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Non-Hermitian physics has greatly enriched our understanding of nonequilibrium phenomena and
uncovered novel effects such as the non-Hermitian skin effect (NHSE) that has profoundly revolutionized
the field. NHSE has been predicted in systems with nonreciprocal couplings which, however, are
challenging to realize in experiments. Without nonreciprocal couplings, the NHSE can also emerge in
systems with coexisting gauge fields and loss or gain (e.g., in Floquet non-Hermitian systems). However,
such Floquet NHSE remains largely unexplored in experiments. Here, we realize the Floquet NHSEs in
periodically modulated optical waveguides integrated on a silicon photonic platform. By engineering the
artificial gauge fields induced by the periodical modulation, we observe various Floquet NHSE phases and
unveil their rich topological transitions. Remarkably, we discover the transitions between the unipolar
NHSE phases and an unconventional bipolar NHSE phase, which is accompanied by the directional
reversal of the NHSEs. The underlying physics is revealed by the band winding in complex quasienergy
space which undergoes a topology change from isolated loops with the same winding to linked loops with
opposite windings. Our work unfolds a new route toward Floquet NHSEs originating from the interplay
between gauge fields and dissipation effects, and thus offers fundamentally new ways for steering light and
other waves.
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Most systems andmaterials contain dissipation effects. In
situations where the underlying physics can be described by
a Hamiltonian, the Hamiltonian will become non-Hermitian
with dissipation effects. The study of non-Hermitian
Hamiltonians has led to the discovery of many intriguing
effects, such as exceptional points [1–6] and nonorthogonal
eigenstates [7]. In lattice systems, one particularly interest-
ing phenomenon is the NHSEwhere an extensive number of
eigenstates are localized at the boundary due to non-
Hermitian effects. A direct consequence of NHSE is the
breakdown of the fundamental notion of the Brillouin zone.
The generalized Brillouin zone (GBZ) [8–10] is then
proposed to capture the properties of finite non-Hermitian
systems. Moreover, NHSEs profoundly change the topo-
logical bulk-boundary correspondence, leading to rich non-
Hermitian topological physics [8,11–28].

NHSE can also be regarded as a topological effect, of
which the topological invariant is thewinding number of the
complex energy band during its evolution in the Brillouin
zone. While a unipolar NHSE is manifested in such band
winding as a single loop with a finite winding number, a
bipolar NHSE exhibits two linked loops with opposite
winding numbers, giving rise to distinctive features such
as bipolar skin localization and Bloch points [17,29–31]. In
the literature, NHSEs are often based on nonreciprocal
couplings which, however, are challenging in experiments
and available only in a few systems [18–24,30]. In periodi-
cally driven systems (i.e., Floquet systems), the artificial
gauge fields induced by the periodic driving play pivotal
roles in both NHSEs and topological phenomena [32–49],
leading to intriguing effects at the interface between non-
Hermitian and topological physics such as the hybrid skin-
topological effects [32,33]. Notably, in Floquet systems,
NHSEs can be triggered solely by the on-site loss or gain
[32,45–49] without relying on nonreciprocal couplings,
which thus makes NHSEs more accessible. Furthermore,
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Floquet non-Hermitian systems are highly tunable and
versatile, and have been utilized for the discovery of
topological lasers [50] and other interesting effects [51–53].
Despite that considerable efforts have been made, the

experimental realization of Floquet NHSE and its dynamics
in integrated silicon photonics remains a big challenge
due to the difficulties in simultaneous accurate control of
the non-Hermitian effects and the Floquet modulation in
genuine optical systems. Here, we propose an efficient
approach to realize such Floquet NHSEs of light through
engineering the interplay between the artificial gauge
fields and the loss in the coupled optical waveguides on
a silicon substrate. Via this approach, we realize and
observe experimentally various Floquet NHSEs as well
as their rich transitions. We discover a unipolar-bipolar
transition in the NHSE by tuning the modulation perio-
dicity and the dissipation (via chromium doping) [54].
Interestingly, the bipolar Floquet NHSE phase serves as the
passage for the transition between the two unipolar Floquet
NHSEs with opposite skin directions. In the complex
quasienergy plane, these transitions are manifested as the
change of the topology in the band winding: transforming
between the isolated loops with finite winding numbers in
the unipolar Floquet NHSEs and the linked loops with
opposite winding numbers in the bipolar Floquet NHSE.
We start with a one-dimensional lattice of coupled optical

