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Molecular junctions—whether actual single molecules in nanowire break junctions or artificial
molecules realized in coupled quantum dot devices—offer unique functionality due to their orbital
complexity, strong electron interactions, gate control, and many-body effects from hybridization with the
external electronic circuit. Inverse design involves finding candidate structures that perform a desired
function optimally. Here we develop an inverse design strategy for generalized quantum impurity models
describing molecular junctions, and as an example, use it to demonstrate that many-body quantum
interference can be leveraged to realize the two-channel Kondo critical point in simple 4- or 5-site
molecular moieties. We show that remarkably high Kondo temperatures can be achieved, meaning that
entropy and transport signatures should be experimentally accessible.
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Nanoelectronics circuits are quantum devices featuring a
nanostructure with a few confined and typically strongly
correlated degrees of freedom coupled to source and drain
metallic leads [1–5]. For molecular junctions, a single
molecule can bridge the gap in a nanowire [6]. The
electrical conductance of such a junction is controlled by
the structure and chemistry of the molecule, through which
a current must pass [7]. A range of physics can be realized
in such systems—including Coulomb blockade [8] and
various Kondo effects [4,9–15], quantum interference
[16–23], and phase transitions [24,25]. This presents the
tantalizing possibility of devices at the limit of miniaturi-
zation that leverage inherently quantum effects to provide
enhanced functionality as switches [26–29], transistors
[4,5], diodes and rectifiers [30–35], and even as tools for
chemical analysis [36]. A grand challenge is to find
molecular species that can form robust junctions to perform
a desired function optimally [37].
Simple artificial molecular junctions can also be fab-

ricated in semiconductor coupled quantum dot (QD)
devices [38,39]. The design of such systems need not
obey chemical structure principles [40], and they benefit
from in-situ tunability [41,42]. They can also be integrated
with other components to realize more exotic effects, such
as fractionalization at the two-channel Kondo (2CK)
quantum critical point [43], which results from the frus-
tration of screening when a single spin-1

2
degree of freedom

is coupled to two independent conduction electron channels
[44]. The 2CK effect has gained prominence recently as a

route to engineer many-body Majorana zero modes in
nanostructures [45–48]. Spectacular experimental realiza-
tions of 2CK physics in QD systems [49–51] have however
required the use of a ‘quantum box’ or metallic island to
provide a reservoir of many interacting electrons [52,53].
Can the 2CK effect be realized in simpler QD systems
without the use of these components? If so, what is the
minimum number of interacting sites needed? Can we find
molecular moieties that realize 2CK physics when placed in
a junction?
Model—Molecular junctions and QDs are described by

generalized quantum impurity models [54] of the form
Ĥ ¼ Ĥmol þ Ĥleads þ Ĥhyb þ Ĥgate. Here we formulate the
isolated molecule as an extended Hubbard Hamiltonian,

Ĥmol ¼
X
σ¼↑;↓

X
m;n

tmnd
†
mσdnσ þ

1

2

X
m;n

Umnn̂mn̂n ð1Þ

where dð†Þmσ annihilates (creates) an electron on molecule
orbital m with spin σ and n̂m ¼ P

σ d
†
mσdmσ is a number

operator. Single-particle processes are parameterized by tmn
whereas Umn embodies electronic interactions. The gate
voltage Vg controls the charge on the molecule via
Ĥgate ¼ Vg

P
m n̂m. The leads are described by continua of

free fermions, Ĥleads ¼
P

α;σ ϵkc
†
ασkcασk with α ¼ s, d for

source and drain. The molecule frontier orbital drασ couples
to a local orbital cασ of lead α via Ĥhyb ¼P

α;σ Vαðd†rασcασ þ H:c:Þ, where cασ ¼ ð1=VαÞ
P

k Vkcασk.
Strong electron interactions [3,4] produce rich many-

body physics but also preclude brute force solutions [54].*Contact author: Andrew.Mitchell@UCD.ie
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Inverse design is challenging because physical properties
then depend in a highly nontrivial way on the delicate
interplay of many microscopic parameters. It is a formidable
task to find a set of model parameters that yield specific
device functionalities. However, if only the low-temperature
behavior is of interest, then simpler low-energy effective
models may be used [55–57]. The connection between
effective model parameters and low-temperature physical
properties is typically far more transparent.
Here we focus on one such scenario, where the low-

temperature physics that we seek is that of the 2CK critical
point [58]. The condition for obtaining this behavior in
molecular junctions is simply stated in terms of the low-
energy effective 2CK model. Inverse design then consists
of finding the set of microscopic model parameters satisfy-
ing this condition. We show that this is achievable in
remarkably simple systems, with just a few interacting
degrees of freedom, and without the interacting electron
reservoirs used previously in experiments [49–51].
Effective models—An odd number of electrons can be

accommodated on the molecule by tuning gate voltages,
such that the ground state of Ĥmol is a unique spin-doublet
state. At low temperatures, effective spin-flip Kondo
exchange interactions and potential scattering are gener-
ated, described by a generalized 2CK model [59],

