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We investigate the photoionization dynamics of atoms subjected to intense, ultrashort laser pulses
through the use of quantum trajectories. This method provides a unique and consistent framework for
examining electron dynamics within a time-dependent potential barrier. Our findings demonstrate that
quantum trajectories offer additional insights into several key aspects of strong-field ionization, including
the transition between ionization regimes, nonadiabatic effects under the barrier, the impact of the shape of
the electronic potential, and the efficiency of over-the-barrier ionization.
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Recent progress in generating bright and ultrashort laser
pulses [1–4] has profoundly transformed our approach to
study light-matter interactions. In particular, these advances
have opened the way to observe and manipulate the
electron dynamics in atoms and molecules at their intrinsic
temporal scale [5–7]. In spite of these remarkable strides,
the theoretical modeling of strong-field phenomena, which
is pivotal for the advancement of attosecond science,
remains challenging. One major difficulty arises from
the complexity in describing and comprehending the
electron dynamics under the combined influence of the
Coulomb interaction between charged particles and an
intense electromagnetic field [8–13].
When an atom is subjected to the oscillating electric field

of a laser beam, its electronic wave function is perturbed by
the time-varying potential barrier. If sufficient energy is
transferred to the atom, this process eventually leads to the
emission of one or many electrons. One usually distin-
guishes two main types of photoionization mechanisms, as
illustrated in Fig. 1. In the vertical channel, referred to as
multiphoton ionization (MPI) [14,15], the barrier oscillates
rapidly compared to the characteristic response time of the
system, such that the electron experiences periodic “heat-
ing” due to the swift changes of the potential. Hence, the
electron accumulates an average energy during each pulse
cycle, gradually drifting away from the ionic core until it
becomes free to escape. This regime of ionization is chaotic
[15] and dominates for weak, high-frequency fields.
Conversely, in the horizontal channel, known as tunneling
ionization (TI), the wave function has sufficient time to
adjust to the gradual changes of the potential barrier,
allowing its tail to “leak” via tunneling through the

quasistatic barrier. In general, however, the MPI and TI
regimes coexist, i.e., an electron can always gain energy
nonadiabatically inside a moving barrier.
The Keldysh parameter, γK ≡ ω

ffiffiffiffiffiffiffi
2Ip

p
=E0 [16], provides

a quantitative understanding of the dominant photoioniza-
tion mechanism by comparing the period of the oscillating
electric field T to the characteristic response time τ of the
system. By taking τ as the tunneling time of the electron
from the inner to the outer classical turning points, a
transparent expression for the Keldysh parameter is
obtained [15–18], depending only on the light’s angular
frequency ω, the maximum field strength E0, and the
ionization potential Ip of the atom. The MPI picture is
privileged when γK ≫ 1, whereas the TI mechanism
dominates for γK ≤ 1.
While the Keldysh parameter provides a simple analyti-

cal formula revealing the dominant photoionization mecha-
nism, it also has severe limitations [8,17,19]. For instance,
it disregards the nature of the binding potential and the role

FIG. 1. Schematic illustration of multiphoton (vertical channel)
and tunneling (horizontal channel) ionization. See text for the
definition of the various parameters. The trajectories shown are
the results of numerical calculations with the formalism presented
in this Letter.
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of excited states [20,21]. Moreover, γK only considers the
pulse at its maximum strength and does not account for the
details of the pulse, such as its duration, envelope, and carrier-
envelope phase, despite their known critical roles in strong
fields [22,23]. It also wrongly assumes that the tunneling
wave packet always starts from the classically allowed region
[24], while the possibility for over-the-barrier ionization
(OBI) [25,26] (i.e., when the top of the barrier gets below
the initial electronic state energy) is neglected. Despite
theoretical improvements [12,13,17,21,27–30], there remains
a critical need for quantitative approaches unraveling the
electron dynamics in strong fields [8].
On the other hand, the dynamics of an electron exiting a