waveguides with N unit cells, as shown in Fig. 1(a). Each
unit cell (marked by the dot-dashed box) contains three

sublattice sites (waveguides) labeled A, B, and C, respec-
tively. The on-site potential (propagation constant) of
sublattice site ξðξ∈ fA;B;CgÞ in the nth unit cell is Vn;ξ

and the nearest-neighbor coupling is κ. There is an inho-
mogeneous dissipation distribution in each unit cell. We
chooseVn;ξ ¼ Φn;ξ for sitesA andB, while the siteC is lossy
andVn;C ¼ Φn;C þ iγ, whereΦn;ξ is real part of propagation
constant (z-dependent) in each waveguide [denoted as ΦA,
ΦB, andΦC for different sublattice sites, see Fig. 1(b)]. In the
tight-binding approximation, the z-dependent Hamiltonian
of the model can be written as

HðzÞ ¼
XN
n¼1

½κjn;Aihn;Bj þ κjn;Bihn;Cj þ H:c:�

þ
XN−1

n¼1

½κjn;Cihnþ 1;Aj þ H:c:�

þ
XN
n¼1

X
ξ∈ fA;B;Cg

Φn;ξðzÞjn; ξihn; ξj

þ
XN
n¼1

iγjn;Cihn;Cj; ð1Þ

where Dirac’s notation has been used for convenience.
For instance, jn; ξi denotes the state on the site ξ in the
nth unit cell. Here, we consider a sinusoidal modulation

FIG. 1. Floquet NHSE: its realization and topological transition. (a) The schematic of the artificial gauge potentials induced by
modulating the width of the waveguides. A unit cell (marked by the dotted box) has three sites (labeled A, B, and C). Here κ is the
coupling coefficient. A and B are lossless and C is lossy. (b) The illustration of the gauge potentials on the three waveguides versus the
coordinate z. (c) Winding numbers of band set I as a function of modulation frequency, showing the transition between three Floquet
NHSE phases, i.e., the unipolar, bipolar, and reversed unipolar NHSEs (labeled as blue, purple, and orange, separately). (d) Eigenstate
profiles for different modulation frequencies. From left to right,Ω=κ ¼ 0.0, 1.2, 2.3, 2.8, and 6.0. The upper triangle, down triangle, and
the star label the cases of the unipolar, bipolar, and the reversed unipolar NHSEs, respectively.
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ΦmðzÞ¼VcosðΩzþρmÞwith the initial phase ρm ¼ 2mπ=3,
where V is the amplitude, Ω ¼ 2π=p is the modulation
frequency, and p is the modulation period along the z
direction. This modulation is realized by engineering the
z-dependent propagation constant in each waveguide which
directly determines the phase of photons propagating in the
waveguide. The z-dependent propagation constant can be
viewed as the “gauge potential,” see Supplemental Material
S1 [55] for more details.
In periodically modulated systems, the effective z-inde-

pendent Hamiltonian HF is given by Floquet theory
[56,60,61] (see details in the Supplemental Material S2
[55]), which dictates the complex quasienergy ε in our non-
Hermitian systems [10,15,16,27]. HF can often be written
in terms of a perturbative expansion in powers of 1=Ω,
which coincides with the physical intuition that faster
driving leads to weaker effects. We can thus use the
modulation frequency Ω to tune the NHSE. Indeed, by
tuning Ω, we can substantially change the Hamiltonian HF
and the NHSE. As shown in Figs. 1(c) and 1(d), the NHSE
exhibits rich transitions when the modulation frequency Ω
is tuned. The unipolar-dipolar transitions of NHSE in
Fig. 1(d) are the topological transitions characterized by
the change of the winding number of the quasienergy
bands, as revealed below.
The topology of the NHSE can be characterized by the

winding number of each quasienergy band derived from
HF in the complex energy plane under the periodic
boundary condition (PBC) [57,58]

WðEÞ ¼ 1

2πi

I
BZ

∂k ln det½HFðkÞ − E�dk: ð2Þ

The loop formed by the quasienergy spectrum in the
complex energy plane as the wave vector k traverses the