Ĥeff ¼ Ĥleads þ
X
α;β

�
Jαβ

ˆS⃗ · ˆs⃗αβ þWαβ

X
σ

c†βσcασ

�
ð2Þ

where ˆS⃗ is a spin-1
2
operator for the molecule ground state

doublet and ˆs⃗αβ ¼ 1
2

P
ss0 c

†
βs0 σ⃗s0scαs are conduction electron

spin operators. We refer to the Jαβ and Wαβ terms as

exchange and potential scattering, respectively. The form of
Eq. (2) is guaranteed by SUð2Þ spin symmetry if only the
most RG relevant terms are considered [21]. Since Jsd ¼
Jds andWsd ¼ Wds by hermiticity, the low-energy behavior
of such molecular junctions is controlled by just six
effective parameters.
The 2CK critical point arises for equal antiferromagnetic

Kondo interactions Jss ¼ Jdd > 0, but when the source-
drain mixing terms vanish, Jsd ¼ Wsd ¼ 0 [58,75]. In
molecular junctions or coupled QD devices, the 2CK effect
should be realizable when the molecule or QD has a net
spin-1

2
ground state and when the effective model param-

eters satisfy these conditions. Wss and Wdd are RG
irrelevant and play no role in the following.
Quantum interference (QI) and conductance nodes—

Single-molecule junctions often exhibit QI phenomena,
with the most dramatic effect being electrical conductance
nodes due to the destructive interference of competing
transport pathways through the molecule [17–20].
However, such a description of the QI and transport is
typically on the single-particle level encoded by the real-
space hopping matrix tnm [76], and is inapplicable for
interacting systems displaying Coulomb blockade or
Kondo effects. Although sequential single-particle tunnel-
ing processes may be afflicted by decoherence at weak
coupling [8], coherent many-body processes are more
robust at low temperatures in interacting systems [77].
Many-body QI [21,78] is naturally richer than its single-
particle counterpart, being defined in a high-dimensional
Fock space, and provides new channels for QI (e.g.
between particles and holes). Many-body QI can cause
any of the parameters Jαβ andWαβ to vanish in the effective
2CK model Eq. (2). Jsd ¼ Wsd ¼ 0 must produce a
conductance node because then the charge in the leads
is separately conserved. The 2CK critical point therefore
arises at a conductance node, which can be driven by many-
body QI. We dub this the QI-2CK effect.
Perturbative solution—We consider first the perturbative

derivation of the effective 2CK parameters from those of the
bare model by means of a generalized Schrieffer-Wolff
transformation (SWT) [55]. This is done by projecting the
full model for the junction onto the spin-doublet molecule
ground states by eliminating virtual excitations to second
order in Ĥhyb. In the Supplemental Material [59] we
formulate this problem in an efficient way that does not
require full diagonalization of Ĥmol, but only uses informa-
tion on the ground state energy and wavefunction of the
isolated molecule. Comparatively large systems can then be
treated by using methods that target ground state properties
[79–81].
Eq. (2) is obtained by SWT with effective parameters

Jαβ ≡ VαVβjαβ and Wαβ ≡ VαVβwαβ that can be calculated
from many-body scattering amplitudes Aσαβ ¼ pσαβ − hσαβ

which involve the tunnelingof both particles (p) andholes (h)
with spin-σ through the molecule from lead α to lead β. We

