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Understanding topological matter in the fractional quantum Hall (FQH) effect requires identifying the
nature of edge state quasiparticles. FQH edge state at the filling factor ν ¼ 2=3 in the spin-polarized and
unpolarized phases is represented by the two modes of composite fermions (CF) with the parallel or
opposite spins described by the chiral Luttinger liquids. Tunneling through a quantum point contact (QPC)
between different or similar spin phases is solved exactly. With the increase of the applied voltage, the QPC
conductance grows from zero and saturates at e2=2h while a weak electron tunneling between the edge
modes with the same spin transforms into a backscattering carried by the charge q ¼ e=2 quasiparticles.
These unusual quasiparticles and conductance plateau emerge when one or two CF spin-polarized modes in
the QPC tunnel into a single mode. We propose experiments on the applied voltage and temperature
dependence of the QPC conductance and noise that can shed light on the nature of edge states and FQH
transport.
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The quantum Hall effect (QHE) occurs in strong mag-
netic fields in a two-dimensional electron gas, giving the
Hall conductance quantized in terms of e2=2πℏ, where e is
the electron charge and ℏ is the Planck constant. When
electron correlations emerge, the fractional quantum Hall
effect (FQHE) exhibits a fractionally quantized conduct-
ance. FQHE excitations are fractionally charged quasi-
particles that obey Abelian or non-Abelian anyon statistics
[1–7]. FQHE with its edge states is the breeding ground for
topological effects, quantum phase transitions, and qubits
for topological quantum computing [8–18].
Conductance quantization can arise from the edge states

[19] in the Landauer-Buttiker approach [20]. For the
FQHE, Wen [21] found that for Laughlin [22] states with
filling factors ν ¼ nΦ0=B ¼ 1=m, where m is odd, n is the
electron density, B is the magnetic field, and Φ0 ¼ 2πℏc=e
is the flux quantum, the edges can be described as the chiral
Luttinger liquids. While in quantum wires [23–25] con-
ductance is independent of the Luttinger liquid parameters,
the picture of chiral Luttinger liquids explains the FQHE
conductance [21,26] and tunneling of ν ¼ 1=m edge states
through the quantum point contact (QPC) [27–29]. In [27]
the thermodynamic Bethe ansatz and the integrability of the
Luttinger model with impurity interaction were used to find
the nonequilibrium temperature-dependent conductance
and noise.
A more complex situation emerges for hierarchical

FQHE states [5,30,31], such as ν ¼ 2=3 state. Based on
an idea that it is a hole conjugate of the ν ¼ 1=3 state,
[32,33] suggested that the edge at ν ¼ 2=3 consists of an

