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Deep-learning density functional theory (DFT) shows great promise to significantly accelerate material
discovery and potentially revolutionize materials research. However, current research in this field primarily
relies on data-driven supervised learning, making the developments of neural networks and DFT isolated
from each other. In this work, we present a theoretical framework of neural-network DFT, which unifies the
optimization of neural networks with the variational computation of DFT, enabling physics-informed
unsupervised learning. Moreover, we develop a differential DFT code incorporated with deep-learning
DFT Hamiltonian, and introduce algorithms of automatic differentiation and backpropagation into DFT,
demonstrating the capability of neural-network DFT. The physics-informed neural-network architecture
not only surpasses conventional approaches in accuracy and efficiency, but also offers a new paradigm for
developing deep-learning DFT methods.
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Deep-learning ab initio calculation is an emerging
interdisciplinary field, which aims to greatly enhance the
capability of ab initio methods by using state-of-the-art
neural-network approaches [1–13]. For instance, the use of
neural-network quantum states significantly improves the
accuracy of quantum Monte Carlo calculations [14,15]; the
integration of deep learning and density functional theory
(DFT) can speed up material simulations by several orders
of magnitude [6–11]. In particular, deep-learning DFT can
potentially have a revolutionary impact on future research
due to the indispensable role of DFT in various fields
ranging from physics and chemistry to materials science.
Stimulated by the Materials Genome Initiative launched in
2011, great efforts have been devoted to building computa-
tional material databases via DFT. Deep-learning DFTwill
act as a game changer in the field, since neural-network
algorithms can considerably accelerate the construction of
bigger material databases, and the bigger data would in turn
allow for training more powerful neural-network models. In
this context, combining neural networks with DFT database
construction holds great promise for advancing materials
discovery.
Current research on deep-learning DFT, however, treats

the tasks of DFT and neural networks separately: People
first compute material datasets by DFT and then train

neural-network models by data-driven approaches. With
this strategy, individuals can focus on the methodological
development of neural networks without needing to delve
into the intricacies of DFT algorithms. This results in the
development of several valuable neural-network represen-
tations of DFT [6–11]. In contrast, a more intriguing
strategy is to achieve a synergistic combination of neural
networks and DFT, termed neural-network DFT, which
enables their methodological developments to benefit each
other mutually. This objective is theoretically feasible due
to the resemblance between the variational principle in
physics and the loss minimization rule in deep learning. In
analogy to neural-network quantum Monte Carlo [14,15],
one may express the total energy as a functional of DFT
quantities, such as the Hamiltonian, wave function, and
charge density [16–18], and define the energy functional as
a loss function for training neural networks. While algo-
rithms for neural networks and DFT are well developed
individually, the coherent integration of the two for creating
an advanced deep-learning architecture remains elusive.
In this work, we introduce a theoretical framework of

neural-network DFT, which unifies the minimization of
loss in neural networks with the optimization of the energy
functional in DFT. The central idea is to express the total
energy as a functional of DFT quantities while simulta-
neously representing these quantities using neural net-
works, allowing one to define the energy functional as
the loss function of neural networks. We suggest selecting
the DFT Hamiltonian as the target quantity to acquire
transferable neural-network models and variational energy
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functionals. To illustrate this concept, we develop a
computational code called AI2DFT for implementing neu-
ral-network DFT. In AI2DFT, equivariant neural networks
are employed to learn the mapping from material structure
to the DFT Hamiltonian, and DFTalgorithms are adapted to
be differentiable, introducing modern techniques of auto-
matic differentiation and backpropagation into DFT.
Remarkably, neural-network DFT enables physics-
informed unsupervised learning, offering superior accuracy
and efficiency compared to conventional supervised learn-
ing methods. The work establishes a new pathway for
developing deep-learning DFT methods.
The Kohn-Sham DFT is the most widely used ab initio

approach in material simulations. The method maps the
complicated problem of interacting electrons to a simplified
problem of noninteracting electrons described by an
effective single-particle Kohn-Sham Hamiltonian, which
takes the intricate many-body effects into account by
employing approximated exchange-correlation functionals
[16]. Typically, DFT calculations are performed by solving
the Kohn-Sham equation via self-consistent field (SCF)
iterations. A more fundamental approach involves the
variational principle, which computes ground-state proper-
ties of materials by minimizing an energy functional of
DFT. In fact, the Kohn-Sham equation is formally derived
from the variational principle. Although the variational
approach is more fundamental and favored by theoretical
physics, it is typically not employed for DFT computation.
One possible reason is that the variational method requires
searching through high-dimensional parameter spaces,
which may not be as efficient as solving differential
equations iteratively. The situation, however, could poten-
tially change as advanced algorithms and hardware devel-
oped for deep learning become available.
The integration of deep learning and DFT has revolu-