FIG. 1. The simplest molecular moiety to exhibit the 2CK effect
with 5 interacting active orbitals. The effective molecule-lead
Kondo interactions jss and jdd are equal and antiferromagnetic
(blue line), while source-drain mixing terms vanish due to many-
body QI. Potential scattering wsd (red) vanishes at gate voltage
Vg ¼ 0 by particle-hole symmetry, whereas exchange cotunneling
jsd (black) vanishes on tuning the couplings t0=t. Obtained here
via SWT and plotted for U=t ¼ 1.
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may write jαβ¼2ðA↑αβ−A↓αβÞ and wαβ¼1
2
ðA↑αβþA↓αβÞ,

with the p and h amplitudes obtainable in closed form as
detailed in the Supplemental Material [59].
Many body QI can appear here in different ways:

through the vanishing of individual p or h processes due
to interference of competing Fock space propagators, by a
cancellation of terms with different spin, or by a cancella-
tion of p and h amplitudes for a given process.
In fact, particle-hole (ph) symmetry guarantees the latter,

since then pσαβ ¼ h−σαβ and henceWss ¼ Wdd ¼ Wsd ¼ 0
in Eq. (2). A system isph-symmetricwhen itsHamiltonian is
invariant to theph transformations dnσ → eiϕnσd†nσ for all nσ
(with suitable phases ϕnσ). The celebrated Coulson-
Rushbrooke pairing theorem [82] is a statement about ph
symmetry, withp and h excitations appearing symmetrically
around the ground state for molecules satisfying the ‘starring
rule’ [78,83]. A system may exhibit ph symmetry if the
molecular structure encoded by the single-particle adjacency
matrix tmn can be accommodated on a bipartite graph.
Therefore ph-symmetric systems must not have odd loops.
Satisfying the 2CK condition—Since ph symmetry

implies Wsd ¼ 0, we search for ph-symmetric systems
in which Jsd ¼ 0 can also be achieved. In addition we want
Jss ¼ Jdd for the 2CK effect so we consider only sd-
symmetric molecular moieties. As a simple starting point
we study M-site Hubbard chains with constant nearest
neighbour hopping t, local Coulomb repulsion U, and local
potential ϵ ¼ −U=2. Leads s and d are connected to
molecule sites 1 and M. For odd M the ground state
around Vg ¼ 0 is a unique spin-doublet and we numerically
perform the SWT as shown in the Supplemental Material
[59]. The system is ph-symmetric at Vg ¼ 0 such that
Wαβ ¼ 0. We also find Jss ¼ Jdd > 0. Although Jsd is
always finite, we find that its sign alternates for
M ¼ 1; 3; 5; 7;…. In particular, Jsd < 0 for M ¼ 3 but
Jsd > 0 for M ¼ 5. One might anticipate that interpolating
between M ¼ 3 and M ¼ 5 might yield a sweet spot
solution where Jsd ¼ 0. Avoiding odd loops and preserving
sd symmetry, this can be achieved by connecting sites 1 to
4 and 2 to 5, viz:

Hmol ¼
U
2

X5
m¼1

ðn̂m − 1Þ2 þ t
X
σ

X4
m¼1

�
d†mσdmþ1σ þ H:c:

�

þ t0
X
σ

�
d†1σd4σ þ d†2σd5σ þ H:c:

�
: ð3Þ

For small t0=t we expect small perturbations to the M ¼ 5
chain solution, whereas for large t0=t the next-next-nearest-
neighbour tunneling provides a shortcut through the chain
so that only 3 sites are needed to connect s and d leads.
Numerical results of the SWT are presented in Fig. 1,
together with a schematic illustration of the junction. At ph
symmetry Vg ¼ 0, the effective model parameters are
plotted as a function of t0=t in the right panel. We indeed

confirm that jsd ¼ 0 at a special value t0 ¼ t0c (black line).
In the left panel we show the gate evolution of the same
parameters at t0 ¼ t0c, with the 2CK conditions being
satisfied here at Vg ¼ 0.
Non-perturbative solution: NRG—To confirm the exist-

ence of a 2CK critical point in this simple 5-site molecular
cluster, we turn to the non-perturbative solution of the full
molecular junction involving Eq. (3) using NRG [84],
where we set t ¼ 1

2
and the conduction electron bandwidth

D ¼ 1 from now on. Numerical results are presented in
Fig. 2. In panel (a) we compare SWT predictions for the
critical t0c with those obtained by NRG for different
interaction strengths U, showing excellent agreement. In
particular, we note that the 2CK critical point can be
realized for any finite U. Interestingly, we find that t0c → t
as U → 0. The U ¼ 0 limit of Eq. (3) is studied in the
Supplemental Material [59]: we find t0 ¼ t is a singular
point of the non-interacting model with strictly decoupled
molecular degrees of freedom that give a finite T ¼ 0
entropy and a QI-driven conductance node. With inter-
actions switched on, the critical t0c is no longer at t but we
still find a residual T ¼ 0 entropy and a conductance
node—now characterizing the 2CK critical fixed point.
Panel (c) shows the molecular contribution to the entropy
Smol as a function of T at the critical point for different V.
The critical point can be realized for any combination of V
and U (in panel (c) we take fixed U), and in all cases we
find Smol ¼ 1

