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We investigate the fundamental viability of cooling ultracold atomic gases with quantum feedback
control. Our Letter shows that the trade-off between the resolution and destructiveness of optical imaging
techniques imposes constraints on the efficacy of feedback cooling, and that rapid rethermalization is
necessary for cooling thermal gases. We construct a simple model to determine the limits to feedback
cooling set by the visibility of density fluctuations, measurement-induced heating, and three-body atomic
recombination. We demonstrate that feedback control can rapidly cool high-temperature thermal clouds in
quasi-2D geometries to degenerate temperatures with minimal atom loss compared to traditional
evaporation. Our analysis confirms the feasibility of feedback cooling ultracold atomic gases, providing
a pathway to new regimes of cooling not achievable with current approaches.
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The efficient cooling of quantum systems is a critical
aspect of modern quantum science [1–4], including for
precision measurement [3,5], quantum simulation [6,7],
and quantum information [8,9]. A powerful tool for
achieving this is feedback cooling, where the system is
monitored and controlled in real time [10]. Although
feedback cooling has been demonstrated for trapped ions
[11] and quantum mechanical oscillators [12–20], its
applicability to more complex, multimode systems, such
as quantum gases, is still an open question. Rapid advances
in the feedback control of ultracold atomic gases are
expected, thanks to technological advances in highly
configurable optical potentials [21–23]. This presents an
opportunity to explore the potential of feedback cooling for
ultracold atomic gases, and to address the challenges and
open questions related to this technique.
The potential benefits of feedback cooling ultracold

atomic gases are significant. It may alleviate existing limits
to achievable atom number (∼107 per shot) inherent to
evaporative cooling [24], or improve current limits to
achievable degeneracy for a given total atom number.
This latter aspect may play a critical role in space-based
quantum sensing, where thermal expansion of the atomic
cloud limits achievable sensitivity [25]. Limits to achiev-
able degeneracy are even more pronounced for Fermi
gases, with state-of-the-art demonstrations falling at least
10× short of the degeneracy needed for Fermi-gas-
based quantum simulators of high-temperature supercon-
ductivity [26].
However, a feedback-cooled ultracold atomic gas has not

yet been experimentally realized, and it is unclear whether

feedback cooling’s efficacy is sufficient to achieve the
above benefits. Although there have been theoretical
investigations of feedback cooling in Bose gases [27–
36], the methods employed in these studies are computa-
tionally intensive, contextually bound, and usually limited
to low-temperature gases in quasi-one-dimensional geom-
etries, preventing studies into the viability of feedback
cooling more generally. Furthermore, there have been no
studies of feedback cooling ultracold Fermi gases, and as
such the effect of quantum statistics on the feedback
scheme is poorly understood.
Here we assess the viability of feedback cooling ultra-

cold gases by establishing fundamental limits imposed by
the physics of nondestructive optical imaging and the
thermodynamics of thermal cold-atom ensembles. We
demonstrate the necessity of rapid rethermalization due
to the constraints imposed by signal resolution and meas-
urement destruction, concretely ruling out the possibility of
feedback cooling single-component Fermi gases or one-
dimensional integrable systems. We develop a continuous
feedback-cooling model for thermal gases, including multi-
component systems, and use this to show that large atom
number (N ∼ 109), highly oblate atomic gases can be
feedback cooled to degeneracy with minimal atom loss.
Our results establish feedback as a promising number-
conserving approach to cooling ultracold gases in reduced
dimensions and set a foundation for future investigations
into feedback cooling single component Bose gases and
Bose-Fermi mixtures.
Feedback cooling scheme—We consider a realistic feed-

back cooling scheme (Fig. 1) based on models developed
and validated in Refs. [29,30,32,37]. An atomic cloud is
dispersively imaged by off-resonant coherent light illumi-
nated along the tightly trapped z axis. This gives a real-time*Contact author: zain.mehdi@anu.edu.au
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estimate of the atomic column density in the xy plane,
which is then used to construct a control potential that
damps observable density fluctuations—applied using a
configurable optical dipole potential [22], for example. For
simplicity, we consider a cylindrically symmetric geometry
ωx ¼ ωy ≡ ω⊥ with κ ≡ ωz=ω⊥ ≫ 1 and assume a
Gaussian atomic density of radial and transverse standard
deviations R⊥; Rz, respectively.
Direct control of thermal excitations—Without retherm-

alization, thermal excitations must be directly controlled,
which is only possible if they are resolvable in the density
image. Consequently, fundamental bounds on the meas-
urement resolution give a parameter range for effective
feedback cooling.
First, the smallest possible length scale resolvable by

optical imaging, Δr, is given by the gas “thickness” Rz and
light wavelength λ [29,38]:

ðΔrÞ2 ≤ Rzλ

2π
≡ r2D: ð1Þ

This resolution limit arises since light rays cannot remain
exactly parallel and diffract by a minimum angle as they
pass through the gas. A second limit is set by the
measurement strength, which must be sufficiently strong
to accurately estimate the atomic density, yet sufficiently
weak to avoid destruction of the atomic cloud via sponta-
neous emission. The signal-to-noise ratio (SNR) of a single
pixel of area ðΔrÞ2 from any nondestructive optical
measurement of the atomic density with classical light is
bounded by the shot-noise limit [39–41]

SNR ≤ n̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηðΔrÞ2σ0ΓPeδt

q
; ð2Þ

where η∈ ð0; 1� is the detector’s quantum efficiency,
σ0 ¼ 3λ2=ð2πÞ, ñ is the average column density of the
pixel, Γ is the excited state linewidth, Pe is the excited state
probability, and δt is the detector’s integration time. The
destruction associated with each measurement is quantified
by the average number of spontaneous emission events per
atom: D≡ ΓPeδt.
Useful feedback control requires SNR ≥ 1. By consid-

ering a perfect (η ¼ 1) measurement of the atomic cloud

with the minimum SNR ¼ 1 at a pixel with peak column
density [n̄ ≤ n̄max ¼ N=ð2πR2⊥Þ for a Gaussian density],
we can derive a lower bound on the amount of acceptable
destruction. A conservative estimate of SNR ≥ 1 is given
by taking the zero-temperature limits for the radii of ideal
Fermi and Bose gases—Ri ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmωiÞ

p ð48NκÞ1=6 [42]
and Ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmωiÞ

p
, respectively. Equation (2) then

implies

D ≥
4π2ℏ2

ðΔrÞ2σ0m2ω2⊥

�
N−2; bosons;

ð48κÞ2=3N−4=3; fermions:
ð3Þ

Thus, the required SNR for degenerate Fermi gases gives a
factor of ð48NκÞ2=3 more destruction than for similar
bosonic species, due to degeneracy pressure.
Finally, we require a measurement resolution no larger

than the thermal de Broglie wavelength: Δr ≤ λDBðTÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πℏ2=ðmkBTÞ

p
. Combining this with Eq. (1) and Eq. (3)

gives the regime where feedback cooling is effective (in the
absence of rethermalization). To apply Eq. (2), we must
choose an acceptable amount of destruction per measure-
ment; we take 1% absorption per measurement (D ¼ 0.01).
For a concrete comparison, we consider 6Li (bosonic) and
7Li (fermionic) which have similar mass and electronic D1
(λ ¼ 670 nm) transition [43].
Figure 2 plots the regions bounded by our inequalities

for trapping parameters fω⊥=2π; κg ¼ f10 Hz; 102g, and
compares the degenerate Fermi and ideal Bose cases. The
ðT;NÞ region where excitations are resolvable is much
narrower for degenerate Fermi gases than degenerate ideal
Bose gases. Since this narrow regime is beyond the
capability of modern Fermi gas experiments, both in
achievable atom number and temperature [26], this rules
out feedback cooling for single-component degenerate
Fermi gases. In contrast, excitations are resolvable across
the degenerate regime for Bose gases—although, as shown

FIG. 1. Feedback loop. The atomic cloud density (dark blue) is
nondestructively imaged by off-resonant light (red). Atomic
density fluctuations (1D projection shown in gray) are then
damped by a control potential VC (red trace) realized, e.g., by a
configurable optical-dipole potential (green).

