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Modern hydrodynamic simulations of core-collapse supernovae and neutron-star mergers require
knowledge not only of the equilibrium properties of strongly interacting matter, but also of the system’s
response to perturbations, encoded in various transport coefficients. Using perturbative and holographic
tools, we derive here an improved weak-coupling and a new strong-coupling result for the most important
transport coefficient of unpaired quark matter, its bulk viscosity. These results are combined in a simple
analytic pocket formula for the quantity that is rooted in perturbative quantum chromodynamics at high
densities but takes into account nonperturbative holographic input at neutron-star densities, where the
system is strongly coupled. This expression can be used in the modeling of unpaired quark matter at
astrophysically relevant temperatures and densities.
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Introduction—During the last ten years, neutron stars
(NSs) and their binary mergers—observable through both
electromagnetic and gravitational waves (GW) [1,2]—have
established themselves as the leading laboratory for dense
quantum chromodynamics (QCD) matter. While the

observable properties of single quiescent NSs and even
the inspiral parts of NS mergers are mostly determined by
the equation of state (EoS) of the constituent matter, the
ringdown phase of a NS merger constitutes a consider-
ably more complicated out-of-equilibrium system. In
preparation for the eventual observation of a ringdown
GW signal, extensive hydrodynamic simulations of NS
mergers are currently being carried out, with one crucial
challenge being to correctly account for energy dissipa-
tion and transport in NS matter [3].
Among the different transport coefficients, the bulk

viscosity ζ, which quantifies energy dissipation during a
rapid compression or expansion of matter, stands out as
particularly important [4–12]. For isolated NSs, it affects
the emission of continuous GWs [13], expected to be
detectable in next-generation GWobservatories such as the
Einstein Telescope [14] and Cosmic Explorer [15], and
determines the maximal rotation frequencies of pulsars in a
temperature-dependent fashion, giving rise to the so-called
r-mode stability window in the 1–100 keV range [16–18]
(for a review of NS oscillatory modes, see [19]). In NS
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mergers, the bulk viscosity on the other hand provides
damping for density oscillations, affecting both the
inspiral [20] and post-merger dynamics, of which the latter
involves temperatures up to tens of MeVs. The bulk
viscosity may indeed leave a detectable imprint on the
post-merger GW waveform [21–26], the magnitude of
which is however still under discussion [27].
The dominant contribution to the bulk viscosity comes

about when weak interactions cannot keep pace with the
compression rate, leading to deviations from beta equilib-
rium and a nonequilibrium contribution to the pressure,
against which work can be done. This effect peaks when the
timescales of macroscopic oscillations and microscopic
flavor-changing rates match. In the nuclear matter phase,
the value of ζ depends on multiple factors, such as whether
direct Urca processes are allowed or if hyperons or Cooper
pairing between nucleons are present, each affecting in
particular the temperature scale where ζ reaches its maxi-
mal value (see Ref. [28] for a review).
The first milliseconds of a binary NS merger are known

to involve baryon densities up to several nuclear saturation
densities nsat ≈ 0.16=fm3 as well as temperatures up to
several tens of MeVs (see, e.g., [29]). Such conditions may
also lead to the creation of deconfined QM [30–34], the
transport properties of which differ significantly from those
of nuclear matter. While the value of the QM bulk viscosity
is expected to strongly depend on the presence and details
of quark pairing, differences between various partially
paired configurations are expected to be smaller than
between quark and nuclear matter [28]. This makes the
bulk viscosity an interesting quantity for tracking the
possible creation of QM during mergers.
Despite the phenomenological importance of the bulk

viscosity, our ability to predict its behavior remains limited
owing to the unavailability of controlled first-principles
quantum-field-theory methods at NS densities. The leading
first-principles tools include perturbative QCD (pQCD),
available only at very high densities (see, e.g., [35–37]),
and holography, which describes the strong-coupling limit
of a class of QCD-like theories [38–42]. For QM, leading-
order perturbative results for several transport coefficients
were derived some thirty years ago [43,44] and improved
to next-to-leading order (NLO) later [45,46], whereas at
strong coupling, the shear viscosity and the electrical and
thermal conductivities were first evaluated only recently in
two holographic models [47,48]. For the bulk viscosity,
only the minuscule purely QCD contribution has been
considered in recent literature [47,49], but for the dominant
contribution stemming from an interplay between the
electroweak and strong sectors, no strong-coupling pre-
diction is currently available at all.
In this work, we derive state-of-the-art results for the