outer downstream integer mode (from the underlying
ν ¼ 1 state) and an inner, counterpropagating −1=3 edge
mode. This conjugated state and two other models, two
independent ν ¼ 1=3 edge channels and a pseudospin
singlet state were discussed for a bilayer system in [34].
In [35,36] it was shown that disorder scattering between
edge modes leads to two decoupled modes, a single
downstream charge mode with conductance 2e2=3h and
an upstream neutral mode. Such charge-neutral (or spin)
separation, as argued in [21], can also arise solely due to
long-range Coulomb interactions, and stems from the
nature of composite fermion (CF) [37,38] states on the
edge of ν ¼ 2=3 system [39]. A reconstructed edge due to
soft confining potential was suggested in [40,41]. In recent
years, different approaches to edge structure of the ν ¼ 2=3
states and their transport properties continue to be actively
investigated experimentally and theoretically [42–48].
With different approaches to the structure of the edge,
there have been two approaches to transport. Conductance
quantization implies equilibration between the chemical
potentials of the reservoirs and the outgoing edges. The first
approach, incoherent transport model, assumes a short
coherent length and suppression of quantum interference
between the channels [49–53]; the second approach is a
quantum solution taking interference into account [27,54].
Experimentally, studies of tunneling through quantum
point contacts (QPC) at ν ¼ 2=3 in [55–57] have shown
a conductance plateau at e2=3h, however, recent work [58]
demonstrated its appearance within 2% of e2=2h.
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In this Letter, we find exact quantum mechanical
solutions to two models of tunneling through QPC that
emerge in several ν ¼ 2=3 edge configurations. One of
those is associated with the transition between spin-polar-
ized and unpolarized ν ¼ 2=3 FQH phases [39,59,60],
which occurs due to the crossing of the two CF energy
levels with opposite spin polarization [16,61,62]. It was
shown [63–66] that the two different spin phases can be
induced in the neighboring regions of the FQH liquid by
electrostatic gates. The effect of boundary between the
regions leads to the model with two CF edge modes of the
spin-polarized phase coupled by tunneling through QPC to
one CF edge mode of the same spin in the unpolarized
phase. The other configuration leading to the same model is
the QPC tunneling between two spin-polarized FQH
regions when two CF edge modes are well separated in
space due to a potential profile in one of the regions, so that
only one mode can tunnel to the neighboring region. In this
model for both configurations, using hybridization to
account for the interference of modes in the region with
the two CF states, consideration can be reduced to tunnel-
ing between two single modes. The solution shows that
with an increase of the applied voltage or temperature, the
QPC tunneling conductance grows from zero and saturates
at e2=2h plateau while a weak electron tunneling between
the edge modes with the same spin transforms into the
backscattering carried by the charge q ¼ e=2 quasipar-
ticles. This charge also arises in the shot noise. This
solution similarly emerges in a model describing tunneling
of one mode into one mode, which describes tunneling
between unpolarized region and a polarized region with
two CF edge modes well separated in space due to potential
profile or tunneling between two such polarized regions. In
this case no hybridization and no interference occur, and
the results confirm the e2=2h conductance we obtained in
[66] for the contact between spin-polarized and unpolarized
regions using strong coupling boundary conditions. Testing
the predicted nonlinear applied voltage dependence of the
tunneling current, its temperature dependence and noise
properties can distinguish coherent and incoherent trans-
port models and uncover the physics of edges in both
polarized and unpolarized FQHE at ν ¼ 2=3.
Edge states model—Our key assumption is the separa-

tion of the charge and neutral or spin edge modes due to the
long-range Coulomb interaction [21]. Such separation
occurs both in polarized and unpolarized ν ¼ 2=3 phases
[39], and is crucial for experimental observation of their
Hall resistivity quantization at R ¼ 3h=2e2 [59,60,66].
While the separation in the polarized phase can also appear
due to disorder-induced scattering between edge modes
[35], this cannot be its origin in the unpolarized phase with
opposite spins of edge modes. The similarity between the
ν ¼ 2=3 plateau in the polarized and unpolarized phases
[65,66] is therefore in favor of the Coulomb origin of
charge-neutral (spin) separation. We treat the polarized and

unpolarized edges on equal footing, using chiral Luttinger
liquids description with action

S ¼ 1

4π

Z
dt

Z
dx

�
−3∂xφcð∂t þ vc∂xÞφc

þ ∂xφnð∂t − vn∂xÞφn

�
; ð1Þ

where vc and vn are velocities of the charge and the neutral
modes, φc and φn are their bosonic operators defining the
corresponding densities via ρc;n ¼ ð1= ffiffiffi

2
p

πÞ∂xφc;n. We use
the notation φpc and φuc for charge modes, φpn and φus for
neutral (spin) modes. The neutral operators describe
the difference in the occupation numbers of Λ levels in
the polarized phase and the doubled spin density in the
unpolarized phase. We assume no edge reconstruction.
Technical details of description of edge modes are dis-
cussed in the Supplemental Material [67].
Tunneling and charge current—We begin with tunneling

through a QPC between the polarized and unpolarized
phases. Tunneling is spin conserving and is carried out by
interacting electrons. In the weak coupling limit, a rare
electron tunneling is carried out by uncorrelated whole
electrons, but for strong coupling the process transforms
into correlated electron tunneling. The point contact elec-
tron tunneling at x ¼ 0 between polarized and unpolarized
phases is described by Hamiltonian