FIG. 2. Regions where thermal excitations are resolvable for
degenerate Fermi (a) and Bose (b) gases. Solid and dashed lines
mark the temperature limits imposed by resolution (gray) and
SNR (red), respectively. The SNR ≤ 1 regime assumes a de-
struction limit of D ¼ 0.01. The filled, blue area below both
limits is where thermal density fluctuations are resolvable by the
measurement. Temperature is in units of Fermi temperature
kBTF ¼ ℏω⊥ð6NκÞ1=3 [(a)] and critical condensation temper-
ature kBT0

c ≈ ℏðNκÞ1=3ω⊥ [(b)].
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below, this is not required for effective cooling due to
rethermalization via interparticle scattering.
Thermodynamic model of feedback cooling—Here we

develop a thermodynamic model of feedback cooling,
based on the premise that the controller can “only cool
what it can see.” That is, the fraction of total energy
removable depends on the excitations resolvable within the
spatial resolution of the optical potential—actuated by
spatial light modulators (SLMs), for example. We first
divide the atomic cloud into 2D cells of area A, each
representing a single “controllable cell” of the configurable
optical potential (e.g., a pixel on the SLM). Thus,

ffiffiffiffi
A

p
is the

control’s spatial bandwidth. Each controllable cell contains
NA ¼ n̄A particles, each contributing 3kBT of energy [44],
giving total energy E ¼ 3NAkBT per cell.
The spatial-bandwidth-limited control potential may

only control the center-of-mass (c.m.) motion of each
controllable cell in the xy plane, which by equipartition
contains energy 2kBT. Thus, without rethermalization,
feedback can at best extract a fraction of the total energy
δ≡ ΔE=E ≤ 2=ð3NAÞ. ΔE is the energy removed by
feedback; δ ¼ 1 corresponds to removal of all energy from
the cloud. This implies a single shot of feedback can extract
the majority of the cloud’s energy provided the area A can
be made arbitrarily small. However, the minimum value of
A is subject to two constraints. First, A is bounded from
below by the spatial bandwidth of the SLM that actuates the
controlling potential; A ≥ l2c, where lc is the minimum
achievable spatial resolution of the configurable optical
potential. Second, effective cooling requires A ≥ ðΔrÞ2,
since excitations not resolvable by imaging cannot be
controlled. Thus, A ¼ maxfl2c; ðΔrÞ2g is the optimal con-
trollable cell size, which we choose for the remainder of
this analysis.
The A ≥ ðΔrÞ2 constraint can be combined with the

imaging resolution limit, Eq. (1), to obtain NA ≥ n̄r2D. For
large atomic gases with n̄r2D ≫ 1, this implies
δ < 2=ð3n̄r2DÞ ≪ 1—i.e., a single shot of feedback can
only remove a small fraction of the cloud’s energy.
Therefore, many iterations of feedback are required to
cool the entire cloud; to accurately describe this, we must
refine our estimate of δ to include imperfect control and
measurement-induced heating.
The achievable δ is limited by the finite measurement

SNR, which misestimates the atom number in each pixel by
ΔNA ¼ NA=SNR. This prevents the perfect extraction of
c.m. energy via feedback, giving residual c.m. energy
2ðΔNA=NAÞkBT and thus a more realistic bound on the
fraction of energy removable by a single iteration of
feedback: δ ≤ 2ð1 − SNR−1Þ=ð3NAÞ. There are two fun-
damental channels of measurement-induced heating that
further reduce the achievable δ. First, each spontaneous
emission event heats the atomic cloud by twice the photon
recoil energy, assuming a sufficiently deep trap such that
the recoil does not induce loss. This contributes energy

2NADp2
re=m to each pixel per image, where pre is the

photon recoil momentum. Second, the fundamental meas-
urement backaction heats the sample, with the atom-light
interaction causing phase gradients in the atomic wave
function that contribute kinetic energy [see Eq. (A10) in
Appendix A]. Together, these two heating channels
increase the fraction of energy per pixel by Dϵ=ðkBTÞ
with each measurement, where the energy scale ϵ≡
4p2

re=ð6mÞ þ πℏ2=ð4mR2
zÞ includes the respective contri-

butions from spontaneous emission and backaction. Since
R2
z ≫ λ2 in the thermal gas regime, spontaneous emission

heating dominates over backaction (Appendix A), giving
ϵ ≈ 4kBTre=3, where Tre ¼ p2

re=ð2mkBÞ is the recoil
temperature.
Incorporating both measurement-induced heating con-

tributions into the bound set by finite measurement SNR,
we find that forM images taken per cycle of feedback, the
best achievable net fraction of energy removed is