2
lnð2Þ for T ≪ TK, with TK the critical Kondo

(a) (b)

(c)

FIG. 2. 2CK critical point driven by QI. (a) Critical coupling t0c
as a function of U=t, with NRG results (points) validating SWT
predictions (line). (b) 2CK Kondo temperature TK vs 8V2=U ≡
JK for different U=t obtained by NRG. Dashed line is TK=U ∼
exp½−4=JK � valid for JK < 1 whereas the dotted lines show
TK=U ∼ exp½−aJK � with a≡ aðUÞ ∼Oð1Þ for JK > 1. (c) En-
tropy Smol vs T=U for different V=U at the 2CK critical point for
U=t ¼ 10, showing a residual 1

2
lnð2Þ.
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temperature. This unusual value for the entropy is a
hallmark of the free Majorana fermion localized on the
molecule at low temperatures at the 2CK critical point
[45,58]. For small molecule-lead coupling, TK is small and
we have an extended intermediate ln(2) plateau correspond-
ing to the local moment regime of Eq. (2). Remarkably
however, at larger V the Kondo temperature can be boosted
to large (non-universal) values and local moment physics is
entirely eliminated. This scenario lies outside of the regime
described by Eq. (2), suggesting that the interference giving
rise to criticality is a topological feature of the geometry in
Eq. (3). In Fig. 2(b) we plot the evolution of the Kondo
temperature with 8V2=U ≡ JK (where JK is the SWT
Kondo coupling for a single Anderson impurity [54]),
showing that a maximum value TK ∼ 10−2U can be
realized for all values of U considered when JK ∼ 1. A
weak-strong coupling duality [85] is found on further
increasing JK—see dashed and dotted lines in Fig. 2(b).
Note that the critical point is a non-Fermi liquid and as such
is not perturbatively connected to the U ¼ 0 limit: even
though the critical point can be realized at small U, we find
that TK → 0 as U → 0.
Gate control and entropy measurement—With t0 tuned

to the 2CK critical point at t0c, we can vary the gate voltage
Vg in the vicinity of Vg ¼ 0. This perturbation drives the
system away from the 2CK fixed point and towards a
standard Kondo strong-coupling Fermi liquid (FL) state on
the scale of T�. From NRG we find [59],

T� ∼ V4
g when T� ≪ TK; ð4Þ

which holds in the universal critical regime. Along this FL
crossover, physical properties are universal scaling func-
tions of T�=T and hence Vg=T1=4. For the pure 2CK model
in this regime, bosonization methods give an exact result
for the entropy change from the critical point [45],

ΔS
�
T�

T

�
¼ T�

T

�
ψ

�
1

2
þ T�

T

�
− 1

�
− ln

�
1ffiffiffi
π

p Γ
�
1

2
þ T�

T

��

ð5Þ
with Γ (ψ) the gamma (digamma) function. The form of this
crossover is entirely characteristic of the 2CK critical point
[75]. Using Eq. (4), this crossover can be achieved by fixing
T (≪ TK) and detuning Vg (which controls T�). This is
shown in the top panel of Fig. 3, which compares NRG
results for the junction (line) to Eq. (5) (points).
Recent progress has been made in observing entropic

signatures in nanoelectronics experiments, by exploiting
local Maxwell relations which connect the entropy change
for a process to measureable changes in the charge [86–88].
Since the gate voltageVg couples to the total molecule charge
N̂ ¼ P

m n̂m, the change in entropy induced by scanning Vg
as in Fig. 3(a) follows as ΔS ¼ −

R
dVgdN=dT. The

quantity dN=dT is shown in Fig. 3(b). Application of the
Maxwell relation yields the blue-dashed line in Fig. 3(a),
which agrees perfectly with the direct entropy calculation.
We argue that the molecular system is well suited to this
because TK can be boosted to large values, meaning that
the universal critical regime should be experimentally
accessible.
Transport—At the 2CK critical point, the series con-

ductance through the molecular junction vanishes due to
the many-body QI node. However, a nontrivial transport
signature is picked up along the FL crossover by detuning
the gate voltage. NRG results for the junction conductance
GcðTÞ as a function of T at fixed detuning Vg are shown in
Fig. 4(a). The maximum conductance of 2e2=h for a single
electron transistor is recovered at low temperatures T ≪ T�
in all cases. Figure 4(b) shows the gate evolution of the