Brillouin zone, is one of the hallmarks of NHSE and has
nontrivial topological properties [17,26,28,30]. The wind-
ing number W is a topological invariant for any energy E
within the loop. This winding number characterizes the
direction of the exponential decay of the eigenstate wave
functions and thus determines the direction of the NHSE.
In our system, the spectrum and the winding number for

each of the three quasienergy bands change with the
modulation frequency Ω. For Ω=κ ¼ 0, the spectrum does
not form any loop and there is no NHSE [Fig. 2(a)(i)]. At
Ω=κ ¼ 1.2, the spectrum has three loops which all have the
winding number of 1 [Fig. 2(a)(ii)], yielding the NHSE
toward the left boundary, which is the signature of the
unipolar phase I (0.2 < Ω=κ < 1.54) (Here, the left and
right directions are defined in the view of the forward-going
photons). At Ω=κ ¼ 2.3, two of the three loops become
twisted loops, signifying a topological transition, whereas
the third loop’s topology remains the same [Fig. 2(a)(iii)].
Each twisted loop consists of two parts with opposite
winding numbers. This corresponds to the region 1.54 <
Ω=κ < 2.6, which gives the bipolar phase II. In this phase,
theNHSE becomes bipolar, i.e., about half of the eigenstates
have wave functions localized toward the left boundary,
while the other half of the eigenstates are localized toward
the right boundary. At Ω=κ ¼ 2.8, the two twisted loops
become simple loops, but thewinding number is switched to
−1. Thus, this phase (i.e., phase III in the regionΩ=κ > 2.6)
corresponds to the unipolar NHSE towards the right boun-
dary (denoted as the reversed unipolar phase). In the above
process, the unipolar NHSE switches direction through the
bipolar NHSE, yielding rich topological transitions (see the
exact variation of the complex bands with modulation
frequency in Supplemental Material, video 1 [55]).
It should be noted that the three loops correspond to the

three energy bands. As two of these bands may overlap

FIG. 2. Quasienergy spectrum, winding numbers, and light propagation. (a) Quasienergy spectrum under OBC and PBC for different
modulation frequencies Ω=κ ¼ 0.0 (i), 1.2 (ii), 2.3 (iii), 2.8 (iv), and 6.0 (v). Multiple skin mode topological transitions occur as
modulation frequency increases, from unipolar (ii) to bipolar (iii) and then to reversed unipolar (iv). (b) Light propagation dynamics in
optical waveguide lattices with 16 sites forΩ=κ ¼ 0.0 (i), 1.2 (ii), 2.3 (iii), 2.8 (iv), and 6.0 (v). The intensity is normalized to 1 at every z
for clearer presentation. Here V=κ ¼ 1.2, γ=κ ¼ 2.2, and L ¼ 2L0, where L0 ¼ 2π=ð1.2κÞ.
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with each other, we denote them as band set I, while the re-
maining band set is denoted as band set II [see Fig. 2(a)(ii)].
The topology transition studied here takes place in band set
I which is symmetric with respect to ReðεÞ ¼ 0 (The band
set II also has topological transitions but not in the same
region; see exact variation of the complex bands in
Supplemental Material, video 1 [55]). As the two loops
in band set I have the same winding number, we shall focus
only on the loop which is mainly in the region ReðεÞ < 0.
The winding number of such a loop is presented in
Fig. 1(c).
Several remarks are in order. First, the strength of the

NHSE is determined by the area of the loop [17]. For
instance, at very large Ω=κ, although the two loops of band
set I have winding numberW ¼ −1, the areas of the loops
are very small, therefore the NHSE is very weak [see
Fig. 1(d) for the eigenstates wave functions at Ω=κ ¼ 6.0].
Second, one may notice in Fig. 1(c) that at some Ω=κ, there
are two winding numbers: W ¼ 2 and 1. This is because
the evolution of the loops is much more complicated than
illustrated in Fig. 2 (see such evolution in Supplemental
Material, video 1 [55]). The winding numbers are calcu-
lated for all open-boundary-condition (OBC) eigenenergies
enclosed by the loops. Therefore, there can be multiple
values of the winding numbers for each set of parameters.
Nevertheless, both winding numbers 2 and 1 give rise to the
same NHSE towards the left boundary, which is consistent
with the calculated wave functions. Finally, the winding
numbers at Ω=κ < 0.2 are not studied in this work because
in this regime the quasienergy bands can be scrambled and
the winding numbers can be noninteger. In this region, the
calculated eigenstate wave functions indicate that the
system has no noticeable NHSE [e.g., see Figs. 1(d)
and 2(b)(i)].
To confirm the above phenomena, we demonstrate the