HT ¼ −
X
a¼1;2

ðUaξuξpaeiðΨaðtÞ−VtÞ þ H:c:Þ: ð2Þ

Here fξb; ξcg ¼ 2δb;c, ξ’s are Majorana fermions account-
ing for the fermion statistics of different CF edge modes
and composing the corresponding Klein factors, and

ΨaðtÞ ¼ Φpað0; tÞ −Φu1ð0; tÞ

¼ 1ffiffiffi
2

p �
3φpcð0; tÞ ∓ φpnð0; tÞ

− 3φucð0; tÞ þ φusð0; tÞ
�
; ð3Þ

where Φpa and Φu1 are the CF fields, the tunneling
amplitudes Ua can be chosen real and positive, and V is
the applied voltage. We assume coherent propagation of
charge and neutral (spin) modes along the edge and allow
for the possibility of interference. The simpler model of
tunneling of one mode into one mode is described by
Hamiltonian (2), in which tunneling amplitude U2 equals
zero and the Klein factors are omitted.
The tunneling charge current from Eq. (2) is given by

JT ¼−∂tcQPðtÞ¼ i

�Z
dxρpc;HT

�
¼ δ

δðVtÞHT: ð4Þ

Its average and fluctuations are defined by the operators
ΨaðtÞ, a ¼ 1, 2, whose evolution in the absence of
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tunneling is characterized by their second-order correlators.
The latter are found from the Gaussian action Eq. (1) for
φpc, φpn and similarly for φuc and φps in the form

hΨaðtÞΨbð0Þi ¼ ð3þ δa;bÞgðtÞ; ð5Þ

gðtÞ is the single point correlator at x ¼ 0 of a normalized
chiral boson field, with action as in Eq. (1) for φpn,

hφpnðx; tÞφpnð0; 0Þi ¼ − ln

�
δ

�
i

�
tþ x

vn

	
þ α

�


≡ g

�
tþ x

vn

	
: ð6Þ

Here α ¼ 1=D, D is the energy cutoff in both edges, and
δ → 0 should be taken in the final results. In terms of the
normalized chiral boson fields ϕjðx; tÞ; j ¼ 0; a, the oper-
ators ΨaðtÞ; a ¼ 1, 2 can also be represented as

ΨaðtÞ ¼ ϕað0; tÞ þ
ffiffiffi
3

p
ϕ0ð0; tÞ: ð7Þ

The fermionization

ψaðx;tÞ¼
ξpaffiffiffiffiffiffiffiffi
2πα

p eiϕaðx;tÞ; ψ0ðx;tÞ¼
ξuffiffiffiffiffiffiffiffi
2πα

p ei
ffiffi
3

p
ϕ0ðx;tÞ ð8Þ

allows us to rewrite the tunneling Hamiltonian (2) as

HT ¼ −
X
a¼1;2

ð2παUaψ
þ
0 ð0; tÞψað0; tÞe−iVt þ H:c:Þ; ð9Þ

which describes the tunneling process of electrons from the
two noninteracting chiral channels into the FQHE edge of
ν ¼ 1=3 filling factor. Combining these interfering chan-
nels into a single tunneling channel and applying bosoni-
zation of its chiral fermion field

ψTðx;tÞ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiP
aU

2
a

p X
a

Uaψaðx;tÞ≡ ξTffiffiffiffiffiffiffiffi
2πα

p eiϕT ðx;tÞ; ð10Þ

we obtain the tunneling Hamiltonian HT and current JT :