(a)

(b)

FIG. 3. (a) Entropy change ΔS as the molecular junction is
driven away from the critical point by increasing gate voltage Vg.
NRG results (line) compared with analytic result Eq. (5) (points).
(b) dN=dT from NRG (line), compared with prediction via
conductance from Eq. (7) (dotted line). Dashed line in the top
panel obtained by integrating dN=dT over Vg. Plotted for
U=t ¼ 10, V=U ¼ 0.15, t0 ¼ t0c, T ¼ 10−6 ≪ TK.

(a) (b)

FIG. 4. Series conductance along the FL crossover (a) as a
function of temperature for different gate voltages; and (b) as a
function of gate voltage at fixed T ¼ 10−6 ≪ TK; compared with
Eq. (6). Shown for U=t ¼ 10, V=U ¼ 0.15, t0 ¼ t0c.
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conductance GcðVgÞ at fixed T (≪ TK), and is the
analogous plot to Fig. 3(a).
The exact solution of the pure 2CK model along the FL

crossover [45] yields a prediction for conductance [89],

Gc

�
T�

T

�
¼ 2e2

h
×

�
T�

T

�
ψ 0
�
1

2
þ T�

T

�
; ð6Þ

where T� depends on Vg via Eq. (4) and ψ 0 is the trigamma
function. This expression matches essentially perfectly
with NRG data for the full molecular junction in Fig. 4.
Finally, from the Maxwell relation dN=dT ¼ −dS=dVg

we can use Eqs. (4)–(6) to prove the exact conductance-
charge relation [87] in the universal FL crossover regime,

dN
dT

∼
V3
g

T

�
1 −

GcðVg; TÞ
2e2=h

�
; ð7Þ

meaning that experimental conductance data can be trans-
lated into dN=dT [see Fig. 3(b), dotted line] and then
integrated to extract the entropy.
Inverse design—The above results establish the existence

of theQI-2CKeffect in a simplemolecularmoietywith exact
ph and sd symmetry. In a more general setting, however, we
can use inverse design to search for candidate systems that
satisfy the 2CK conditions. This can be done by setting up a
loss function, for example L ¼ j2sd þ w2

sd þ ðjss − jddÞ2,
which is minimumwhen the 2CK conditions on the effective
model parameters are met. We then minimize this function
with respect to the baremodel parameters bygradient descent
(GD). In practice this involves finding the derivatives of jαβ
and wαβ with respect to tmn andUmn, which can be achieved
using differentiable programming techniques [90]. In the
Supplemental Material [59] we show that this can be
implemented very efficiently within our improved SWT
scheme. Using this methodology, we could find a family of
low-symmetry molecular junctions involving just 4

interacting sites [59], a representative example of which is
shown in Fig. 5. By fine-tuning the gate voltage Vg in this
structurewe predict 2CK criticality.We did not find any 2CK
critical systems involving 1, 2, or 3 sites.
A nonperturbative extension utilizing ‘differentiable

NRG’ [91] to optimize bare model parameters directly
via GD could be used to bypass the SWT approximation.
Conclusion—The 2CK critical point can be realized by

exploiting many-body QI effects in simple molecular
junctions or coupled quantum dot devices, featuring a
few tunnel-coupled, interacting orbitals. QI effects can be
manipulated by tuning gate voltages to switch between a
perfect node and perfect Kondo resonant transmission.
Inverse design can be used to search automatically for

systems displaying desired functionality. The molecular
moieties we identified are not intended to be atomistic
models of any real molecule. However, the inverse design
approach could be integrated with chemical databases to
search for realistic candidate molecular junctions [92]. In
the Supplemental Material [59] we explore three such
candidate molecules based on the simple design principles
uncovered from our toy model studies [59]. Full ab initio
studies are left for future work. On the other hand, for
artificial molecular junctions formed in semiconductor
quantum dot devices, the simplest 4 or 5 site structures
discussed here might be directly implementable.
Our results open the door to designer devices utilizing

many-body QI effects. For example, simple structures
exhibiting three-channel Kondo [59,93] or two-impurity
Kondo [94–96] effects, or lattice extensions describing
non-Fermi liquid materials [97]. Inverse design could be
used to optimize performance of nanoscale transistors,
rectifiers, spintronics devices, and other quantum devices.
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