dynamics of the light field in the coupled optical waveguide
arrays along the z direction. The initial excitation is via site
B at the center of the waveguide array. Such excitation is
chosen because site B has substantial overlap with the
eigenstates of band set I. Consequently, the light dynamics
predominantly capture the properties of the eigenmodes of
band set I. It should be mentioned that initial excitation at
the lossy waveguide C excites mainly the eigenmodes of
band set II, which is not considered here. The light
propagation dynamics in the optical waveguide system
are simulated using coupled-mode theory. As shown in
Fig. 2(b)(i), the dynamics at Ω=κ ¼ 0.0 is consistent with
the conventional quantum walk on a discrete lattice, show-
ing no feature of NHSE but instead with a broadened peak
at the center of the system. AtΩ=κ ¼ 1.2 [see Fig. 2(b)(ii)],
as indicated by the dashed arrow, the NHSE toward the
left boundary is notable. At Ω=κ ¼ 2.3, as shown in
Fig. 2(b)(iii), there are salient features of the bipolar
NHSE. In particular, when compared with the case with
Ω=κ ¼ 0.0, the light wave amplitude at the system center is

suppressed, which indicates the bipolar NHSE. At Ω=κ ¼
2.8, the light propagation dynamics in Fig. 2(b)(iv) shows
clear features of the NHSE toward the right boundary,
indicating the reversal of the direction of the NHSE. At
significantly large Ω=κ (e.g., Ω=κ ¼ 6.0), the NHSE is
effectively suppressed, and the wave dynamics are similar
to that in Fig. 2(b)(v). The wave dynamics for otherΩ=κ are
also shown in Supplemental Material, video 2 [55]. These
simulation results are consistent with the prediction
from the eigenspectrum and the winding numbers, indi-
cating that these effects can possibly be observed in optical
experiments.
To observe the predicted NHSEs in silicon photonics, we

consider an optical lattice comprised of 16 Si waveguides
on the sapphire substrate with air cladding [Fig. 3(a)]. The
waveguide height is h ¼ 220 nm and the waveguide
spacing is g ¼ 150 nm. The waveguide width is periodi-
cally modulated in a sinusoidal way with averaged width
w ¼ 400 nm and the modulation amplitude Δw ¼ 20 nm.
The modulation period p is tuned [p ¼ ∞ (static), 43, 21,
15, and 8 μm] to achieve different NHSE phases. The loss
is introduced by coating a layer of chromium (Cr) with
width wc ¼ 200 nm and thickness hc ¼ 8 nm on top of
every three Si waveguides [55]. The scanning electron
microscope (SEM) pictures of experimentally fabricated
samples are shown in Fig. 3(b), where the width modu-
lations and deposited Cr can be clearly observed from the
enlarged picture at the bottom panel.
In experiments, we fabricated five types of samples, each