HT ¼ −t̃ cos ðϕTð0; tÞ −
ffiffiffi
3

p
ϕ0ð0; tÞ − VtÞ ð11Þ

JT ¼ −t̃ sin ðϕTð0; tÞ −
ffiffiffi
3

p
ϕ0ð0; tÞ − VtÞ; ð12Þ

where t̃2 ¼ 2
P

a U
2
a, and the single Klein factor is omitted

since its drops out from any perturbative order in t̃ due
to the charge conservation. In Hamiltonian (11) ϕ0 ¼ffiffiffiffiffiffiffiffi
3=2

p ðφpc − φusÞ is a combination of the charge edge
modes of the different ν ¼ 2=3 FQH regions and ϕT
is constructed from their neutral and spin modes, which
in the case U2 ¼ 0 can be explicitly expressed as
ϕT ¼ ðφpn − φusÞ=

ffiffiffi
2

p
. Therefore the tunneling current

JT describes charge and spin tunneling into the spin-
unpolarized FQH phase. The same scheme also applies
to the QPC tunneling between two spin polarized FQH
regions when two CF edge modes are well separated in
space due to potential profile in one of the regions, so that
only one mode ΦIp ¼ 3φIpc − φIpn can tunnel to the
neighboring region. The modes ΦIp, φIpc and φIpn then
enter our equations instead of Φu1, φuc and φus, corre-
spondingly. The calculations of the tunneling current is
defined by the scaling dimension 2 of the tunneling
operators in Eq. (11) which manisfests itself in the power
dependence t−4 of their correlators, according to Eq. (5).
We thus demonstrated this scaling power to emerge in the
description of the complex edge at ν ¼ 2=3 for several
cases of tunneling between polarized or unpolarized FQH
phases.
Tunneling from the hybridization-induced single

noninteracting chiral channel in Eqs. (11), (12) can be
viewed, by analogy to [68], as tunneling between the two
counterpropagating primary one-component edges of
equal filling factor ν0 ¼ 1=2 with densities ρd;nðx; tÞ ¼
�ð1=2πÞ

ffiffiffiffi
ν0

p
∂xϕd;nðx; tÞ and electron annihilation opera-

tors eið1=
ffiffiffi
ν0

p
Þϕd;nðx;tÞ, ϕd;n are normalized right and left

moving chiral fields. Thus, Eq. (2) maps onto and is
equivalent to the problem of tunneling between ϕdðx; tÞ
and ϕnðx; tÞ described by Hamiltonian

HT ¼ −t̃ cos
�

1ffiffiffiffi
ν0

p ϕdð0; tÞ −
1ffiffiffiffi
ν0

p ϕnð0; tÞ − Vt

	
: ð13Þ

The current JT for HT of Eq. (13) coincides with JT in
Eqs. (4), (12). Its average [27,28] at finite temperatures T is
given by

hJTi ¼
1

4π

�
V −

Γ2

2

Z
dω

fðω−VT Þ − fðωþV
T Þ

ω2 þ Γ2

	
; ð14Þ

fðϵ=TÞ is the Fermi function, and Γ ¼ 2D2=ðπt̃Þ [69].
Equation (14) is evaluated via the digamma-function
ψðxÞ [70], describing the dependence of hJTi on the
applied voltage and temperature in the whole range of
parameters:

hJTi ¼
1

4π

�
V − Γ Imψ

�
1

2
þ Γþ iV

2πT

�	
: ð15Þ

In Fig. 1 conductance hJTi=V is plotted in terms of
variables 1=Ṽ ¼ Γ=V and 1=T̃ ¼ Γ=2πT. At T ¼ 0

hJTi ¼
1

4π

�
V − Γ tan−1

�
V
Γ

	�
: ð16Þ

In order to elucidate different mechanisms of the
tunneling, we study limiting cases of Eq. (16). At low V
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limit of model Eq. (13), V ≪ Γ, the current hJlTi is cubic
in V:

hJlTi ¼
1

3

V
4π

�
V
Γ

	
2

: ð17Þ

Therefore, we observe that in the coherent approach to
transport, the behavior of tunneling current and conduct-
ance at small voltages is nonlinear in the applied voltage
for T ≪ V, as opposed to the picture of incoherent transport
[51–53] that results in Landauer-Buettiker current linear in
voltage and voltage-independent conductance.
In the high-voltage regime, V ≫ Γ, Eq. (15) gives the

following result for the average current denoted JhT :

hJhTi ¼
V
4π

−
Γ
8
: ð18Þ

Here the first term defines conductance G ¼ e2=2h. The
second term gives the reduction of the tunneling current
hJTi due to the quasiparticle backscattering current Jbsc