tionized the paradigm of method development [1–12].
Nevertheless, previous research in deep-learning DFT
has primarily relied on data-driven supervised learning
techniques. As illustrated in Fig. 1(a), DFT SCF calcu-
lations are first performed to generate training data for
varying material structures; neural networks are designed
and trained for predicting data resembling DFT results.
During this process, the DFT computation and neural-
network optimization are separated. We call this scenario
“neural networks and DFT”.
An intriguing strategy is to intimately integrate neural

networks and DFT together, termed neural-network DFT
[Fig. 1(b)]. This advanced architecture allows us to pursue
the synergistic effects between the two. For instance,
algorithms for neural networks and DFT may be shared
with each other, and their developments can be mutually
stimulated. More importantly, by explicitly introducing the
knowledge of DFT into deep learning, neural network
models might be trained to better emulate real physics than
the previous data-training approach.

Variational DFT is preferred for implementing neural-
network DFT, because the minimization of the energy
functional in DFT is similar in spirit to the optimization of
loss function in neural networks. The total energy of DFT
can be implicitly written as a functional of charge density n:

EDFT½n� ¼ Ts þ Eext½n� þ EHartree½n� þ EXC½n� þ EII;

which includes the single-particle kinetic energy Ts, the
external potential energy Eext, the Hartree energy EHartree,
the exchange correlation energy EXC, and the classic
interaction between nuclei EII [16]. Note that n can be
derived from other DFT quantities, such as the Kohn-Sham
eigenstates (fψ ig), density matrix (ρ), and DFT
Hamiltonian (HDFT). The subscript “DFT” will be omitted
without leading to confusion. Hence different kinds of
energy functionals can be defined: E½Q� [16], where the
target quantity Q ¼ n; fψ ig; ρ, or H. Inspired by neural-
network quantum Monte Carlo methods [14], neural net-
works are utilized to represent the target DFT quantity,
denoted asQθ, where θ represents parameters or weights of
neural networks. Consequently, the total energy becomes a
function of neural-network parameters, denoted as E½Qθ�.
In principle, one may use E½Qθ� as the loss function, and
the optimization of neural networks naturally completes the
computation of variational DFT, as depicted in Fig. 1(b).
The selection of target DFT quantity Q merits careful

consideration. Here, we present three selection criteria.
Firstly, the target of deep learning should closely adhere to
the “nearsightedness” or locality principle proposed by

FIG. 1. Two different approaches for deep-learning DFT.
(a) Conventional data-driven supervised learning, where DFT
calculations on varying material structures are performed to
generate training data, and the data are used to train neural
networks. The DFT Hamiltonian H, density matrix ρ, and charge
density n are iteratively computed. (b) Physics-informed unsu-
pervised learning based on neural-network DFT, which integrates
the minimization of the energy functional in DFT with the
optimization of the loss function in neural networks. Black
arrows depict normal computation, and green arrows denote
differential programming computation, with solid and dashed
lines representing forward pass and gradient backpropagation,
respectively.
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Walter Kohn [19,20], thereby enhancing the transferability
of neural network models. Local physical quantities such as
ρ, n, and H meet the criterion [6,16], whereas nonlocal
quantities such as Kohn-Sham eigenstates do not.
Secondly, neural network representations that satisfy the
fundamental requirements for the target quantity should be
readily available. Here are some essential requirements: n is
positive in value and normalized to a constant; H is
Hermitian; ρ at zero temperature is idempotent [16,19].
While the former two conditions are relatively straightfor-
ward to achieve in deep learning, meeting the strict
idempotency requirement of ρ remains challenging.
Thus, we may further consider E½H� or E½n�. Thirdly,
the energy functional should be variational. E½H� satisfies
the criterion [16], whereas E½n� does not [21], meaning that
minimizing E½n� may not yield the correct ground state.
Based on the above considerations, we choose the energy
functional E½H� for our subsequent study.
Neural-network representations of the DFT Hamiltonian

have been developed and applied for accelerating large-
scale material simulations [6–8]. In the approach of deep-
learning DFT Hamiltonian (DEEPH) [6], neural networks are
employed to represent H as a function of the material
structure fRg. Message-passing graph neural networks
[22] are utilized, with vertices representing atoms and
edges denoting atom pairs. Features of vertices and edges
are updated through message passing from neighboring
atoms, facilitating the aggregation of information from
distant chemical environments. In line with the locality
principle, H is expressed under localized atomic basis sets.
We will employ the DEEPH-E3 framework [7] to ensure that
the mapping fRg ↦ H is equivariant under the Euclidean
group in three-dimensional space. In DEEPH-E3, only
equivariant vectors carrying irreducible representations of
the three-dimensional rotation group are permitted, and
their tensor product is determined by the Wigner-Eckart
theorem. The principle of equivariance is thus maintained.
As illustrated in Fig. 2(a), equivariant neural networks take
the embedding of material structure information as input
and represent the Hamiltonian matrix through their output.
In this way, Hθ parametrized by neural-network weights is
obtained, and thus the energy functional E½H� can be
viewed as the loss function E½Hθ� for neural networks.
In neural-network DFT, the DFT program must supply

