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Conditional Dynamics in Heterodyne Detection of Superradiant Lasing
with Incoherently Pumped Atoms
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In this Letter, we use quantum trajectory theory to simulate heterodyne detection of narrow bandwidth
superradiant lasing from an incoherently excited atomic ensemble. To this end, we describe the system
dynamics and account for stochastic measurement backaction by second-order mean-field theory. Our
simulations show how heterodyne measurements break the phase symmetry, and initiate the atomic
coherence with a random phase and a long temporal phase coherence. More importantly, our theory allows
direct simulation of experimental procedures for extraction of spectral information which do not lend
themselves to evaluation with the quantum regression theorem.
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Introduction—Atomic clocks are used for international
time standards, national time services, satellite navigation
systems [1], and studies of general relativity [2]. By
exploring optical (~10° GHz) rather than microwave
(~GHz) transitions [3], the optical clocks improve the
performance by orders of magnitude, and are thus the
subject of considerable attention [4]. In particular, optical
lattice clocks are extensively pursued because they mitigate
Doppler broadening and collisional effects, and also
provide better signal-to-noise ratio with more atoms [5].
In 2009, D. Meiser et al. proposed that optical lattice clocks
can be explored to realize a superradiant laser with an
ultranarrow spectrum, in which the atomic collective decay
is compensated by continuous incoherent atomic pumping
[6]. Owing to the high application potential of radiation
with exceptional frequency stability [4], the superradiant
laser has been further studied both theoretically [7-9] and
experimentally [10-13].

In the theoretical studies, optical spectra are often
calculated by quantum regression theorem (QRT) [14].
This is valid for the average power spectrum, but it glosses
over the intricate interplay between the noisy measurement
record, the induced backaction, and the transient behaviour
of the emitter. Glauber’s theory of photodetection [15]
emphasizes how photon counting is accompanied by the
annihilation of radiation quanta, which triggers subsequent
transient correlations known as bunching and antibunching.
Similar backaction mechanisms are at play in field
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amplitude measurements where they are responsible for
temporal correlations in, e.g., heterodyne detection records,
which characterize the frequency contents of the signal
[12,13,16]. The QRT, in particular, does not quantitatively
account for the fluctuations in spectral parameters as
obtained by fitting the power spectra within a finite number
of measurements.

In this Letter, we demonstrate that a theoretical descrip-
tion based on stochastic mean-field theory can be used to
simulate the evolution of the atomic ensemble and the
extraction of frequency from noisy heterodyne signals.
We find that a second-order mean-field approach is neces-
sary to account for the measurement backaction, and that the
backaction introduces a random initial phase of the optical
coherence, which rules the outcome of subsequent mea-
surements. Our approach permits application and hence
analysis of fitting procedures as used to extract optical
frequencies in experiments, and it offers also insights into
the microscopic dynamics that are not offered by the QRT.

System and model—To illustrate the above points,
we study a specific system with tens of thousands of
calcium atoms inside an optical cavity [Fig. 1(a)]. The
atoms are initially prepared in the 4°P; excited state by a
complex process involving transfer from a magneto-optical
trap to an optical lattice trap [17,18] (see Fig. S1 of the
Supplemental Material [19]). Normally, the preparation
step can be modeled effectively by an incoherent pumping
rate [6,8,20]. The narrow-band intercombination transition
to the 4'S,, ground state couples resonantly with the cavity,
leading to the superradiance [Fig. 1(b)]. The superradiant
pulses of such a system have been studied experimentally
[18], and the influence of the atom-cavity coupling, the
frequency detuning, and the incoherent pumping has been
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FIG. 1. System schematics and atomic energy diagram. Panel
(a) illustrates tens of thousands of calcium atoms trapped in an
optical lattice inside an optical cavity. The field generated by the
incoherently pumped atoms leaks out of the cavity, and is
measured by heterodyne detection. Panel (b) shows the simplified
energy scheme with the atoms incoherently pumped to the 4°P,
excited state (black arrow), and the Purcell-enhanced and
collective decay of the excited atoms to the 4'S, ground state
by emission into the optical cavity mode (red arrow).

analyzed theoretically [25]. However, in the following,
we shall examine the transient and steady-state super-
radiance, with a focus on the dynamics conditioned on the
heterodyne detection and the accompanying frequency
determination.