δ ¼ 2

3n̄A
ð1 − SNR−1Þ −MD

ϵ

kBT
: ð4Þ

Since the upper bound on the SNR is proportional to
ffiffiffiffi
D

p
,

heating cannot be reduced arbitrarily by reducing D.
Instead, we optimize the measurement strength—parame-
trized by the destruction parameter, D—for each iteration
of feedback. Assuming the SNR saturates Eq. (2), the
optimal D that maximizes Eq. (4) is

Dopt ¼
1

n̄A

�
A

ðΔrÞ2
k2BT

2

9n̄M2ϵ2ησ0

�
1=3

: ð5Þ

Since cooling is only possible for δ ≥ 0, Eqs. (4) and (5)
let us determine the minimum temperature achievable by
feedback cooling (see Appendix B):

T ≥ Tmin ≡ A
ðΔrÞ2

3M
8ηn̄σ0

ϵ

kB
≈

M
2ηn̄σ0

Tre; ð6Þ

using ϵ ≈ 4kBTre=3 and A ≈ ðΔrÞ2 [46]. This bound
naïvely suggests the temperature can be made arbitrarily
small by making the column density n̄ arbitrarily large, and
increasing the detuning accordingly to keep the sample in
the optically thin regime n̄σ0 ≪ 1þ 4Δ2=Γ2. However, n̄ is
limited by the peak 3D atom density via n3D ¼ n̄max=
ð ffiffiffiffiffiffi

2π
p

RzÞ, which cannot exceed a critical value ncrit set by
three-body recombination losses [47]. As an example,
consider a 87Rb cloud with ncrit ∼ 1014 cm−3; for
Rz ≈ 1 μm, Eq. (6) gives Tmin ≈ 1 nK. This is well below
typical transition temperatures (∼1 μK), suggesting feed-
back can cool thermal Bose gases to degeneracy.
Continuous cooling with rethermalization—Following

feedback, the atomic cloud will rethermalize to a slightly
lower temperature (provided δ > 0) Tnew ¼ Toldð1 − δÞ
[48] on a timescale set by the elastic collision rate

PHYSICAL REVIEW LETTERS 133, 073401 (2024)

073401-3



Δt−1 ≡ γel ¼ n3Dσs
ffiffiffi
2

p
vth, where σs is the s-wave scatter-

ing cross section and vth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kBT=ðπmÞp

is the thermal
atomic velocity. For large atomic densities, each stage of
feedback only reduces the energy by a small fraction
δ ≪ 1. Therefore, for fast rethermalization we can take
the infinitesimal limit of ðTnew − ToldÞ=Δt:

dT
dt

¼ −γelðTÞδðTÞT; ð7Þ

where δ depends on T through the implicit temperature
dependence of the atomic density.
We bound the cooling rate γ ≡ jdT=dtj=T using Eq. (7)

and δ ≤ 2=ð3n̄AÞ:

γ ≤
ffiffiffi
8

p
σsvthðTÞ
3A

n3D
n̄

≈
2σsvthðTÞ
3

ffiffiffi
π

p
ARz

; ð8Þ

using n3D ≈ n̄=ð ffiffiffiffiffiffi
2π

p
RzÞ to relate the 3D atomic density to

the measured column density, assuming a Gaussian profile.
Then, since the control resolution is bounded by Eq. (1), we
can find the upper bound to the cooling rate by substituting
A ≥ r2D:

γ ≤
4

ffiffiffi
π

p
3

vthðTÞσs
λR2

z
: ð9Þ

This expression is independent of atom number; while
increasing the atom density via increasing N speeds up
rethermalization, it also reduces the fraction of energy
stored in the c.m. motional energy of each pixel by the same
amount (for fixed A). Equation (9) also demonstrates the
importance of tight trapping in the imaging direction. Since
we require R⊥ ≫ rD for high-resolution spatial imaging,
feedback cooling is most effective for highly oblate gases
(κ ≫ 1). For the above 87Rb example, T ¼ 100 μK (10 μK)
gives γ ≲ 35 Hz (110 Hz).
Exemplary cooling demonstration—We have shown that

feedback cooling is most effective when the atomic density
is as large as three-body recombination permits, since this
gives high SNR and fast rethermalization. High density can
be maintained during cooling by reducing the trapping
frequency as ωðtÞ ¼ ωð0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TðtÞ=Tð0Þp
, keeping R⊥; Rz,

