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Conformal symmetry, emerging at critical points, can be lost when renormalization group fixed points
collide. Recently, it was proposed that after collisions, real fixed points transition into the complex plane,
becoming complex fixed points described by complex conformal field theories (CFTs). Although this idea
is compelling, directly demonstrating such complex conformal fixed points in microscopic models remains
highly demanding. Furthermore, these concrete models are instrumental in unraveling the mysteries of
complex CFTs and illuminating a variety of intriguing physical problems, including weakly first-order
transitions in statistical mechanics and the conformal window of gauge theories. In this work, we have
successfully addressed this complex challenge for the (1þ 1)-dimensional quantum 5-state Potts model,
whose phase transition has long been known to be weakly first order. By adding an additional non-
Hermitian interaction, we successfully identify two conjugate critical points located in the complex
parameter space, where the lost conformality is restored in a complex manner. Specifically, we
unambiguously demonstrate the radial quantization of the complex CFTs and compute the operator
spectrum, as well as new operator product expansion coefficients that were previously unknown.
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Introduction—Conformal field theory (CFT) provides a
comprehensive framework for understanding continuous
phase transitions and associated critical phenomena [1,2].
However, there are scenarios where conformal symmetry is
lost, particularly when conformal fixed points collide and
disappear in real physical space [3], leading to first-order
transitions. A recent intriguing theory posits that after such
collisions, these conformal fixed points relocate to the
complex plane [4–6], where conformal symmetry is rees-
tablished in a complex manner. These phenomena give rise
to what are now known as complex CFTs [5,6]. Complex
CFTs, distinguished by unique properties like complex
scaling dimensions, represent a fundamentally new cat-
egory of nonunitary CFTs compared to well-known exam-
ples such as the 2D Lee-Yang singularity in minimal
models [2,7,8].
Beyond their theoretical significance, complex CFTs are

pivotal in addressing many unresolved problems. They play
an essential role in clarifying weakly first-order phase
transitions, including the extensively studied deconfined
phase transitions [4,5,9–15], and are key in accurately
determining the conformal window of critical gauge
theories [3,5,16–18]. However, most efforts to address
these problems have been concentrated on weakly first-
order transitions in the unitary parameter space, where at

best, one can observe an approximate conformal symmetry
as well as walking (also called pseudocritical) renormaliza-
tion group (RG) flow influenced by the nearby complex
fixed points [15,19,20]. There is a pressing need to harness
the full potential of complex conformality, which involves
studying the complex fixed points in microscopic models
extended to the nonunitary parameter space. Additionally,
such microscopic realizations are invaluable for under-
standing complex CFTs themselves, whose properties
remain enigmatic, even in the simplest examples, due to
the limitation of existing theoretical tools [5,6,16,18,21–28],
where the majority of previous efforts relied on analytical
continuation or perturbative RG. A related recent work [27]
verified that the lowest two scaling dimensions and complex
central charge within two-dimensional classical Oðn > 2Þ
model also align with the analytical continuation results,
while their work did not directly showcase the underlying
conformal symmetry.
In this Letter, we successfully tackle the complex chal-

lenge for the two-dimensional 5-state Potts model, a model
long known for its subtly nuanced weakly first-order
transition [29–36]. Specifically, we introduce a (1þ 1)-
dimensional non-Hermitian quantum 5-state Potts model and
identify its two conjugate complex fixed points. At the
complex critical point, employing the state-operator corre-
spondence [37–39], we observe clear evidence of emergent
conformal (i.e., Virasoro) invariance and extract the complex
scaling dimensions of 11 low-lying Virasoro primary fields
[40,41]. Additionally, we calculate 9 distinct operator
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product expansion (OPE) coefficients involving primary
fields, most previously unknown. Our results not only
directly confirm the complex origin of the weakly first-order
phase transition in the two-dimensional 5-state Potts model,
but also represent a solid advancement towards unraveling
three-dimensional mysteries, such as deconfined phase
transitions and critical gauge theories, using the recently
proposed fuzzy sphere regularization [15,42].
Model—The Hamiltonian of the Q-state quantum Potts

model is [35]