To describe the system’s conditional dynamics, we have
reformulated the stochastic quantum master equation devel-
oped in our previous work [21], and we have supplemented
the QuantumCumulants.jl package [22] with codes that
automatically derive and solve the stochastic mean-field
equations (see Secs. S1 and S2 of the Supplemental Material
[19]). The QuantumCumulants.jl package permits mean-
field calculations to any specified order, but we concentrate
on the second order, which leads to a manageable number of
differential equations, and also accounts for both atom-atom
and atom-photon correlations. In our theory, the cavity mode
is modeled as a quantum harmonic oscillator with a
frequency w,. = 2z x 456.6 THz and a photon damping
rate k = 27 x 1.13 MHz. More than N = 5 x 10* atoms are
modeled as two-level systems with a transition frequency
0, = o., and with decay, dephasing, and incoherent pump-
ing rates y =2z x 0.375 kHz, y =2z x 0.016 Hz, and
n = 2x x 20 kHz. The cavity couples to the atoms with a
strength g = 27 x 0.73 kHz. The output from the right
mirror of the cavity is mixed with a reference laser with
frequency w; = o, + 27z x 1 MHz, and their interference
signal is measured by photodetectors with a counting
efficiency & The photocurrent

J(t) = /2&Rele™ " (@") (1)] + dW/dt (1)

is governed by the expectation value of the cavity field
amplitude (a') but is dominated by the shot-noise term
dW /dt at short time, where the random number dW follows
anormal distribution with a mean E[dW] = 0 and a variance
dW? = dt [23] (with dt as the simulation step).

We adopt two complementary pictures to illustrate the
collective dynamics of the atomic ensemble. The first picture
uses the collective spin vector A =", _Ae; where
Ac=(N/2)((67°) +(51")). Ay = (iN/2)({(81) = (61")),
A, = (N/2)(2(63*) — 1), and e; are the unit vectors of
the Cartesian coordinate system (see Sec. S2 of the
Supplemental Material [19] for more details). Here, 67!,
61% are transition operators of the kth atom between the
ground and excited state (labeled by 1,2, respectively), and

22 is the projection operator on the excited state. Thus, the
expectation values (6}%) and (6}') are the atomic coher-
ences, and (6%2) is the excited state population of any
individual atom, represented by the first one. For the atomic
ensemble in pure product states, the collective spin vector
traces a sphere of radius N/2, where the south (north) pole
represents the atomic ensemble in the fully ground
(excited) state.

The second picture uses the Dicke states )
where the positive integer or half integers J, M in the
range J < N/2, —J < M < J describe the degree of sym-
metry and excitation of the two-level systems ensemble
[26], respectively. The influence of various processes in the
master equation can be conveniently visualized in the space
of Dicke states [27,28], and here we shall employ this space
to represent the results obtained by the mean-field
approach. Since the Dicke states are defined as eigenstates
of the collective spin operators J_, J*: J, ) =M )
J? y=J(J-1) ), we can calculate the mean
value of M and J through M = (J.), J(J = 1) = (J?)
(see Sec. S2 of the Supplemental Material [19] for more
details).

The full set of equations is detailed in Sec. S4 of the
Supplemental Material [19]. However, to explain the
numerical results below, we shall reproduce here the
equations for the field amplitude