and thus atomic density, constant. In Fig. 3 we use Eq. (7)
to model such an experiment, where a 87Rb cloud with
initial atom number Nð0Þ ¼ 5 × 109 and temperature T ¼
180 μK (typical parameters after Doppler cooling) is held
in a trap with ω⊥ð0Þ=2π ¼ 35 Hz and fixed aspect ratio
κ ¼ 180. The measurement strength (parametrized byD) is
chosen at each time step using Eq. (5) to optimize the trade-
off between SNR and measurement-induced heating. We
assume a spatial resolution of lc ¼ 1 μm for the control
potential, well within the capability of SLMs based
on digital-micromirror devices (DMDs), which have dem-
onstrated submicron resolution [22,23,49]. For these

parameters, feedback cools the cloud to the critical temper-
ature Tc ∼ 1 μK in 2–4 sec, while the atom number only
reduces by 5× to N ∼ 109—a performance impossible to
achieve in alkali atoms with evaporative cooling.
Our feedback cooling protocol is robust to imperfect

detector efficiency (or, equivalently, technical imaging
noise), with similar cooling achievable with η ¼ 25%
(compared to perfect detection). For lower values of η,
Fig. 3 shows the temperature plateauing at ∼μK temper-
atures around Tc due to the SNR approaching unity;
cooling further would require a density increase that would
give further atom loss.
Discussion—The temporal bandwidth of the feedback

loop impacts feedback cooling if it is too slow, since
density fluctuations cannot be cooled on timescales faster
than the feedback loop’s time delay. In such cases, it makes
sense to increase the controllable pixel resolution A to the
size of the smallest density fluctuation resolvable within the
feedback loop’s temporal bandwidth (longer-wavelength
excitations fluctuate on slower timescales). While this
enables higher SNR imaging [Eq. (1)], it reduces the rate
of cooling by a factor of A=l2c, cf. Eq. (8). We can determine
whether this procedure is required by estimating the time-
scale of typical density fluctuations. The average time
taken for atoms to move across a controllable cell is
τ≡ 2

ffiffiffiffi
A

p
=vthðTÞ ≥ 2lc=vthðTÞ. For 87Rb controlled and

imaged at the fundamental resolution limit [Eq. (1) with
A ¼ r2D], T ¼ 10 μK (200 μK) gives τ ≈ 20 μs (5 μs). This
is within the temporal bandwidth of existing DMD-based
SLMs—e.g., Refs. [22,23] report switching speeds
of 20 kHz.
Our model of continuous feedback cooling can be

straightforwardly extended to describe the sympathetic
cooling of multicomponent atomic clouds via interaction
with a feedback-cooled source. That is, the measurement

FIG. 3. Feedback cooling an oblate 87Rb cloud of fixed spatial
size fR⊥; κg ≈ f597 μm; 180g with initial number Nð0Þ ¼ 5 ×
109 and temperature Tð0Þ ¼ 180 μK, for varied detection efficien-
cies η. Feedback can only extract energy visible in the control’s
spatial bandwidth, here fixed at lc ¼ 1 μm; δ < 2=ð3NAÞ defines a
forbidden region (gray, shaded). (i) Three-body recombination
causes ∼80% of the initial sample to be lost over 4 sec. (ii) Meas-
urement destruction is optimized at each timestep to minimize
heating. Calculations assume a thermal gas; belowTc (red, hatched)
the model breaks down.
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and feedback cooling of a single component extracts energy
from other components due to interatomic scattering
between components and rethermalization. This could,
for example, describe the feedback cooling of Bose-
Fermi or Fermi-Fermi mixtures. For an M-component
system of equal local density, each controllable cell
contains 3MNA degrees of freedom, yet only two
c.m. degrees of freedom can be controlled. Following
our earlier argument, the fraction of energy observable
from optical imaging is a factor M smaller than the single-
component case [i.e., δmulti ≤ 2=ð3MNAÞ]. Furthermore, σs
is reduced by 1=2 for intercomponent scattering compared
to scattering of identical particles, making the cooling rate
in the sympathetic-cooling case 2M× slower than if each
component were measured and feedback-cooled individu-
ally [cf. Eq. (9)].
Our feedback model is constructed in the thermal gas