thermodynamic response of QM to a change in its flavor
content, thus providing novel predictions for the bulk
viscosity. We do so using both perturbative and holographic

methods, and in particular derive the first strong-coupling
predictions for the quantity. Our results are applicable for
unpaired QM and serve as a starting point for any partially
unpaired phase [28].
The main result of our work is shown in Fig. 1, where we

display the bulk viscosity of NS matter as a function of
temperature for a baryon density of roughly 5nsat. For QM,
we include results corresponding to the free-theory limit,
evaluated at a fixed strange quark mass (ms ¼ 93.4 MeV),
as well as our two holographic models, D3-D7 and V-QCD,
but not the pQCD result, which is not under quantitative
control at intermediate densities. For the confined phase,
we display results corresponding to both nuclear [24]
and hyperonic [50] matter. As we discuss in detail in the
remaining sections of this Letter, our results paint a
consistent picture of the behavior of the QM bulk viscosity
that displays a stark qualitative difference to that witnessed
in the confined phases of QCD. Furthermore, we observe
that for astrophysically relevant densities and temperatures,
nearly all temperature dependence in the QM result
originates from the flavor-changing interactions. For our
D3-D7 computation, this leads to a simple analytic result
for ζ, given in Eq. (5) below, that we suggest for use as an
approximation for the bulk viscosity of unpaired QM in
future phenomenological applications.

FIG. 1. The bulk viscosity ζ of NS matter, evaluated at rotation
frequency ω ¼ 2π × 1 kHz and given as a function of T for a
baryon density nB ≈ 5nsat. The uncertainty bands of the holo-
graphic results are assessed via their matching to QCD: The
D3-D7 result is matched to pQCD quark densities including their
uncertainty bands, while the uncertainty of the V-QCD result is
estimated by varying the parameters of the model within limits set
by lattice-QCD results. Finally, nuclear and hyperonic matter
results (labeled Nucl. and Hyperons) from Refs. [24,50] are
shown for comparison. Note that for technical reasons, the
V-QCD result is shown for 7nsat and the hyperonic one for
4.5nsat. We observe that our QM results always peak within the
r-mode stability window 1–100 keV, but are strongly suppressed at
the Oð10 MeVÞ temperatures involved in NS mergers. This may,
however, be related to the absence of quark pairing in our setup
(see [51] for a counterexample in the color-flavor-locked case).
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Setup—For unpaired three-flavor QM in the neutrino-
transparent regime, the leading contribution to the bulk
viscosity arises from W-boson exchange in the process
uþ d ↔ uþ s. Outside beta equilibrium, i.e., when the d
and s quark chemical potentials differ μd ≠ μs, the quark
densities nd and ns change with rates proportional to an
electroweak rate λ1 [52–54], so that

dnd
dt

¼ −
dns
dt

≈ λ1ðμs − μdÞ: ð1Þ

Neglecting quark masses, the leading low-T contribution to
the rate becomes [54,55]

λ1 ¼
�
1þ σ log

Λ
T

�
4 64

5π3
G2

Fsin
2θccos2θcμ5dT

2; ð2Þ

where GF is the Fermi constant and θc the Cabibbo angle.
The quartic prefactor on the right-hand side represents the
only known OðαsÞ correction to the rate, which is
moreover logarithmically enhanced at low temperatures
as it originates from a so-called non-Fermi-liquid (nFL)
contribution to the specific heat of QM [57] (see also
[58,59]). As discussed in detail around Fig. 5 of the
Supplemental Material [60], this correction allows
us to gauge the importance of the (partially unknown)
OðαsÞ corrections to the rate: for σ ¼ 0, the result reduces
to the leading-order rate, while for σ ≡ 4αs=ð9πÞ and