H0ðJ; hÞ ¼ −
XL
i¼1

XQ−1

k¼1

�
Jðσ†i σiþ1Þk þ hτki

�
; ð1Þ

where the spin shift operator τ̂ and phase operator σ̂,
respectively, changes the local spin degrees of freedom
as τ̂jni ¼ jðnþ 1Þ mod Qi and σ̂jni ¼ e2πni=Qjni. The
Hamiltonian is invariant under the spin permutation SQ
symmetry, having two phases; (i) an ordered phase at J > h
that spontaneously breaks SQ symmetry, and (ii) a disor-
dered phase at J < h that respects SQ symmetry. The order-
disorder transition occurs at J ¼ h, with its precise position
determined by the Kramers-Wannier duality. It is well
established that the phase transition is continuous forQ ≤ 4
but is first order for Q > 4 [29–34,36]. Notably, for Q just
above 4, such as Q ¼ 5, the first-order transition is very
weak, characterized by a large correlation length and a
small energy gap.
Considering the β function for the subleading singlet

operator ϵ0, which read −dg=d lnL ¼ að4 −QÞ − g2 [21].
By tuning g there are indeed two (real) fixed points for
Q < 4, one is attractive, corresponding to the Q-state Potts
CFT, and the other is repulsive, corresponding to the
tricritical Q-state Potts CFT [43–46]. At Q ¼ 4, these
two fixed points merge into a single fixed point, correspond-
ing to an orbifold free boson CFT [31,47]. For Q > 4, the
two fixed points collide and disappear in the real axis of g,
the phase transition becomes first order rather than con-
tinuous [29–36,48,49]. Nevertheless, by performing a naive
analytical continuation to the complex coupling g, the
previously disappeared fixed point will reemerge [see
Fig. 1(a)]. It is proposed that these complex fixed points
are still conformal, and are responsible for the weakly first-
order transition for Q slightly larger than 4 [4,6,22].
In this work, we propose to consider the following

interaction term in addition to the original Potts Hamiltonian:

H1ðλÞ ¼ λ
XL
i¼1

XQ−1

k1;k2¼1

�ðτk1i þ τk1iþ1Þðσ†i σiþ1Þk2

þ ðσ†i σiþ1Þk1ðτk2i þ τk2iþ1Þ
�
: ð2Þ

We let λ be a complex parameter, so the term H1ðλÞ breaks
Hermiticity. Crucially, the term H1ðλÞ preserves both

permutation symmetry and self-duality. These properties
are essential such that H1ðλÞ respects all symmetry of the
subleading CFT singlet operator ϵ0 (see discussion below),
which is believed to play a pivotal role in the appearance of
complex fixed points [6,21]. We also note that similar lattice
construction has been studied in the Pottsmodel to realizeUV
spin chains for tricritical Ising or tricritical 3-state Potts (real)
fixed points [50,51].
In the following, we will directly confirm the complex

fixed point proposal by considering the non-Hermitian Potts
model, HNH-PottsðJ; h; λÞ ¼ H0ðJ; hÞ þH1ðλÞ with com-
plex parameter λ. Specifically, we will identify the complex
fixed points for Q ¼ 5, and study the corresponding com-
plex CFT through the state-operator correspondence.
Within this work, we only focus on the ferromagnetic

Potts model, while the critical behavior for the antiferro-
magnetic case is more complicated and needs to be treated
case by case [52–54]. It was pointed out that 2D real S5
symmetric CFT could potentially be realized in the non-
ferromagnetic Potts model [55,56]. However, this is still an
open question that needs further investigation [57].
Critical points in the complex parameter space—

We begin by analyzing the phase transition point of
HNH-PottsðJ; h; λÞ. First, we assume the microscopic model
HNH-PottsðJ; h; λÞ realizes an effective model HCFTðgε0 Þ ¼
HCFP þ gε0