0,(a") = i@ (a%) + iNg(61")
+ (dW/di)\/Ex)2e ! ((ata
+ (dW/dr)\/Ex)2e 0 ((at

and the atomic coherence

0,(61") = i, (61') +ig((a") — 2(a"67%))
+ (dW/d1)\/&x/2e "“”( % —(a")(51"))
+ (aW/d)\/éx/2e " ((a67") = (a)(67')). (3)
where the complex frequencies are defined as

o, = w. +ix/2, &, =, +i(n+y+2y)/2. The first-
order mean-field approach applies the approximation
(0 p) =~ (0)(p) for any operators o, p. Under this approxi-
mation, the factors multiplying the stochastic term dW in
the second and third line of Egs. (2) and (3) vanish. Thus,
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the measurement backaction is completely missed.
Furthermore, since the system is incoherently pumped
and the field amplitude (a') and the atomic coherence
(631) are initially zero, they will remain vanishing for all
time. To remedy the shortcoming of such a treatment, it has
been proposed to introduce a weak initial perturbation to
the cavity field or the atoms [18,25,29,30] (Fig. S7 of the
Supplemental Material [19]). However, as shown below,
such ad hoc breaking of the phase symmetry is not needed
when the backaction due to heterodyne measurements is
taken into account.

Going beyond the above treatment, we may retain
second-order operators by their explicit mean values, and
apply the approximation (6 p g) ~ (6)(pa) + (p)(0.4) +
(g)(o p) —2(0){p)(g) for higher moments of operators
0, P, q. As a result, the second and third lines of Egs. (2)
and (3) are preserved, and introduce finite values to the
initially vanished first-order mean fields, i.e., a breaking of
the phase symmetry by a rigorous physical mechanism.
Although the finite first-order mean values may dominate
over the stochastic terms in the subsequent evolution and
diminish their effect on the conditional dynamics, the
stochastic terms remain as a significant noise contribution
to the photocurrent [see Eq. (1)].

In the following simulations, we study first the deter-
ministic dynamics of the system in the absence of hetero-
dyne detection (equivalent to setting £ = 0), and we then
investigate the conditional and stochastic dynamics in the
presence of the measurement with a detector efficiency
£=0.12.

Deterministic dynamics—For reference, we first apply the
cumulant mean-field approach to solve the deterministic
master equation. Although the pulsed superradiant lasing
has been demonstrated in several experiments [11,12,18],
the continuous superradiant laser is still not achieved. Thus,
we show results for pulsed incoherent pumping in Figs. 2(a)
and 2(b), and we then predict the results for continuous
incoherent pumping in Figs. 2(c) and 2(d).

For the pulsed excitation, the intracavity photon number
(and hence the emitted signal) forms a pulse, which occurs
at later time and has longer duration for systems with fewer
atoms. In Fig. S4(a) in the Supplemental Material [19], we
confirm that these results agree qualitatively with the
observations in the experiment [18]. In the picture with
the collective spin vector, the spin vector moves upward
from the south pole to a point near the north pole, and then
returns [inset of Fig. 2(a)], i.e., A,, A, vanish during the
evolution of A,. Accompanying this result, the mean cavity
photon number remains finite, while the mean field
amplitude vanishes at all time [see Fig. S5(a) of the
Supplemental Material [19] ]. In the Dicke states picture,
the atomic ensemble progresses with increasing M values
during the incoherent pumping, while the vanishing of the
transverse spin components makes J? ~ j%, and hence the
system explores states with J = |M| along the boundaries
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FIG. 2. Superradiant pulses (a),(b) and steady-state superra-
diance (c),(d) of incoherently pumped calcium atoms. Panels (a),
(b) show the dynamics of the intracavity photon number (a) and
the averaged Dicke state quantum numbers J, M (b), which
follow the two enumerated arrows for different numbers of atoms
[N = (1-5) x 10%, arrows (2) from left to right]. In the panel (a),
the pump pulse with a rate of y = 2z x 20 kHz is indicated with a
dashed line, and the inset shows the dynamics of the collective
spin vector along the z axis for N = 10* atoms. Panel (c) shows
similar results as the panels (a) and (b) but for the continuous
incoherent pumping. Panel (d) shows the steady-state intracavity
photon number (left axis) and the radiation linewidth (right axis),
calculated by the QRT, as a function of the pumping rate for
N =5 x 10* atoms. The horizontal short-dashed line represents
the minimal linewidth of 12.02 Hz as determined by the Purcell-
enhanced decay rate I', and the two vertical short-dashed lines
represent the pumping at the spontaneous emission rate y and the
collective decay rate NI'. For other parameters see Table S1 of the
Supplemental Material [19].