potential barrier becomes rapidly classical [31–33], thus
enabling an alternative description via trajectory-based
methods [34–37]. These approaches, extensively used in
strong-field physics, offer an appealing avenue to bridge
quantum and classical ideas [32,33]. Notably, they form the
cornerstone of the three-step model [38–40] and can be
integrated in more sophisticated methodologies, e.g., ana-
lytic tunneling rates with imaginary time methods [41] or
Wigner phase-space distributions [42] to improve the
treatment of strong-field phenomena.
In this Letter, we utilize de Broglie–Bohm quantum

trajectories [43–47] to establish a comprehensive and
consistent framework that encompasses both the short-
range region, where quantum effects dominate, and the
large-distance region, where electron trajectories behave
classically. This methodology serves as a powerful tool
for extracting intricate information embedded in the
time-dependent wave function. Notably, we introduce a
quantum-trajectory adiabatic parameter that extends the
Keldysh parameter, revealing detailed insights into the
dynamics of an electron under a potential barrier.
Additionally, this framework makes it possible to quantify
the efficiency of the OBI mechanism.
Our approach to compute quantum trajectories starts

with solving the time-dependent Schrödinger equation
[48], i∂tjΨi ¼ ĤðtÞjΨi, in the single-active electron pic-
ture. [Unless stated otherwise, atomic units (a.u.) are used
throughout this Letter.] In the Coulomb gauge and dipole
approximation, ĤðtÞ ¼ Ĥ0 þ ĤintðtÞ, where Ĥ0 ¼ T̂ þ V̂
is the field-free Hamiltonian, T̂ and V̂ are the kinetic and
potential energies, respectively, and Ĥint ¼ −p · AðtÞ is the
light-atom interaction in the velocity gauge. The vector
potential, AðtÞ ¼ −A0FðtÞ sinðωtÞx̂, has a period T, is
linearly polarized along the x axis, has an amplitude A0,
and an envelope FðtÞ ¼ cos4ðπt=NTÞ for N cycles with
t∈ ½−NT=2; NT=2�. The electric field, EðtÞ ¼ −dAðtÞ=dt,
reaches its maximum strength E0, corresponding to an
intensity I ¼ E2

0=2, near the envelope maximum at t ¼ 0.
In the Bohmian formalism [43], the velocity field at a

position r and time t is given by vðr; tÞ ¼ jðr; tÞ=ρðr; tÞ,
where jðr; tÞ ¼ ℜ½Ψ�ðr; tÞð−i∇þ AðtÞÞΨðr; tÞ� is the
probability flux density, ℜ½z� denotes the real part of z,

and ρðr; tÞ ¼ jΨðr; tÞj2 is the probability density. The
velocity field is used to propagate the trajectories starting
from different initial positions r0 in the initial state. These
trajectories describe the flow of the probability density, and
they make it possible to reconstruct the wave function and
estimate the energy of the system at any given time [49].
Furthermore, they allow us to retrieve any quantum
observables with high accuracy [32].
Using the intrinsic properties of these trajectories, one

can devise complementary quantities to investigate strong-
field phenomena. Specifically, we focus at first on the
efficiency of the horizontal and vertical ionization channels
(see Fig. 1) by computing the exit radius rex and exit time
tex from the potential barrier for trajectories starting at diffe-
rent initial radii r0. These exit quantities are found from the
condition ΔEðtexÞ ¼ 0, where ΔEðtÞ ¼ v2ðtÞ=2þQðtÞ is
the gauge-independent energy difference between the
energy EðtÞ of the trajectory and the barrier energy [50].
The quantum potential Q ¼ −1=2fρ−1=2∇2ρ1=2g is respon-
sible for all quantum effects and the nonzero velocity at the
tunneling exit [51–53]. In the classical limit (Q ¼ 0), the
equations of motion reduce to the classical Hamilton-Jacobi
equations. The adiabatic radius, rad, corresponds to the
radius associated with adiabatic TI, i.e., for a trajectory
maintaining a constant energy E ¼ −Ip and exiting the
barrier at the same time tex and in the same direction as the
trajectory under consideration. Thus, in contrast to standard
approaches, which define adiabatic tunneling at the maxi-
mum field strength, rad is a dynamical quantity that takes
into account the shape of the barrier at the exit time. Finally,
in the subsequent discussion, we exclusively focus on
ionizing trajectories, which exhibit asymptotic freedom,
i.e., Eð∞Þ ≥ 0.
We now define a tunneling parameter as follows:

βðr0Þ≡ rexðr0Þ − r0
radðr0Þ − r0

; ð1Þ

with 0 ≤ β ≤ 1, to quantify the degree of tunneling in a
trajectory starting at r0. For vertical ionization, rex ¼ r0 and
β ¼ 0, whereas for perfect horizontal ionization, rex ¼ rad
and β ¼ 1. Perfect tunneling, β ¼ 1, is also assigned in the
event that rex ≥ rad and for OBI, as detailed below. If a
multiphoton trajectory exits the potential barrier more than
once, rex is taken at the first exit time. As for the Keldysh
parameter, this definition considers the length-gauge
picture for tunneling. However, the definition of β is not
unique and could be refined further or tailored for the study
of specific phenomena.
In Fig. 2, we present two-dimensional plots of βðr0Þ for

photoionization of atomic hydrogen as a function of the
initial position (r0 < 20 a:u:) of the trajectories in the xy
plane. We employ two radically different pulses, describing
an MPI case (γK ¼ 8), and a TI situation (γK ¼ 0.7)
dominated by a single ionization event. The observed
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values of β closely align with our expectations, exhibiting
small values throughout (0 ≤ β ≤ 0.1) for the vertical
ionization case and a large region indicating tunneling
for the long-wavelength scenario.
Remarkably, β not only confirms these expectations but

also provides insightful and detailed information regarding
the ionization mechanism. In Fig. 2(b), it is evident that the
ionization process strongly involves tunneling along the
field, with larger ionization occurring from the region
opposite to the direction of maximum field strength.
Conversely, the multiphoton mechanism occurs orthogonal
to the field, where the potential barrier is weak or
nonexistent. Therefore, this mapping provides opportuni-
ties to study the angular-resolved tunneling dynamics. At
large distances, the mechanism naturally exhibits multi-
photon character, since the trajectories exit at the early
stage of the pulse, with a broad barrier to cross and no time
to respond to changes in the field. Monitoring the time-
dependent energy of these trajectories reveals a more

chaotic behavior for multiphoton trajectories, while tun-
neling trajectories exhibit a smooth and traceable energy
variation, rapidly converging to that of a classical particle
(Q → 0) after exiting the barrier. This method also enables
the retrieval of the exit position and momentum of the
electron.
The statistically averaged tunneling level of the ioniza-

tion process, β̄ ¼ W0
−1

R
D βðr0Þρðr0; 0Þd3r0, is obtained by

weighting βðr0Þ over the initial probability density carried
by each ionizing trajectory [54]. Here, D denotes the set of
ionizing trajectories and W0 ¼

R
D ρðr0; 0Þd3r0 is the total

ionization probability. To design a quantity directly com-
parable with the Keldysh parameter, we define the quantum
adiabatic parameter, γq ≡ ð1 − β̄Þ=β̄, as the ratio between
the degrees of MPI and TI. This quantity has the same
limits as γK, i.e., γq ¼ 0 for perfect TI, γq → ∞ as the
ionization regime tends to MPI, and γq ¼ 1 for equal MPI
and TI efficiency (β̄ ¼ 1=2).
Figure 3(a) compares γq and γK for H(1s) across various