with distinct modulation periods, i.e., p ¼ ∞ (no modu-
lation), 43, 21, 15, and 8 μm, corresponding to five
different cases of non-Hermitian dynamics shown in
Fig. 1. To capture various stages of mode evolutions, we
fabricated a set of 4 samples with different propagation
lengths (L=4, L=2, 3L=4, and L) for each case. For each
sample, a near-infrared laser (1550 nm wavelength) is
incident into site B at the center of the waveguide lattices
from a grating coupler, and the output intensity distribution
was measured by a near-infrared camera through a micro-
scope objective. The experimental results are presented in
Fig. 3(c), along with simulated light evolutions (using the
commercial finite-element software COMSOL Multiphysics5.6)
for further verification (see the extracted data in
Supplemental Material S3 [55]). When the system is static
(p ¼ ∞ μm), the light evolution is broadened, as shown in
Fig. 3(c)(i). At the appropriate modulation period
(p ¼ 43 μm), light excited from the central waveguide
gradually evolves towards one end of the boundary, which
is typical of the unipolar skin effect, as shown in
Fig. 3(c)(ii). The experimentally captured output results
for different propagation lengths demonstrate a gradual
unidirectional evolution of the light field towards one end
of the boundary with increasing propagation length, align-
ing closely with the simulation results. By further decreas-
ing the modulation period, e.g., when p ¼ 21 μm, light
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excited from the central waveguide eventually evolves
towards both ends [Fig. 3(c)(iii)], which is the characteristic
of bipolar NHSE. This feature is clearly captured by the
experiments, showcasing the light’s ultimate tendency to
both ends of the boundary, indicating the skin mode
transitions. Notably, when p ¼ 15 μm in Fig. 3(c)(iv), a
reversed skin effect becomes evident. The experimental
output with different propagation lengths demonstrated
consistent results, i.e., the final output spot is at the opposite
boundary compared with the NHSE shown in Fig. 3(c)(ii).
When the modulation period is much smaller [p ¼ 8 μm in
Fig. 3(c)(v)], the NHSEs become challenging to discern
due to the fact that the quasienergy spectra at the PBC and
OBC are nearly the same. In this case, the Floquet NHSE is
unnoticeable in both experiments and simulations.
The underlying physics of the observed Floquet NHSEs

becomes clearer in the Floquet-Hilbert space [60,62,63]
(see Supplemental Material S2 [55]) by mapping the 1D
z-dependent model into a 2D z-independent problem. It is
found that nonzero effective magnetic flux will arise in the
synthetic static lattice that interacts with loss, and giving
rise to nonvanishing currents through the system due to

nonzero area of loops in the PBC spectra (Fig. 2), which is
the origin of the Floquet NHSEs [17,26]. When the
modulation frequency is increasing, interactions between
magnetic flux and loss become complex, resulting in
creation of multiple currents with different directions.
The generation and annihilation of these nonvanishing
currents during the interactions give rise to topological
transitions. It is noteworthy that using our design strategy
and the controllable Floquet NHSE, an on-chip Floquet
topological funneling of light [18] can also be achieved.
Such a funnel can steer any light field injected into the
structure (irrespective of its shape and input position)
toward the system center via the Floquet NHSEs [55].
In summary, we demonstrate the Floquet NHSEs with

topological transitions in periodically modulated coupled
waveguides on a silicon photonics platform at telecommu-
nication frequencies. By engineering the interplay between
the artificial gauge fields induced by the periodic modu-
lation and the optical loss in the waveguides, we observe
various Floquet NHSEs and discover their rich transitions.
These transitions are manifested as the topological tran-
sitions in the band winding in complex quasienergy space.

FIG. 3. Realizing Floquet NHSEs in on-chip silicon waveguides. (a) Schematic of the silicon waveguide design. The waveguide width
is varied along the propagation direction and Cr is deposited on top of every three silicon waveguides (labeled by yellow). (b) SEM
image of one of the experimentally fabricated samples. The bottom panels show enlarged views. The waveguide width modulation and
Cr strips can be clearly observed (the horizontal-to-vertical scale ratio is 4∶1 for clearer presentation). (c) Simulation results for light
propagation along the z direction (left) and the experimentally measured light intensities (right) at different propagation lengths (L=4,
L=2, 3L=4, and L, with L ¼ 86 μm). The modulation periods are (i) p ¼ ∞ (no modulation), (ii) p ¼ 43, (iii) p ¼ 21, (iv) p ¼ 15, and
(v) p ¼ 8 μm. The intensity is normalized to 1 at every z in the simulation results.
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For instance, the transition from a unipolar Floquet NHSE
state to a bipolar Floquet NHSE state is accompanied with a
transition from a single loop with finite winding number to
two linked loops with opposite winding numbers in the
complex quasi-energy space. We characterize these Floquet
NHSEs via optical measurements and show that they can
also be used to realize topological funneling of light via
engineering the Floquet NHSE states. These findings
unveil a regime where the interplay between gauge fields
and dissipation yields fruitful physics and provides new
principles for manipulating light and other waves, inspiring
future research on exploring various non-Hermitian
phenomena such as wave self-healing [13] and self-
acceleration [59] in the same silicon photonics platform.
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