Jbsc ¼ hJTi − hJhTi ¼
Γ
8
; ð19Þ

where hJTi ¼ V=4π.
In the Supplemental Material [67], we show an alter-

native calculation of the tunneling currents using the strong
coupling boundary conditions. We also calculate the
quasiparticle charge, and neutral and spin tunneling cur-
rents for tunneling through QPCs in several configurations.
We note that QPC conductance G ¼ e2=2h has been also
discussed [58] in terms of the incoherent equilibration
model. However, neither the nonlinear current-voltage
characteristics nor the temperature dependence following
from Eq. (15) arise in that approach. G ¼ e2=2h has been
also discussed for a special tunneling configuration, in
which tunneling between two ν ¼ 2=3 regions proceeds
through the quantum dot with ν ¼ 1 [71].
Quasiparticle charge—The reduction of tunneling cur-

rent due to quasiparticle backscattering is described and

their charge is determined by taking into account a sudden
change of strong coupling boundary conditions at t ¼ t0.
For tunneling, e.g., between the p1 edge mode in the
polarized region and u1 edge mode with the same spin in
the unpolarized region through the QPC at x ¼ 0 the strong
coupling boundary conditions t̃ → ∞ are given by

1

2

X
�

�
Φ̃p1ð�0; t0Þ − Φ̃u1ð�0; t0Þ

� ¼ 2πn: ð20Þ

Here bothΦα;1ðx; tÞ, α ¼ p, u fields are extended to finite x
from their x ¼ 0 expressions in Eq. (3), as chiral right
moving fields. A sudden variation of the boundary con-
ditions changes n ¼ 0 to n ¼ 1; both n minimize
−t̃ cos ½Φp1ð0; tÞ −Φu1ð0; tÞ�. The boundary conditions
also must keep continuous the two dual fields

η1ðx; tÞ ¼ Φp1ðx; tÞθð−xÞ þΦu1ðx; tÞθðxÞ ð21Þ

η2ðx; tÞ ¼ Φu1ð−x; tÞθð−xÞ þΦp1ðx; tÞθðxÞ; ð22Þ

where θðxÞ is the Heaviside step function. The jump from
n ¼ 0 to n ¼ 1 leads to a jump in the dual fields

ðη1ðx; t0Þ − η2ðx; t0ÞÞjþ0
x¼−0 ¼ −4π: ð23Þ

Since ðη1ðx; t0Þ þ η2ðx; t0ÞÞjþ0
x¼−0 ¼ 0, the corresponding

jumps in these fields are given by

Δη2ðþ0; t0Þ ¼ 2π ¼ −Δη1ðþ0; t0Þ: ð24Þ

This leads to the change Δð3φpcðx; t0Þ − φpnð−x; t0ÞÞ ¼
2

ffiffiffi
2

p
πθðxÞ. Therefore, using the continuity condition

Δðφpcðx; t0Þ þ φpnð−x; t0ÞÞ ¼ 0, we find

Δφpcðx;t0Þ¼
πffiffiffi
2

p θðxÞ; Δφpnð−x;t0Þ¼−
πffiffiffi
2

p θðxÞ: ð25Þ

Hence the changes in the charge density and the density of
the neutral mode are given by