regime; it breaks down qualitatively in the degenerate
regime where quantum statistics affect rethermalization.
For Bose gases, we expect feedback cooling to dramatically
improve in the degenerate regime since the specific heat
capacity sharply drops and there is Bose-enhanced transfer
into the condensate mode. The increased role of inter-
actions in degenerate Bose gases is also expected to
improve the efficacy of feedback cooling, as coherence
properties of the interacting atomic ensemble will be
dominated by low-frequency, long-wavelength excitations
[50] that are easier to control compared to the short-
wavelength, high-frequency fluctuations of thermal gases.
The opposite occurs for purely fermionic mixtures, as Pauli
blocking reduces the elastic scattering rate [51,52].
However, feedback could still prove advantageous by
allowing much larger atom numbers than is accessible
from evaporation. Furthermore, feedback could enhance
sympathetic cooling of Fermi-Bose mixtures, which in the
evaporative case is limited by the vanishing heat capacity of
the Bose component [26]; extracting energy from the Bose
gas via feedback could ameliorate this limitation and
provide a pathway to achieving deeper Fermi degeneracy
with large N.
Our model’s cooling can be realized by a multimode

cold-damping control [53], where optical control forces
oppose the c.m. motion of the cloud at each “cell” of the
spatiotemporal potential [30,32,35]. In the continuous
limit, lc → 0, this control potential is Vcontrolðx; tÞ∼
k∂tρ̃ðx; tÞ, where ρ̃ðx; tÞ is the spatiotemporally filtered
measurement record and k is the control gain—referred to
as the “energy-damping control” in Ref. [37]. In the
degenerate regime, models of the partially coherent atomic
dynamics allow real-time state estimation and filtering [30–
32,54]. This could enable more sophisticated control than
permitted by our model, which may allow effective feed-
back with weaker measurement or better control with the
same measurement SNR. Nevertheless, implementing a
real-time filter of the full-field dynamics is a highly

challenging prospect; we expect near-term demonstrations
will use simple spatiotemporal filters to improve the SNR
of the real-time density estimates.
Conclusions—We have shown that feedback cooling

could produce large atom-number quantum gases in low-
dimensional geometries, beyond the fundamental capabil-
ity of evaporative cooling. As our analysis is based on
generic thermodynamic arguments and key operating
principles of nondestructive optical measurement, these
results are applicable to a broad range of experimental
scenarios. Our Letter confirms that near-term proof-of-
principle demonstrations are within the capability of
established cold-atom experiments.
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End Matter

Appendix A: Quantum backaction heating—Here we
estimate the heating effect due to fundamental quantum
backaction. Our analysis is simplified by dividing the
atomic density measurement into number measurements
on spatial cells of area r2D, where rD is the fundamental
resolution of the dispersive imaging, and treating each
cell as being subjected to a quantum nondemolition
(QND) number measurement. Measurement backaction
scrambles the relative phase between cells, with a
strength dependent on the number measurement

precision. As a baseline, we expect the phase relation
between unmeasured cells to be given by the magnitude
of relative number fluctuations, 1=

ffiffiffiffiffiffiffiffiffi
Ncell

p
.

The QND measurement of a single cell is described by
the unitary:

ÛQND ¼ exp
�
iβN̂pN̂cell

�
; ðA1Þ

where N̂p is the photon number operator and β is a constant
of proportionality we will relate to the shot-noise-limited
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SNR. First, this unitary applies a phase to the light field
ϕlight ¼ βNcell, with fluctuations given by the shot-noise
relation [55]:

Δϕlight ¼
1

2
ffiffiffiffiffiffi
Np

p ¼ βΔNcell: ðA2Þ

Second, the QND unitary applies a phase ϕatom ¼ βNp to
the atomic state, with associated fluctuation Δϕatom ¼
β

ffiffiffiffiffiffi
Np

p
. Combining this with Eq. (A2) relates the magni-

tude of measurement-induced atomic phase fluctuations to
the precision with which Ncell can be estimated:

Δϕatom ¼ 1

2ΔNcell
¼ SNRcell

2Ncell
; ðA3Þ

where SNRcell is the fundamental limit to the measurement
sensitivity, given by the right-hand side of Eq. (2) with
Δr ¼ rD and η ¼ 1. This expression demonstrates that
stronger measurement gives larger phase fluctuations, and
hence stronger backaction. For example, a perfect (projec-
tive) number measurement will give ΔN ¼ 0 and hence
infinitely strong phase fluctuations.
To relate this to heating, we assume these phase fluctu-

ations give rise to phase gradients ∂xϕðxÞ ≈ Δϕatom=rD.
This translates to a kinetic energy contribution, which we
can compute by treating the gas as locally homogeneous
over each cell. For a single cell this gives an energy
contribution