intensities of an 800 nm pulse. While both parameters
approach unity at similar intensities, γq shows a more abrupt
transition between ionization regimes, deviating from the
typical I−1=2 law. For weak fields, MPI is significantly more
pronounced than predicted by the Keldysh approximation.
This discrepancy arises because γK is based on the concept of
tunneling through a distorted potential, rather than the
stepwise energy absorption characteristic of MPI [20].
To explore the sensitivity of γq to the potential shape, we
also considered the short-range Yukawa potential,
VðrÞ ¼ −Z0e−r=r, which is often used to highlight tunnel-
ing effects [55]. By setting Z0 ¼ 1.908 to reproduce the
hydrogen ground-state energy (Ip ¼ 0.5 a:u:), γK remains
unchanged. However, γq indicates significantly more TI for
the Yukawa potential compared to the Coulomb potential in
the intensity range considered. At low intensities, the
presence of excited states in the Coulomb potential naturally
enhances MPI. As the intensity increases, tunneling
becomes the dominant mechanism, and the larger imaginary
velocity in the Yukawa potential close to the nucleus
provides a stronger initial “kick” during tunneling. In
addition, the response time in Yukawa is faster due to the
absence of excited states. At very high intensities, the
imaginary velocity is primarily influenced by the field
strength, causing γq for both Yukawa and Coulomb poten-
tials to bemore similar. Nevertheless, the Coulomb potential
always induces quantum trajectories that tunnel slightly
earlier than in the Yukawa potential [56].
In Fig. 3(b), we analyze the changes of γq with the pulse

duration, considering a 400 nm pulse with either N ¼ 2 or
N ¼ 4 cycles. A subtle difference is evident between the
two pulses: γq for the four-cycle pulse exhibits increased
MPI at low intensity and more prominent tunneling at high
intensity compared to the two-cycle pulse. This difference
is explained as follows: while both pulses reach the same

FIG. 2. Tunneling parameter β from the hydrogen ground state
depending on the initial position of the trajectories in a plane
containing the field. The nucleus is schematically represented by
the red sphere at the origin. (a) MPI case (two-cycle, 150 nm,
5 × 1013 W=cm2 pulse); (b) TI case (one-cycle, 1200 nm,
1 × 1014 W=cm2 pulse). The arrows indicate the direction of
maximum electric field. The inner white area corresponds to the
nonionizing region. See text for details.
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field maximum at t ¼ 0, their satellite peaks, at t ¼ �T=2,
differ due to the different pulse envelopes. Consequently,
within the MPI regime, vertical excitation is more promi-
nent for the four-cycle pulse due to the higher and addi-
tional satellite peaks. With rising intensity, the efficiency of
TI, which follows an exponential law with the field strength
[57], increases more rapidly at the satellite peaks of the
four-cycle pulse. Therefore, the difference in γq arises
mainly from the contrasting tunneling efficiency between
the primary and the side peaks for each pulse. As tunneling
at the primary peak becomes increasingly dominant with
rising field strength, the two curves tend to converge at high
intensity levels, as seen in Fig. 3(b).
Next, we computed γq for a two-cycle pulse at three

different wavelengths. While the results shown in Fig. 3(c)
follow the general predictions, the curves at different
wavelengths cannot be obtained by simple rescaling, as
predicted by the Keldysh model. Even for γK < 1, non-
adiabatic effects are still important. The electron has a
coordinate-dependent energy, which makes it tunnel out
closer to the core than predicted by a static tunneling
picture [56]. This effect is further amplified by the
Coulomb potential [56], explaining the slow decrease rate
of γq. As the intensity increases further, ionizing trajecto-
ries start nearer to the classical tuning point, with a reduced
imaginary velocity and, consequently, a longer tunneling
time. This results in a small, but noticeable inflection in γq,
occurring at lower intensities for the 1200 nm pulse
compared to the 800 nm pulse, due to its slightly higher
ionization rate. This inflection is absent for the Yukawa
potential in the examined intensity range, explained by its
smaller ionization rate and classical turning point, as well
as its larger imaginary velocity. A detailed analysis of the
variation of γq at higher intensities will be presented in a
future study. Note that the inflection in γq only corresponds
to a phase transition. As we delve deeper into the OBI
regime, γq will start decreasing again.