R
dx · ε0ðxÞ þ ðirrelevant perturbationÞ, where ϵ0

is the most relevant SQ singlet preserving Kramers-Wannier
duality and gϵ0 is the coupling constant. Tuning parameters to
hit the critical value ðJc; hc; λcÞ,HNH-PottsðJc; hc; λcÞ realizes
a complex CFT fixed point HCFP with vanishing small gϵ0 .
Accordingly, one can compare the energy spectrum of
HNH-PottsðJ; h; λÞ with those ofHCFTðgϵ0 Þ, and the minimum
of gϵ0 should point to the location of the critical point of
HNH-Potts [58], as shown in Fig. 1(b). Following this process,

FIG. 1. (a) The complex CFT scenario for the Q-state Potts
model: The phase transitions are second order for Q ≤ 4, while
weakly first-order for Q > 4 because the location of the critical
and tricritical branches merge and move into the complex
parameter plane, where g is the coupling constant for the
subleading singlet operator ϵ0. (b) Illustration of phase transition
points of the non-Hermitian 5-state Potts model HNH-PottsðJ; h; λÞ
on the self-dual plane (J=h ¼ 1): Two complex fixed points
located at λ ¼ λc ≠ 0 (green and cyan squares), which are
determined via conformal perturbation calculation (see main
text). The weakly first order transition point of the original
5-state Potts model is marked by the red dot. The ferromagnetic to
paramagnetic phase transitions occur on the self-dual plane J ¼ h
(either continuous or first order).
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we obtain ðJc ¼ hc ¼ 1; λc ¼ 0.079þ 0.060iÞ and its com-
plex conjugated point ðJc ¼ hc ¼ 1; λ̄c ¼ 0.079 − 0.060iÞ,
which we determine as the critical points (Supplemental
Material Sec. B [59]). Given that the Hermitian breaking
term λc is very small, the weakly first-order transition point
in the original 5-state Potts model (at J ¼ h ¼ 1, λ ¼ 0) is
notably close to the complex critical points.
Next, at the critical point, according to the expectation of

CFT, the energy spectrum should follow the scaling form

ðEn − E0Þ ¼
2πv
L

Δn þ � � � ; ð3Þ

where L is the length of the spin chain, v is a nonuniversal
normalization factor, and E0 is the ground state energy
[37–39]. The “...” stands for finite-size corrections from
irrelevant operators (see Supplemental Material Sec. C [59]).
It is worth noting that the eigenenergies En and scaling
dimensions Δn of the CFT operator are complex values for
complexCFT, in sharpcontrast tounitaryCFTandnonunitary
CFT such as Lee-Yang. As shown in Figs. 2(a) and 2(b), by
sitting at the phase transition point the excited energy gaps
simultaneously scales to vanishing small values for both the
real and imaginary part, signaling the criticality. Additionally,
the ground state energy density E0=L can give rise to the
central charge c ≈ 1.1405ð2Þ − 0.0224ð2Þi (for details see
Supplemental Material Sec. D [59]), close to the exact result
from analytical continuation [6],

c5-Potts ¼ 7 −
12π

2π þ i log
�
3þ ffiffi

5
p
2

� − 3i log
�
3þ ffiffi

5
p
2

�
π

≈ 1.1375 − 0.0211i:

Operator spectrum—Generally, a key feature of the CFT
is the state-operator correspondence [37,40], i.e., the
eigenstate jϕi of the CFT quantum Hamiltonians on a
cylinder Sd−1 ×R1 has one-to-one correspondence with the
CFT operator ϕ̂, which allows us to access the conformal
data such as the scaling dimensions of CFT operators.
Previously, the state-operator correspondence has been
explicitly shown in CFTs with real scaling dimensions,

such as the 2D Ising [40,60,65,66] and nonunitary
Lee-Yang CFT [67,68]. Next, we will explicitly demon-
strate this correspondence holds in the current model
HNH-PottsðJc; hc; λcÞ, even though it is non-Hermitian.
Figure 3 depicts the obtained operator spectra at the