∇HE for optimizing neural network parameters. This poses
a significant challenge in terms of DFT programming, as
∇HE is not mandatory for standard SCF calculations.
Fulfilling this requirement calls for a DFT program that
is end-to-end differentiable. Automatic differentiation (AD)
offers a suite of methods for numerically computing the
derivatives of functions embedded in computer programs
[23]. It systematically applies the chain rule and calculus
principles, eliminating the need for manual derivation, thus
making it well suited for computing differential quantities
like ∇HE. Currently, most DFT codes do not fully support

the function of AD. Our neural-network DFT necessitates a
differentiable implementation of DFT capable of accom-
modating periodic boundary conditions as well as localized
atomiclike bases, a feature that, to our knowledge, has not
been developed. Consequently, we have developed our own
autodifferentiable DFT program named “AI2DFT” using the
JULIA language with the AD capability realized by the
ZYGOTE package [24]. Method details are described in the
Supplemental Material [25].
Remarkably, AD is available for both DFT computation

and neural-network training in AI2DFT [Fig. 2(b)]. In DFT,
one first derives ρ and n from H and then uses the two
quantities to compute the total energy. Based on the chain
rule, AI2DFT uses the reverse-mode AD to compute ∇nE,∇ρE, and ∇HE in turn. The gradient information ∇θE is
used in neural networks for optimization. AI2DFT supports
three autodifferentiable working modes: the conventional
SCF DFT and new functionalities of variational DFT and
neural-network DFT.
By comparing with SCF DFT, we noticed a critical

problem emerging in variational DFT: The variation of
E½H� can correctly predict certain ground-state properties,
such as the total energy, charge density, and density matrix,
but not the DFT Hamiltonian. Upon analysis of the

FIG. 2. Architecture and implementation of neural-network
DFT. (a) Overall architecture: variational DFT, which minimizes
the energy functional E½H�, is linked to equivariant neural
networks representing the DFT Hamiltonian Hθ. θ denotes the
parameters of neural networks. The structural information of
materials, including the element type Zi and atomic coordinate Ri
for each atom i, is embedded into equivariant vectors labeled by
the angular momentum quantum number l, serving as inputs to
neural networks. (b) Implementation by the AI2DFT code employ-
ing differentiable programming. The forward pass is from H to
density matrix ρ and charge density n, and finally to E½H�.
Automatic differentiation is applied to compute the gradients
∇nE, ∇ρE, ∇HE, and ∇θE, and backpropagation is utilized for
optimization.
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calculated electronic structure, we observed that while the
occupied manifold matches the result of SCF DFT, the
unoccupied part does not. The unoccupied states have zero
contribution to the ground-state energy at zero temperature,
which cannot be uniquely determined via energy minimi-
zation. For computing DFT total energy, H contains
complete but redundant information; ρ is just sufficient,
which forms the foundation of density matrix functional
theory [19,33]. Since ρ can be reliably predicted by
energy minimization, one may use ρ to reconstruct a new
Hamiltonian, denoted as H̃. TheHamiltonian reconstruction
may be used for postprocessing in variational DFT, giving
the ground-state Hamiltonian the same as SCF DFT.
To be compatible with neural-network DFT, we propose

to solve the above problem of the Hamiltonian in a more
elegant way by introducing a generalized energy func-
tional: Ẽ½H� ¼ E½H� þ f½H − H̃�, with the extra term
f½H − H̃� to emulate the spirit of Hamiltonian recon-
struction. The functional f should attain its minimum
value for H ¼ H̃, ensuring that Ẽ½H� shares the same
ground-state energy with E½H�. The generalized energy
gradient∇HẼ is relevant for optimization. According to our
preliminary tests, we selected a gradient of the form∇HEþ
λðH − H̃Þ in our study, where λ is an adjustable coefficient
as discussed in the Supplemental Material [25]. Note that
one may replace the energy functional E½H� with a free
energy functional F½H� for introducing temperature into
DFT [34]. In neural-network DFT, the second gradient term
trains the Hamiltonian predicted by neural networks to
resemble the reconstructed Hamiltonian. The energy gra-
dient term ∇HE, which is typically not included in deep-
learning DFT, drives neural networks to evolve toward
lower energy configurations and enables neural networks to
learn the underlying physics in an unsupervised manner.
Therefore, we refer to our proposed neural-network DFTas
physics-informed unsupervised learning.
We have established a theoretical framework of neural-