δρpc ¼
1ffiffiffi
2

p
π
∂Δφpc ¼

1

2
δðxÞ; δρpn ¼

1

2
δðxÞ: ð26Þ

Changes in tunneling densities of the spin mode in the
unpolarized region and relations between changes of
densities for charge, neural, and spin modes on both
sides of the QPC are presented in the Supplemental
Material [67].
The transferred charge (26) enables [72] finding the

charge of backscattering quasiparticles, q ¼ e=2.
Surprisingly, this charge differs from q ¼ e=3 that one
expects from [35] for ν ¼ 2=3. This is due to the absence of
tunneling between two edge states of opposite spin polari-
zations in the polarized and unpolarized regions, or, for

FIG. 1. Conductance hJTi=V ¼ I=V dependence on dimen-
sionless variables 1=Ṽ ¼ Γ=V and 1=T̃ ¼ Γ=2πT. Thick and thin
black curves show the dependence of conductance on 1=T̃ at
1=Ṽ ¼ 2 and on 1=Ṽ at 1=T̃ ¼ 0.5, correspondingly.
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tunneling between the regions with the same spin polari-
zation, due to absence of tunneling from at least one
channel in one of the regions, owing to the potential profile.
Shot noise—The charge of the tunneling quasiparticles

can be measured studying the shot nonequilibrium
noise [73–78]. The shot noise of the tunneling current
[27,68,79–81] is given by

S ¼
Z þ∞

−∞
dtðhJTðtÞJTð0Þi − hJTi2Þ: ð27Þ

From [27] it follows that

S ¼ −
ν

2ð1 − νÞV
2
∂V

�hJTi
V

	

¼ 1

2

Γ
4π

�
tan−1

�
V
Γ

	
−

v=Γ
1þ ðVΓÞ2

	
: ð28Þ

At small voltages and weak backscattering V ≪ Γ

Sl ¼ 1

3

V
4π

�
V
Γ

	
2

: ð29Þ

At large voltages V ≫ Γ

Sh ¼ 1

2

Γ
4π

π

2
: ð30Þ

The Schottky formula gives the charge of tunneling
quasiparticles q in the limits of weak electron tunneling
and weak quasiparticle backscattering as the ratio of the
corresponding values of noise to the currents, Sl=hJTi and
Sh=hJbsci. The resulting charge (writing e explicitly) is

Sl=hJTi¼q¼e; Sh=hJbsci¼q¼e=2: ð31Þ

Thus, the result for shot noise confirms the one from the
analysis of the boundary conditions: in our models for QPC
tunneling at ν ¼ 2=3, the quasiparticle charge is e=2.
Notably, the arising noise signal is much stronger than
the noise in the incoherent equilibration approach.
Conclusion—The coherent model of transport in the

ν ¼ 2=3 FQHE involving interference of chiral Luttinger
liquid edge modes leads to an exact solution of the problem
of tunneling through the QPC between ν ¼ 2=3 FQHE
regions with different or similar spin phases. With the
increase of the applied voltage, the QPC conductance
grows from zero and saturates at e2=2h while a weak
electron tunneling through the QPC between the same spin
edge modes transforms into the backscattering carried by
the fractional charge q ¼ e=2 quasiparticles. Unusual new
quasiparticles and fractional conductance emerge in the
QPC with one or two CF modes scattering into one mode as
is the case in tunneling between polarized and unpolarized
phases and can occur in tunneling between similar phases

due to engineering of the potential profile. All these cases
are characterized by the same power time dependence of
the correlators of the tunneling operators. Using the
fermionization method, we have shown that tunneling of
the two CF modes from one of the sides of the QPC is
renormalized with the account of interference between the
two modes, and is equivalent to tunneling of a single mode.
Recent experiments on QPC tunneling at ν ¼ 2=3 have

shown signatures of e2=2h plateau. Besides our model this
conductance can be discussed using the incoherent equili-
bration transport approach. However, then the nonlinear
current-voltage characteristics and temperature dependence
of tunneling current and noise, which are predicted in the
present work and can be tested experimentally, do not
emerge in the incoherent model.
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