critical point, which are grouped into different conformal
families in subfigures. The results have been extrapolated
to the thermodynamic limit (L → ∞) and we have rescaled
the full spectra by setting energy-momentum tensor to be
ΔT ¼ 2. Here we plot the real-part of the scaling dimen-
sions (for the imaginary part see Ref. [59]). The spectra
shows unique and distinguishable features. First of all, in
each conformal family, the eigenstate with the lowest real
part is identified as the Virasoro primary field, and higher
energy states (associated with descendant fields) have
nearly integer spacing separating them from the primary
field. For example, for a primary operator ϕ̂ with scaling
dimension Δϕ and quantum number ðs; sQÞ (here s is the
Lorentz spin, and sQ is spin permutation symmetry
quantum number), its descendants can be represented as
L−μ1 � � �L−μmL̄−ν1 � � � L̄−νn ϕ̂ (1 ≤ μ1 ≤ � � � ≤ μm, 1 ≤ ν1 ≤
� � � ≤ νn), with scaling dimension (Δϕ þ

P
m
i¼1 μi þP

n
j¼1 νj) and quantum number ðsþP

m
i¼1 μi −P

n
j¼1 νj; sQÞ [59]. Importantly, the degeneracy of the

descendants satisfy with the expectation of the correspond-
ing Verma module. Note that applying Virasoro generators
to some specific states might lead to null states, e.g., the
second order descendent of jϵi and the third order descend-
ent of jϵ0i [59]. All of the above features demonstrate the
emergent conformal symmetry regarding the identified
critical point of HNH-PottsðJc; hc; λcÞ. As far as we know,
this hidden complex conformality has not been demon-
strated by any quantum Hamiltonian before. Moreover,
comparing with the unitary 5-state Potts model (see Fig. S3
[59]), the spectra at the weakly first-order transition point
deviates from the CFT tower structure, implying that the
transition point there is not exactly continuous.
Having clarified the emergent conformal symmetry at

the complex fixed point, we further investigate the scaling
dimensions of the identified primary operators, as listed in
Table I. Crucially, we find ϵ0 (Δϵ0 ≈ 1.908 − 0.599i), which
controls the RG flow around the complex fixed points [6].
Moreover, in comparison with the CFT data from analytical
continuation [6,69], the quantitative agreement has been
confirmed, i.e., for all 11 Virasoro primary operators that
we have identified, the discrepancy is less than 1% for the
real and 2% for the imaginary part. Even more remarkably,
we have checked all low-lying states with ReΔn < 5, s ≤ 3,
and they perfectly match the CFT spectrum (for both
primary and descendant operators), without any extra or
missing operator (see Tables S2–S11 [59]).
Correlation functions and OPE coefficients—Next we

turn to access the OPE coefficients. In general, any local
lattice operator O can be expanded by the linear

(a) (b)

FIG. 2. Finite-size scaling of the low-lying excitation energy
gaps (distinguished by colors) at the complex critical point, where
(a) real and (b) imaginary part of energy gaps identically scales
to zero.
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combination of CFT operators: O ¼ P
α cαϕ̂α, where the

summation is over infinite primary and descendant oper-
ators and cα are some nonuniversal coefficients. For
example, spin operator σi should involve operator content
of CFT operators with the same SQ quantum number:

Oσ ¼ σi ¼ ðaσ · σ̂ þ descÞ þ ðbσ0 · σ̂0 þ descÞ þ � � � ; ð4Þ

where � � � represents other CFT operators with higher
scaling dimensions. This operator content decomposition
can be further inspected by corresponding two-point
correlators [59].
Then we calculate correlation functions to extract cor-

responding OPE coefficients with the help of state-operator
correspondence [61]. For example, the OPE Cασβ can be
computed from (Supplemental Material Sec. E [59])

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LhαjOσjβiRLhβjOσjαiR
Lh0jOσjσiRLhσjOσj0iR

s

≈ Cασβ þ
c1

LΔσ0−Δσ
þ c2
L2ðΔσ0−ΔσÞ þ

c3
L2

þO

�
1

LΔσ0−Δσþ2

�
;

ð5Þ

where subscripts L and R represents left and right bio-
rthogonal eigenstates of HNH-PottsðJc; hc; λcÞ and c1;2;3 are
nonuniversal coefficients. The proposed form Eq. (5) is to
remove the gauge redundancy of left and right eigenstates.
Subsequently a finite-size extrapolation is performed to
eliminate the contribution from higher primary and
descendant fields. Similarly, other OPE coefficients involv-
ing ϵðϵ0Þ can be obtained by using duality-odd (even)
operator OϵðOϵ0 Þ [59]. Table II summarizes the obtained 9