Returning to the analysis of the frequency-dependent
sensitivity of γq, Fig. 4(a) presents its variation as a function
of ω for a two-cycle pulse with I ¼ 5 × 1013 W=cm2.
While γq exhibits an overall linear increase with ω, akin to
γK, we observe intermittent steps at which MPI ceases to
progress uniformly. These distinctive steps correlate with
channel-closing events [58], i.e., a change in the minimum
number m of photons needed to ionize the system. An
m-photon channel is closed when mω ≤ Ip þUp, where
Up ¼ E2

0=4ω
2 is the ponderomotive energy, which effec-

tively shifts the ionization threshold upward. At channel
closing, the excitation of the quasicontinuum of Rydberg
states is known to suppress ionization, because the char-
acteristic time of the electron’s orbital motion is much

FIG. 3. Value of the quantum-trajectory adiabatic parameter γq as a function of the peak intensity in various situations. The pulse
characteristics are indicated in the panels. Comparison (a) for two different potentials (Coulomb and Yukawa) and the standard Keldysh
parameter (Ip ¼ 0.5 a:u:) (b) for different pulse lengths in Hð1sÞ and (c) for various wavelengths in Hð1sÞ.

FIG. 4. γq for a two-cycle pulse as a function of ω starting
(a) from the Hð1sÞ ground state compared with γK, and (b) from
the Hð2sÞ state near the 2s → 3p transition energy. The frequen-
cies for m-photon channel closing are indicated by arrows with
the minimum number of photons needed to ionize also indicated.
See text for details.
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longer than the optical cycle [17]. As a result, γq varies
negligibly near channel closing.
In order to highlight the potential impact of excited states

on the ionization process, we present in Fig. 4(b) results for
two-photon ionization of atomic hydrogen in the 2s state
with varying frequencies around the 2s → 3p transition.
Rather than showing a steady increase, a sharp drop in γq
occurs near resonance, indicating a preference for TI in this
frequency region. This phenomenon is due to population
transfer to the 3p state, which temporally stabilizes the
wave-packet energy and thus favors indirect TI, confirming
findings reported in [21]. As opposed to excited Rydberg
states, the electron in the 3p orbital remains close to the
nucleus, and the width of the barrier in this energy range is
sufficiently large for efficient horizontal ionization to occur.
With increasing intensity, the effect of resonant excitation
on γq should be less pronounced.
As a final application, we explore OBI via quantum

trajectories, ionizing the Hð2sÞ state with a 800 nm pulse.
An ionizing trajectory is classified as exhibiting OBI
characteristics if either its energy EðtÞ consistently remains
above the barrier or if it exits the barrier with EðtexÞ ≤ Ip.
Using this definition, one can compute an OBI ionization
probability, denoted as WOBI, which is compared to W0 in
Fig. 5. WOBI experiences a sharp increase above the OBI
limit corresponding to the intensity where the top of the
potential barrier becomes lower than Ip. With increasing
intensity,WOBI starts to rise at a similar rate asW0, passing
through a transition phase where all trajectories starting
from the classically allowed region go over the barrier.
Only at an intensity about 10 times larger than the OBI
limit, OBI reaches a steady regime where the ratio
WOBI=W0 ≈ 0.6 remains nearly constant. We verified that
the trajectories that do not exhibit OBI characteristics
correlate with ionization away from the field polarization.
In conclusion, we showed that quantum trajectories

represent a powerful tool to investigate strong-field phe-
nomena and explore the electron dynamics beneath and
above a potential barrier. We demonstrated that this
framework can provide quantitative information to shed

light on various high-intensity effects, such as indirect TI,
channel closing, and exit momenta. In particular, we reveal
how the Keldysh parameter underestimates MPI at low
intensities, and put in evidence specific nonadiabatic effects
and the crucial role of the long-range electronic potential.
Lastly, we quantified the intensity-dependent efficiency of
OBI. This methodology provides fine details about the TI
mechanism, potentially paving the way for exploring novel
dynamical effects and advancing theoretical models, e.g.,
the study of return trajectories in high-order harmonic
generation [59–62] and light-induced electron diffraction
[63], the phenomenon of frustrated tunneling ionization
[64], or the influence of chirality on tunnel-ionization
dynamics [65].
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