Λ ≈ 0.158
ffiffiffiffiffi
αs

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2u þ μ2d þ μ2s

q
one recovers the result

derived in [57].
While the unknown QCD corrections to the rate may be

sizable, we note that the qualitative behavior of the rate
likely remains the same at strong coupling: In holography,
the QCD contribution to the rate, replacing the leading-
order multiplicative factor μ5dT

2 above, is available from
the convolution of two flavor-current correlators. For these
correlators, calculations at nonzero quark densities in the
D3-D7 model show a linear dependence on the temperature
at low frequencies [61–63], consistent with the formula
we use. Furthermore, the normalization of the correlators
depends on the number of colors and flavors but not on the
‘t Hooft coupling, thus keeping the rate constant in the
strong-coupling limit.
A study of energy dissipation during a compression-

decompression cycle near beta equilibrium connects ζ to
various susceptibilities χij ≡ ∂

2p=∂μi∂μj and reaction rates
(see Supplemental Material Sec. A [60]) [64]. If we only
take into account the uþ d ↔ uþ s process [46], this
leads to

ζ ¼ λ1A2
1

ω2 þ ðλ1C1Þ2
; ð3Þ

where the coefficients A1 and C1, determined by
various susceptibilities and quark densities, are found in

Eqs. (33) and (34) of the Supplemental Material [60], and ω
denotes the angular frequency of density oscillations
(see [19] for discussion) [65].
The combination of susceptibilities appearing in Eq. (33)

vanishes if the d and s quarks are degenerate in mass—a fact
most easily verified if (33) is given in terms of the inverse
susceptibility matrix (see Supplemental Material [60] for
details). This implies that a nonzero strange quark mass must
be implemented in both the weak- and strong-coupling
setups, which we briefly introduce below.
Methods—In this section, we review our perturbative

and holographic determinations of the susceptibilities that
enter Eq. (3). In both calculations, we treat electrons as
non-interacting and (numerically) solve the corresponding
chemical potential μe from the charge neutrality condition
2nu=3− nd=3− ns=3¼ ne ¼ T2μe=3− μ3e=ð3π2Þ. Together
with the beta-equilibrium conditions μs¼μd, μu ¼ μd − μe,
this allows us to obtain ζ in terms of μd, T, ω. Finally, our
results will depend on the parameter X ≡ Λ̄=ð2μdÞ which
parametrizes our results’ dependence on the unphysical
renormalization scale Λ̄ in the MS scheme. It appears
directly in our pQCD results and indirectly in the D3-D7
ones, where it enters through the high-density matching of
the model to pQCD.
Perturbative QCD: For vanishing quark masses, the

perturbative pressure of deconfined unpaired QCD matter
is known up to order α5=2s at nonzero temperatures and
densities [66,67] and up to partial Oðα3sÞ in the T ¼ 0 limit
[37,68,69]. Up to the highest fully known order Oðα5=2s Þ,
the result can be split into two distinct terms corresponding
to contributions from the hard and soft momentum scales,
which for μ ≫ T are of order μ and α1=2s μ, respectively. We
treat the additional mass-dependent contribution to the
pressure pm within the mass-expansion scheme of [70],
where ms is formally treated as a quantity of Oðα1=2s μÞ and
the light quark masses are neglected. This mass expansion
is performed to Oðm4

sÞ and up to a combined Oðα5=2s Þ (for
the full mass-dependence at T ¼ 0, see [35]). For the value
of the s quark mass, we use the physical MS renormalized
value ms ≈ 93.4 MeV [71]. We have confirmed that addi-
tionally including nonzero mu and md terms would lead
to a vanishingly small effect, while the chemical potentials
realized in NSs are not large enough to allow for heavier
quarks. For the soft contribution, evaluated in the massless
limit, we furthermore use an analytic small-T=μ expansion
derived in [67] that is valid for T ≲ 100 MeV. Mass
corrections to this result start at Oðα3sÞ and can therefore
be neglected.
The perturbative pressure described above can be readily

differentiated to obtain predictions for the coefficients A1,
C1 and eventually for ζ as functions of the three quark
chemical potentials and the renormalization scale para-
meter X. The results constitute lengthy closed-form expres-
sions in terms of standard special functions and their
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derivatives, allowing for inexpensive evaluation of the
necessary quantities.
Holography: The D3-D7 model [72] is the holographic