FIG. 3. Conformal multiplet for 11 low-lying Virasoro primary operators: real part of scaling dimension ReðΔÞ versus Lorentz spin s.
Different symbols and colors label different conformal towers. The spectrum is calibrated by setting the scaling dimension of energy
momentum tensor ΔT ¼ 2. The dots are results from the 5-state Potts model and short lines are predictions from the analytical
continuation of the Coulomb Gas partition function [6]. The translucent arrows denote Virasoro generators connecting different states.

TABLE I. Operator scaling dimensions for 11 low-lying
Virasoro primary fields identified through the state-operator
correspondence. s represents the Lorentz spin quantum number.
SQ Rep is the young diagrams for irreducible representations of
the permutation group. The numerical extrapolated data from the
non-Hermitian 5-state Potts model is compared with the pre-
diction based on analytical continuation [6]. See the error analysis
in Supplemental Material Sec. H [59].

Operator s SQ Rep Complex CFT Non-Hermitian 5-Potts

ϵ 0 0.466 − 0.225i 0.463ð12Þ − 0.224ð6Þi
ϵ0 0 1.908 − 0.599i 1.900ð71Þ − 0.598ð15Þi
ϵ00 0 4.328 − 1.123i 4.340ð187Þ − 1.135ð167Þi
σ 0 0.134 − 0.021i 0.133ð3Þ − 0.021ð1Þi
σ0 0 1.111 − 0.170i 1.107ð29Þ − 0.171ð3Þi
σ00 0 3.065 − 0.470i 3.065ð1Þ − 0.470ð1Þi
Z 0 2.012þ 0.305i 2.017ð32Þ þ 0.304ð19Þi
Z0 0 4.512þ 0.688i 4.536ð12Þ þ 0.698ð85Þi
X 1 2.134þ 0.286i 2.139ð26Þ þ 0.285ð16Þi
Y 2 2.500þ 0.230i 2.503ð13Þ þ 0.230ð9Þi
W 3 3.111þ 0.136i 3.108ð6Þ þ 0.137ð5Þi
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different OPE coefficients. One typical feature distin-
guished from unitary CFTs is the OPE coefficients are
complex values. Recently, the irreducible representation of
Virasoro algebra for operators within the ϵ and σ sector of
the Potts model for generic Q have been determined to
correspond to the Verma module Vh1;k and Vh0;�ðk−1=2Þ , where
k is a positive integer [70,71]. Since the existence of null
states within the ϵ sector and the crossing equation impose
significant constraints on related correlators, one could
expect to evaluate some OPE coefficients from analytical
continuation of previous results of minimal models [62].
Table II shows quantitative agreement between theoretical
calculation with numerical results.
Summary and discussion—We have constructed a non-

Hermitian 5-state quantum Potts model, which realizes
complex fixed points described by an S5 symmetric
complex CFT. At the critical point, we provide compelling
evidence for emergent conformal symmetry and present a
clear demonstration of state-operator correspondence in
complex CFT. Specifically, we have identified the con-
formal data, including the scaling dimensions of 11
Virasoro primary operators and 9 associated OPE
coefficients with high accuracy. These findings are signifi-
cant in several respects. First, our microscopic calculations
shed light on the existence of complex CFT and its
corresponding complex criticality. Second, they directly
verify the proposal that the first-order regime (Q > 4) of
the two-dimensional Potts model is in proximity to com-
plex fixed points, paving the way for future investigations
into similar models, including gauge theories below the
conformal window and deconfined quantum critical points.
Third, most of the conformal data computed in this work,
such as OPE coefficients, have not been obtained non-
perturbatively before. This essential information should
facilitate other methods for solving complex conformal
data [71,74,76–78]. Finally, this work should also inspire
further exploration into quantum critical phenomena in
non-Hermitian many-body systems.

Note added—Recently, we become aware of an inde-
pendent study [79] on the complex fixed points of classical
5-state Potts model.
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