of the Dicke triangle. Subsequently, the collective spin
lowering operator causes a vertically downward explora-
tion of Dicke states, leading to the pulsed superradiance
[27,31,32] [Fig. 2(b)]. In these calculations with the
second-order mean-field approach, the atom-atom correla-
tions rather than a macroscopic mean dipole moment are
responsible for the superradiance. In Fig. S6 of the
Supplemental Material [19], we show the influence of
the pumping rate and duration on the atomic ensemble
dynamics and the superradiant pulses, providing further
insights into the controllability of the superradiance.
Under the continuous incoherent pumping, the intra-
cavity photon number oscillates in time before reaching its
steady-state value [Fig. 2(c)]. The atomic ensemble under-
goes an excitation dynamics similar to the pulsed case, but
eventually explores and converges to states near the upper
boundary of the Dicke triangle [see the inset of Fig. 2(c)].
In Fig. 2(d), we show the steady-state intracavity photon
number (a7a) and the radiation linewidth v as a function
of the pumping rate #. We have obtained the latter quantity
by computing the steady-state spectrum with the QRT, and
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then fitting the spectrum with a Lorentzian function. We see
that as # increases from 10> Hz and surpasses the atomic
decay rate y = 27 x 375 Hz, (a'a) increases gradually
from 107> to 1072, and then rises abruptly to about 10°
(the first threshold), while év decreases from almost 10° Hz
to about 10?> Hz. As 7 increases further and crosses over the
collective decay rate NI ~6 x 10° Hz (the second
threshold), (a'a) first increases and then drops abruptly
to 1072, while v approaches the Purcell-enhanced decay
rate of a single atom I' = 4¢? /k ~ 12 Hz, and then rises
abruptly above 10° Hz. When the minimal linewidth is
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FIG. 3. Frequency measurement with heterodyne detection of

pulsed (a)—(c) and steady-state (d)—(f) superradiance from 5 x
10* calcium atoms incoherently pumped with a rate of 20 kHz.
The former is achieved by a pulsed pumping. Panels (a) and
(b) show multiple trajectories (gray lines) and their average (red
solid lines) of the intracavity photon number (a), the real part of
the field amplitude (inset of a), and the collective spin vectors (b).
The labels (1),(2) in the panel (b) mark the evolution at earlier and
later time, respectively. Panel (c) shows the power spectrum
obtained by the Fourier transform of the heterodyne signal in a
single simulation (inset), and its fit by a Lorentzian function (red
solid line). Panels (d),(e) show the same quantities as in the panels
(a),(b) but for continuous pumping. Panel (f) shows the fractional
frequency difference, as a function of the measurement time with
pulsed (upper part) and steady-state superradiance (lower part),
where the gray lines show the results for different simulations,
and the dots and bars show the average and standard deviation.
For other parameters see Table S1 of the Supplemental
Material [19].

achieved, the atomic ensemble explores the collective
Dicke states with 0.1 < J/N < 0.3 and M/N which is
slightly larger than zero [see Fig. S9(a) of the Supplemental
Material [19]].

Conditional and stochastic dynamics in the presence of
heterodyne detection—In Fig. 3 we present the conditional
dynamics and the frequency measurement of the transient
[(a)—(c)] and steady-state [(d)—(f)] superradiance from the
pulsed and continuously pumped calcium atoms, respec-
tively. In the former case, the intracavity photon number
shows large variations in different simulations, but the
average result almost reproduces the deterministic dynam-
ics [Fig. 2(a)]. Importantly, the intracavity field amplitude
develops nonvanishing values in individual simulations,
while the average over many simulations vanishes [see the
inset of Fig. 3(a) and Fig. S5(b) of the Supplemental
Material [19]]. Since the field amplitude couples with the
atomic coherence, the components A,, A, also acquire
finite values, and the collective spin vector departs from the
z axis and rotates on a spherical surface inside the sphere of
radius N/2 [Fig. 3(b)], while the average over many
trajectories almost recovers the deterministic dynamics
along the z axis [Fig. 2(a)].