network DFT and numerically implemented it by the
AI2DFT code employing differentiable programming.
Next, we comprehensively test AI2DFT by studying various
types of materials, including the H2O molecule, graphene,
monolayer MoS2, and bulk body-centered-cubic Na. These
examples of materials span from molecules to periodic
crystals and from metals to insulators. Firstly, we checked
that SCF iterations of AI2DFT can well reproduce the
benchmark results of the SIESTA code [26] (Fig. S3).
Then, we applied variational DFT to study the same
materials. The total energy can converge below the μeV
scale after tens of variation steps [Figs. 3(a) and 3(b), and
Fig. S1]. Other physical quantities such as the energy
gradient, Hamiltonian, density matrix, and charge density
also exhibit exponential convergence behavior, validating
the reliability and robustness of variational DFT.
Moreover, we assess the performance of neural-network

DFT, which combines variational DFT with the DEEPH-E3

[7] neural networks, through comparison with conventional
data-driven supervised learning approaches [Figs. 3(c) and
3(d)]. For the study of the H2O molecule, the DFT
Hamiltonian can indeed be optimized to achieve a high
level of accuracy: 0.06 meV by neural-network DFT and
0.02 meV by data training. Even higher accuracies of
0.004 meV are achieved for graphene using both
approaches. The reliability of neural network approaches
is thus confirmed. Meanwhile, we computed physical
quantities using the H predicted by neural networks and
monitored their accuracies throughout the training process.
An intriguing trend is observed: Neural-network DFT
shows significantly improved performance over data train-
ing in predicting the derived physical quantities. For
instance, in the study of the H2O molecule, the prediction
accuracy of energy reaches 0.013 μeV by neural-network
DFT, over 60 times better than data training (0.83 μeV)
[Fig. 3(c)]. A similar trend is noticed for graphene
[Fig. 3(d)] as well as for other quantities such as ρ and
n (Fig. S12). Furthermore, we devised an artificial experi-
ment by introducing Gaussian noise to the benchmark DFT
Hamiltonian to simulate numerical inaccuracies [25]. For
Hamiltonians with comparable levels of accuracy, the
physical quantities obtained from neural-network DFT
exhibit orders of magnitude better precision than those
computed using Hamiltonians generated with Gaussian
noise (Fig. S11). The underlying reason is that neural-
network DFT introduces the energy gradient ∇HE into
optimization, enabling effective filtering of unphysical
high-energy noises in the learned Hamiltonian. In this

FIG. 3. Validation of AI2DFT. (a),(b) Variational DFT versus
SCF DFT: the mean average values of ∇HE, ΔH, Δρ, Δn, and
ΔE display exponential convergence behavior as increasing
variation steps. (c),(d) Neural-network DFT versus data training:
the mean average values of ΔH and ΔE steadily decrease with
increasing training epochs. The upper and lower panels present
example calculations on the H2Omolecule and graphene. Results
obtained by SCF DFT calculations are used as a reference.
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regard, the physics-informed approach surpasses conven-
tional data-driven methods.
Finally, we apply neural-network DFT to compute

multiple material structures and demonstrate its capability
of unsupervised learning. Using H2O molecules as an
example study, we initially obtained a pretrained neural
network model through data-driven supervised learning
using the DEEPH-E3 approach, fine-tuned the model across
300 training structures using neural-network DFT, and
achieved high prediction accuracies for Hamiltonian as
well as other quantities [Fig. 4(a)]. The trained neural-
network model was further employed to make predictions
on 435 test structures that were unseen during training,
showing good generalization ability [Figs. 4(b) and 4(c),
Figs. S10 and S13] as discussed in the Supplemental
Material [25]. Compared with data-driven supervised
learning, neural-network DFT yields Hamiltonians with a
slightly larger mean absolute error. Nevertheless, it exhibits
superior performance in predicting derived physical quan-
tities, as confirmed by both training and test results. This is
consistent with the above results, highlighting the advan-
tage of physics-informed learning.
In summary, we proposed a theoretical framework of

neural-network DFT that coherently combines variational
DFT and equivariant neural networks together, enabling
physics-informed unsupervised learning. The advantage of

this method is elaborated upon in the Supplemental
Material [25]. Moreover, we numerically implemented
neural-network DFT using deep-learning DFT Hamil-
tonian and differentiable programming, bringing modern
techniques of automatic differentiation and backpropaga-
tion into DFT. In this context, the developments of neural
networks and DFT computation are no longer isolated but
will get mutual benefits and stimulate each other. The work
introduces new avenues for the collaborative development
of artificial intelligence and ab initiomethods, significantly
enriching the scope of deep-learning ab initio research.
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