional modes (red and blue dashed
arrows) propagating between the floating contacts. Finally,
with the SG fully open [Fig. 3(f)], all the edge modes end
up in the ground. Table I outlines the thermal conductance
derived from the plots in Figs. 3(a) and 3(b). Here, the
coefficients kdðNÞ and kuðNÞ represent downstream and
upstream thermal conductance coefficients, respectively,
for N number of downstream charged modes (integer and
fractional) (Supplemental Material-3 [46]). Accordingly,
the topological thermal Hall conductance coefficient is
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FIG. 2. Thermal conductance of ν ¼ 2: For downstream heat
flow, contact L acts as the source, and contact R acts as the PM.
(a) Configuration for downstream heat flow measurement with
two edge modes (red arrows) carrying heat from L to R
(VSG ¼ −2 V). (b) Configuration for the inner edge mode
reaching contact R, while the outer edge mode is diverted to
ground (VSG ¼ −0.85 V). (c) Configuration for bulk heat con-
duction with all the edge modes diverted to the ground
(VSG ¼ 0 V). The white arrows represent edge modes starting
from the ground. (d) Downstream heat flow Jdown arrives at
contact R and heats the contact. The Jdown is plotted as a function
of T2

L − T2
0 (T0 ∼ 11 mK, electron temperature). The red, blue,

and black colors correspond to heat conduction by two modes,
one mode, and only the bulk, respectively. Solid lines are the
linear fits to the data.
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FIG. 3. Thermal conductance of ν ¼ 5=2: (a) Downstream heat
flow Jdown that leaves the heated contact L and reaches contact R
vs T2

L − T2
0 (T0 ∼ 9 mK, electron temperature). The red, green,

and blue data points are for all edge modes (two integers and the
innermost fractional mode), two inner modes (the inner integer
mode and the fractional mode), and only the fractional mode,
respectively. The downstream heat conductance coefficients
kdðN ¼ 3; 2; 1Þ are determined from the linear fittings shown
by the solid lines and are given in Table I. (b) Upstream heat flow
Jup measured by changing the roles of L and R with all modes
participating (for fully pinched gate SG, N ¼ 3) is plotted as a
function of T2

R − T2
0 (in black). The gray dots are for bulk heat

transport when SG is fully open. (c)–(f) Different configurations
of edge modes propagation between L and R: (c) Fully pinched
SG (VSG ¼ −2 V), (d) and (e) Partially pinched SG with one
(VSG ¼ −1 V) and two (VSG ¼ −0.52 V) edge modes diverted to
ground. (f) Fully open SG (VSG ¼ 0 V). The arrows indicate
edge modes: solid red for downstream integer modes, dashed red
for downstream fractional mode, and blue dashed arrow for
upstream modes. White arrows show edge modes emanating from
the ground.
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kxyðNÞ ¼ kdðNÞ − kuðNÞ. The bulk thermal conductance
measured with the gate fully open is kbulk ∼ 0.54k0 �
0.03k0 [Fig. 3(b)]. Interestingly, we find a half-integer
value, kxyð3Þ ¼ 2.5k0 � 0.07k0, with SG fully pinched
[Fig. 3(c)]. However, upon removing the outer integer
edges, kxy (for N ¼ 1, 2) deviates from half-integer values
(see Table I). Unlike at ν ¼ 2, here, kxy decreases by∼1.1k0
(instead of 1k0) when the integer edge modes are removed,
suggesting a greater energy loss of the inner modes when
isolated. We will return to this issue later.
For the second even-denominator ν ¼ 7=2 state, we have

measured a different device with an L to R distance of
30 μm and showing improved quality of the state [refer to
Supplemental Material [46], Figs. 1(e) and 1(f)]. The Jdown
(or Jup) vs T2

L − T2
0 (or T

2
R − T2

0) plots corresponding to this
state are presented in Supplemental Material-6 [46].
Table I also summarizes the thermal conductance coeffi-
cients determined from these plots. Similar to ν ¼ 5=2,
here, we once again observe a half-integer value,
kxyð4Þ ¼ 3.48k0 � 0.07k0, with SG fully pinched and
deviations from half-integer values with the outer edge
modes removed. Note that the ν ¼ 7=2 state has an extra
integer mode compared to the ν ¼ 5=2 state. However,
unlike at ν ¼ 5=2 we observe identical bulk and upstream
thermal conductances: kbulk ¼ 0.6k0 � 0.04k0 and ku ∼
0.52k0 � 0.02k0 (used to calculate kxy). Note that kbulk is
measured with SG fully opened, while ku is measured with
the SG closed, either fully or partially. Thus, the observed
identical values indicate complete heat loss from the
upstream edges, consistent with the device’s longer floating
contact separation (30 μm).
The observed half-integer kxy values for fully closed SG