dual of N ¼ 4 SUðNcÞ super Yang-Mills theory with Nf

copies of N ¼ 2 hypermultiplets in the quenched approxi-
mation Nf=Nc ≪ 1. It consists of Nf probe D7-branes
embedded in the AdS5 × S5 spacetime, while baryon
charge is introduced by turning on an electric field on
the D7-branes [73,74] and temperature by modifying the
geometry to that of a black brane. Following [75],
we extrapolate the model to the physically relevant
Nc ¼ Nf ¼ 3 and fix αs ≈ 0.285 so that the pressure
matches the Stefan-Boltzmann value at high density,
extending the model’s validity towards higher densities.
Although the field content of the model differs from that
of QCD, we note that the thermodynamic coefficients A1

and C1, obtained through chemical-potential derivatives of
the pressure, are highly insensitive the additional fields in
the D3-D7 model.
At vanishing temperature, the pressure of the D3-D7

model takes the simple form [75,76]

p ¼ 1

4π2
X

i¼u;d;s

ðμ2i −M2
i Þ2; ð4Þ

where Mi are the constituent quark masses that we fix by
equating quark densities with pQCD at μd ¼ 1 GeV and
varying X∈ ½1=2; 2�. Doing so, we obtain Mu ∈ ð522.5;
434.6Þ MeV, Md ∈ ð526.4; 435.9Þ MeV, and Ms ∈ ð541.8;
450.1Þ MeV, within this interval in X. In what follows,
in addition to estimating uncertainties by matching to
pQCD at different values of X, we also vary this matching
density within μd ∈ ½1; 2� GeV. At T ≠ 0, we finally
compute the pressure numerically, following methods
introduced in [73,74].
The other holographic model we use is V-QCD [77],

which is a bottom-up model tuned to reproduce QCD
physics as closely as possible (see, e.g., the reviews
[40,41,78]). It combines the improved holographic QCD
model for pure Yang-Mills theory [79,80] to a description
of flavors introduced via tachyonic brane actions [81–83],
featuring, e.g., a running αs as reviewed in the
Supplemental Material [60]. Given that quarks are treated
as unquenched (Nf=Nc ∼ 1) in V-QCD, the model should
capture their physics more realistically than the D3-D7
model. Indeed, V-QCD by construction agrees with various
qualitative properties of QCD (such as confinement and
asymptotic freedom), and its parameters are fitted to data,
including lattice results for the pressure [84,85] and baryon
number susceptibilities [85] at μ ¼ 0. The model is con-
sistent with all known astrophysical observations in the
NS-matter regime [86,87], but eventually becomes incon-
sistent with pQCD at high densities [88].
In this paper, we otherwise follow the treatment of the

above V-QCD papers but relax the assumption of exact

chiral symmetry in the QM phase by turning on a nonzero
strange quark mass, thus extending the prescription of [89].
The corresponding mass parameter of the model is fixed by
demanding that the masses of kaons and η mesons are well
reproduced in the vacuum (see Supplemental Material [60]
and Refs. [90–93] for details). We find that this procedure
underpredicts the dependencies of quark number suscep-
tibilities on the strange quark mass at zero μ and high T,
where the results can be benchmarked against lattice
data [94]. This leads us to expect that this model similarly
underpredicts the effects of the strange quark mass in
physical quantities at high densities.
Finally, we quantify the underlying uncertainty of our

results by allowing the V-QCD parameters vary within
limits set by the lattice QCD fit in the chirally symmetric
phase [85,95], but otherwise follow the computational
strategy of [96] in determining the quantities appearing
in Eq. (3). In both holographic setups, the variation
procedure we perform thus corresponds to the uncertainties
associated with the respective matching procedures.
Results—Our main result for the bulk viscosity of

unpaired QM is displayed in Fig. 1. It highlights a
qualitative contrast between the behavior of ζ in the
confined and deconfined phases of QCD, with the more
suppressed QM results peaking at lower temperatures, and
in addition demonstrates the important effect of interaction
corrections in the latter case. Consistently with our expect-
ations for quantities that vanish in the degenerate-mass
limit, V-QCD appears to predict somewhat lower values for
ζ than our other methods, but nevertheless retains the same
qualitative features.
A closer inspection of our results reveals a number of