For each individual simulation, the instantaneous photo-
current is dominated by the white noise, but its envelope
follows the real part of the intracavity field amplitude [inset
of Fig. 3(c)]. Correspondingly, the power spectrum for each
simulation shows a peak around 2z x 1 MHz, i.e., the
frequency detuning of the reference laser to the optical
cavity, with a width around 2z x 28 kHz, and can be well
fitted by a Lorentzian function [Fig. 3(c)]. In Fig. S8 of the
Supplemental Material [19], we have summarized the
evolution of the fitted spectral parameters as a function
of time, as may be directly verified in experiments.

In the case of constant pumping, the intracavity photon
number shows strong variation in the transient dynamics
while converging to the same steady-state values at longer
time for all simulations [Fig. 3(d)]. The field amplitude,
however, retains sizable variations in the steady state for
different simulations (inset). The collective spin vector
rotates and approaches steady state from different direc-
tions [Fig. 3(e)], in a manner such that the average over
many simulations reproduces the deterministic dynamics.
As the superradiant emission persists, the measurements for
longer time improve the determination of the frequency, as
shown by the lower blue dots and error bars in Fig. 3(f). In
Fig. S9(b) of the Supplemental Material [19] we further
verify that the spectral linewidth approaches 12 Hz as
predicted by the QRT.

To evaluate the accuracy of the frequency estimation with
the superradiant signal, we calculate the fractional frequency
difference uncertainty, i.e. the relative difference between
the extracted frequency and the atomic transition frequency,
based on Lorentzian fits to the power spectrum of each
simulated heterodyne photocurrent signal. In the case of
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pulsed signals, the measurement uncertainty approaches a
stable value about 10~'? [red curve of Fig. 3(f)], because
the measurements at longer time are performed on the
white noise, and carry no further information about
the frequency. In the case of continuous pumping, to avoid
the bias of early transient dynamics, we analyze only the part
of the signal after the system has reached steady state. The
fractional frequency uncertainty equals about 10~'? for the
shortest integration time 0.1 ms [first blue dot in Fig. 3(f)],
which is already about one order of magnitude smaller
than in the pulsed case. As shown by the blue curve in
Fig. 3(f), the fractional frequency difference scales as
9.7 x 1071/, /z/s with the probing time 7. Thus, a frac-
tional frequency difference 10715 could be potentially
obtained with 7 = 1 s.

Discussions and conclusions—In summary, we have
provided a precise description of heterodyne-based frequency
measurements on the superradiance laser from incoherently
pumped atoms. We have demonstrated that the frequency
precision can be significantly improved with the continuous
superradiance as compared to the case of pulsed super-
radiance, which confirms the expectation from QRT calcu-
lations of the spectra.

Owing to the linearity of the master equation, the QRT
yields the average of the correlation functions and hence the
spectra. However, it does not reproduce the nonlinear
procedure of fitting individual spectra by a Lorentzian to
estimate the frequency. Our trajectory simulations within
the second-order mean-field approach thus offer both
qualitative insights into the dynamics, the role of the
measurement noise and backaction, and a quantitative
assessment of a practical procedure for frequency extrac-
tion from the emitted light.

In this Letter, we focused on calcium atoms incoherently
pumped to the short-lived excited state, as studied in
experiments [18]. As aresult, the calculated power spectrum
is broad, and the frequency precision is comparable with one
of commercial microwave cesium clocks [3]. By exploring
longer lived excited states of calcium atoms [33] or other
species, like strontium atoms [13], we expect that the
performance can be further improved by orders of magni-
tude and reach 2.4 x 107'® with one second measurements
[Fig. S11 of the Supplemental Material [19]]. Further work
will then be needed to clarify the precise relationship
between the frequency measurement performance and the
incoherent pumping rate. During submission of the current
work, we became aware of an experiment reporting the
dynamical evolution of the heterodyne spectrum of the
quasi-steady-state superradiance from incoherently pumped
strontium-88 atoms [34]. We anticipate that our theoretical
description may be applied to estimate the performance of
such a system as a potential active optical clock.
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