align with the PH-Pf order. In Supplemental Material-7
[46], we compare the measured kxy for different numbers
of edge modes with the expected values for the PH-Pf
order. The comparison shows a lower than expected kxy of
the most inner channel when the integer modes are peeled
away for both the studied states. It is crucial to note that
while the measurement of k2t relies on the heat that leaves
the heated source contact, our present measurement of kd

or ku depends on the heat that reaches the contact R (or,
alternatively, the contact L), which may suffer from heat
loss on its way (after emanating from the heated contact).
We find that the measured upstream heat conductance ku
is independent of gate voltage (refer to Supplemental
Material-5 [46]), suggesting constant heat loss (possibly
to the bulk). Consequently, the observed deviation in kxy
indicates increased heat loss from the inner downstream
charged modes. We suggest that as we peel off the integer
modes by “opening” the SG gate, the confining potential
gets softer, leading to a low drift velocity of the edge
modes and thus increasing its heat loss. Additionally,
partial equilibration among all modes in the ungated
etched regions, each ∼2 μm long, between SG and each
floating contact can alter the total heat transported by the
edge modes propagating along the partially closed gate.
This might also lead to unequal heat losses in the upstream
and downstream directions, thus contributing to the
deviation in kxy in these conditions. These handicaps were
considered in future designs with shorter etched regions.
Conclusion—This rather elaborate measurement con-

figuration was developed to obtain the topological order
of the states in the FQH regime [42,43]. This method
overcomes the drawback of previously tested two-terminal
measurements (the possible lack of full thermal equilibra-
tion) [21,22,24]. It allows employing higher-quality 2DEG
(with wider conductance plateaus and lower longitudinal
resistance) by eliminating the contribution to heat transfer
of the highly intricate doping configuration [21,42,44,45].
While the long-standing theoretical prediction of the order
of the even-denominator states is the A-Pf order [3–5], all
our measurements indicate the PH-Pf order [21–23].
Finding the same order in the two even-denominator states
may point to a more fundamental reason for the consistent
finding of the PH-Pf order. It will be commendable if new
theoretical works address the unavoidable disorder and
Landau-level mixing in the GaAs devices [8–10,49,50].
These shortfalls might be overcome in high-quality
hBN-encapsulated graphene hosting even-denominator
states [51].

TABLE I. Summary of measured downstream and upstream thermal conductance coefficients kdðNÞ and kuðNÞ and topological
thermal Hall conductance coefficient kxyðNÞ as a function of the number of downstream charged edge modes (N) between the floating
contacts L and R for the ν ¼ 5=2 and ν ¼ 7=2 states. kbulk is the bulk thermal conductance.

ν N kdðNÞ kuðNÞ kxyðNÞ kbulk

5=2 All modes, N ¼ 3 kdð3Þ ¼ 3.3k0 � 0.05k0
∼0.8k0 � 0.02k0

kxyð3Þ ¼ 2.5k0 � 0.07k0
∼0.54k0 � 0.03k0Inner modes, N ¼ 2 kdð2Þ ¼ 2.19k0 � 0.03k0 kxyð2Þ ¼ 1.39k0 � 0.05k0

Innermost fractional modes, N ¼ 1 kdð1Þ ¼ 1.09k0 � 0.02k0 kxyð1Þ ¼ 0.29k0 � 0.04k0
7=2 All modes, N ¼ 4 kdð4Þ ¼ 4k0 � 0.05k0

∼0.52k0 � 0.02k0

kxyð4Þ ¼ 3.48k0 � 0.07k0

∼0.6k0 � 0.04k0
Inner modes, N ¼ 3 kdð3Þ ¼ 2.92k0 � 0.07k0 kxyð3Þ ¼ 2.4k0 � 0.05k0
Inner two modes, N ¼ 2 kdð2Þ ¼ 1.51k0 � 0.03k0 kxyð2Þ ¼ 1k0 � 0.05k0
Innermost fractional modes, N ¼ 1 kdð1Þ ¼ 0.74k0 � 0.04k0 kxyð1Þ ¼ 0.22k0 � 0.04k0
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