interesting further findings. Explicit calculations show that
in all three approaches, the bulk viscosity is insensitive to
the T dependence originating from the coefficients A1 and
C1 of Eq. (3). As demonstrated in Fig. 4 of Supplemental
Material [60], to a good accuracy we can indeed set T ¼ 0
in these functions and only keep the T dependence of the
electroweak rate λ1 in Eq. (2). Another universal character-
istic that all our results exhibit is an approximate quartic
dependence on the strange quark mass, which has been
noted before in [56].
While the full ζ depends on the rate λ1, we may construct

physical features of the bulk viscosity that are sensitive
only to QCD input. For example, the peak value of the
viscosity, ζpeak ≡ ζðTpeakÞ, and its rescaled zero-frequency
limit λ1ζðω ¼ 0Þ that corresponds to the dc bulk viscosity
entering the Israel-Stewart theory [12,97,98] are com-
pletely insensitive to the electroweak rate and can be fully
extracted from the coefficients A1 and C1 in Eqs. (33)–(34).
These two quantities are shown in Fig. 2, where we observe
a good agreement between our pQCD and D3-D7 results
for densities where both predictions are available, while
V-QCD again appears to underestimate the quantities (see
discussion in Supplemental Material [60]).
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Setting T ¼ 0 in A1 and C1, we find that the D3-D7
calculation leads to a remarkably simple analytic formula
as a function of μd

ζ ¼ 4λ1μ
6
dðM2

s −M2
dÞ2

K2
dK

2
sω

2 þ π4λ21ðKd þ KsÞ2
; ð5Þ

where we have defined Ki ≡ 3μ2d −M2
i . We stress that for

the Mi in this formula, one should use the constituent
quark-mass ranges listed below Eq. (4), leading to the
uncertainty ranges visible in Fig. 1. To express this as a
function of nB for the small temperatures of relevance to
BNS mergers, one can further use the T ¼ 0 pressure in
Eq. (4) to numerically relate nB to μd in beta equilibrium.
Returning finally to the bulk viscosity itself, we note that

it is straightforward to compare our NNLO pQCD results to
lower perturbative orders, as shown in Fig. 2 of the
Supplemental Material [60]. We find that the difference
between the NLO and NNLO results is non-negligible
even at 40nsat, and that the results diverge rapidly at lower
densities, making extrapolation to the NS realm impossible.
While the naive free quark expression can, in principle,
be extrapolated to low densities, it completely fails to take
into account the effects of interactions, which become

increasingly important much before the hadronic phase is
eventually reached. For phenomenological purposes, the
compact D3-D7 bulk viscosity of Eq. (5) is on the other
hand appealing as it is rooted in pQCD but takes into
account the strongly coupled nature of the theory at low
densities. To this end, despite its limitations discussed
above, we recommend the use of this result in the modeling
of dense unpaired QM at astrophysically relevant densities
and temperatures, and similarly expect the V-QCD result to
provide a reasonable lower bound for the bulk viscosity.
An important limitation of our present approach is

finally related to the fact that the pairing channel and
the magnitude of the superconducting gap in low- and
moderate-density QM remains unknown (though see [99]
for a recent model-independent study bounding the gap at
high densities). To obtain estimates for the bulk viscosity in
various pairing channels, corrections to both the electro-
weak rate in Eq. (2) and to the thermodynamic functions
entering through Eqs. (33)–(34) should be separately
considered. While the latter are expected to be subleading,
the former may be substantial given that the contribution of
gapped quark modes to the reaction rate is exponentially
suppressed. While the detailed evaluation of these correc-
tions is left for future work, we note that the electroweak
rate receives OðαsÞ QCD corrections even in the unpaired
phase, some of which are presently known [57]. Their
effect is studied in Fig. 5 of the Supplemental Material [60],
where we observe that, in agreement with the λ1 independ-
ence of ζpeak, they primarily simply shift the peak of the
viscosity to lower temperatures.
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