Ecell
BA ¼ −

ℏ2

2m

�Z
cell

dxdyψ̂†ðxÞ∇2ψ̂ðxÞ
	

ðA4Þ

≈
ℏ2

2m
Ncell

Z
cell

dxdy
r2D

j∇ϕðxÞj2 ðA5Þ

≈
ℏ2

m
Ncell

�
Δϕatom

rD

�
2

; ðA6Þ

where ψ̂ðxÞ is the atomic field operator in the plane
transverse to the imaging axis. The total energy added to
each pixel is given by multiplying Ecell

BA by the number of
cells on each pixel A=r2D. Substituting in Ncell ¼ NAr2D=A,
Δϕatom ¼ SNR=Ncell, and SNRcell ¼ n̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Dσ0D

p
, we can

express this energy as

EBA ¼ A
r2D

ℏ2

m
Ncell

�
SNRcell

NcellrD

�
2

ðA7Þ

¼ NAD
ℏ2

2m
σ

4r4D
; ðA8Þ

where in the last line we have used n̄ ¼ NA=A. This
takes the form of a free-particle dispersion relation with

wave vector
ffiffiffiffiffi
σ0

p
=ð2r2DÞ. Substituting the cross-sectional

area of the light σ0 ¼ 3λ2=2π and resolution limit
rD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rzλ=ð2πÞ
p

, we see that the above relation depends
only on the gas thickness

EBA ¼ 3NA
ℏ2

4m
Dπ

R2
z
; ðA9Þ

from which we obtain a heating contribution to δ of

δBA ¼ −
ℏ2

4mR2
z

πD
kBT

: ðA10Þ

We can compare this to the heating contribution from
spontaneous emission δSE,

δBA
δSE

¼ 3

32π

�
λ

Rz

�
2

; ðA11Þ

showing that spontaneous emission heating dominates over
backaction heating if R2

z ≫ λ2.

Appendix B: Derivation of temperature bound—Here
we derive the temperature bound Eq. (6), in the main
text. We start by substituting the optimal measurement
strength—parametrized by D, i.e., Eq. (5)—into Eq. (4)
and solving for δ ≥ 0; the region where the increase in
energy due to measurement-induced heating is greater
than the amount of energy feedback can extract:

δopt ¼
2

3n̄A

0
B@1 −

1

n̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηðΔrÞ2σ0Dopt

q
1
CA −MDopt

ϵ

kBT
≥ 0:

Solving the above inequality directly for T does not lead
to an insightful expression for the bound on the
temperature. We may obtain a simple analytic expression
by further assuming the column density n̄ is sufficiently
large that the shot-noise-limited SNR is significantly
greater than unity, allowing the second bracketed term to
be neglected. Then, solving the above inequality for T
yields Eq. (6) of the main text:

T ≥
A

ðΔrÞ2
3M
8ηn̄σ0

ϵ

kB
: ðB1Þ

Appendix C: Details of numerical simulation—Here
we outline the details of the numerical simulation used
to produce Fig. 3. The simulation is based on the
continuous model Eq. (7) where the fraction of energy
extracted per shot of feedback δðTÞ is computed at each
timestep using Eq. (4) with M ¼ 1. These calculations
use parameters corresponding to 87Rb (s-wave scattering
length as ¼ 100.4a0, where a0 is the Bohr radius), with
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the optical imaging far detuned from the D2

transition (λ ¼ 780 nm).
Our calculations also incorporate atom loss due to three-

body recombination. We start with the rate equation
describing three-body loss [47]:

dn3d
dt

¼ −Kn33d; ðC1Þ

where K is the three-body loss rate that is empirically
determined. For 87Rb, K ≈ 4 × 10−41 m6=s [56]—this sets
the density scale at which loss becomes significant,

Oð1014Þ cm−3. We recast this equation in terms of the
atom number N using the Gaussian description of the
atomic density employed in the main text,

dN
dt

¼ −KNðtÞ
�

NðtÞ
ð2πÞ3=2R2⊥Rz

�
2

: ðC2Þ

We solve the coupled differential equations (7) and (C2)
with a fourth-order Runge-Kutta algorithm (adaptive time
step). At each time step δðTÞ is computed using Eq. (4) with
M ¼ 1 and n̄ ¼ N=ð2πR2⊥Þ.
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