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Monitored random circuits, consisting of alternating layers of entangling two-qubit gates and projective
single-qubit measurements applied to some fraction p of the qubits, have been a topic of recent interest. In
particular, the resulting steady state exhibits a phase transition from highly correlated states with “volume-
law” entanglement at p < pc to localized states with “area-law” entanglement at p > pc. It is hard to
access this transition experimentally, as it cannot be seen at the ensemble level. Naively, to observe it one
must repeat the experiment until the set of measurement results repeats itself, with likelihood that is
exponentially small in the number of measurements. To overcome this issue, we present a hybrid quantum-
classical algorithm which creates a matrix product state (MPS) based “unitary mirror” of the projected
circuit. Polynomial-sized tensor networks can represent quantum states with area-law entanglement, and so
the unitary mirror can well approximate the experimental state above pc but fails exponentially below it.
The breaking of this mirror can thus pinpoint the critical point. We outline the algorithm and how such
results would be obtained. We present a bound on the maximum entanglement entropy of any given state
that is well represented by an MPS, and from the bound suggest how the volume-law phase can be
bounded. We consider whether the entanglement could similarly be bounded from below where the MPS
fails. Finally, we present numerical results for small qubit numbers and for monitored circuits with random
Clifford gates.
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Monitored random circuits, consisting of alternating
layers of random entangling unitaries and local measure-
ment operations on a randomly chosen subsets p of all
qubits, have recently come into focus as a probe into the
interplay of unitary and non-unitary evolution, quantum
error correcting codes, and more [1–7]. These circuits have
been shown to exhibit a phase transition between long
range, volume-law entanglement between the qubits at p <
pc and a local, area-law entanglement phase at p > pc, for
some critical measurement density pc [8]. Significantly,
this is not a property of the entanglement of the statistical
ensemble of states; it is only seen if one averages the
entanglement of each individual outcome, characterized by
the circuit and the record of measurement results [9]. This
makes it difficult to experimentally access these properties,
as generally the number of repetitions required to recreate
same state twice grows exponentially with the number of
measurements.
A variety of lateral approaches have been suggested

to overcome this difficulty. One tack has been to apply a
form of steering, or preselection, to direct the system into a
single state in the entangled regime [10–13]. While this
allows for experimental implementation, the dynamics and

universality regime generally diverge from those of undi-
rected formulations of measurement induced phase tran-
sitions. Techniques looking to probe the undirected form
usually rely on some classical calculation that attempts to
recreate the quantum dynamics of the circuit, and correlate
the final measurement with that calculation [14–20]. In
principle, for any instance of a monitored circuit, consisting
of an initial state, a set of unitary operations and meas-
urement points, and a record of measurement results, the
final state of the system is deterministic, and could be
obtained by a classical computer. In practice, this generi-
cally requires calculating the unitary matrix of a many-
qubit operation, and thus one has simply shifted the
exponential requirement from the experimental regime into
the computational. To avoid this overhead, experimental
approaches generally use an approximation of the state to
extract the entropy, introducing errors or uncertainty to the
result.
Here, we propose an alternate approach for the use of

classical calculations, leveraging the known limitations of
these approximations as a diagnostic tool in itself by
making use of tensor network representations of quantum
states [21,22]. Tensor networks can be used to represent a
subset of many-body quantum states with linear, rather than
exponential, overhead in the number of qubits. Likewise,*Contact author: yanay@umd.edu
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the translation of an instance of a monitored circuit into a
unitary-only equivalent only requires a number of oper-
ations linear in the number of qubits and the depth of the
circuit. The downside of tensor networks is that they cannot
accurately represent states with volume-law entanglement.
We turn this deficiency into a diagnostic tool: as the system
crosses from area-law entropy to volume law entropy
states, we expect to see a similar transition in the overlap
between the real state generated by the monitored circuit
and its TN-generated copy. By measuring this fidelity, as
outlined in Fig. 1, we can experimentally access to the
transition point and measure pc.
Protocol—We consider a chain of N qubits and an

L-layer circuit C. The circuit is composed of a set of gates,
U ¼ fÛl;2qj1 ≤ l ≤ L; 1 ≤ q ≤ bN=2cg, sampled out of

some set of two-qubit unitaries Ûl;q ∈U, and measurement
points, M ¼ fMlj1 ≤ l ≤ Lg, where Ml ⊂ f1;…; Ng,
jMlj ¼ pN for some measurement rate p. At each odd
(even) layer l, we apply Ûl;q between each even qubit 2q
and its preceding (following) neighbor, 2qþ ð−1Þl. After
this, we measure each qubit q∈Ml recording the results
into an L × pN matrix m. The circuit generates a final
state jψ ½U;M;m�i.
To probe entropy properties, we extend the circuit as

follows. We run C as given above, generate jψi, and keep it
in quantum memory. Then U, M, and m are sent to a
classical computer, which calculates an approximate final
state jψDi using a matrix product state (MPS) decom-
position with bond dimension D [22]. We convert it [23–
25] into a “unitary mirror,” a unitary-only circuit that when
applied to an all-zero state, generates CDj0⊗Ni ¼ jψDi. The

quantum device then applies the inverse of the mirror to the
state, to generate jϕDi ¼ C†Djψi. Finally, we measure the
probability of finding all qubits in the zero state, to obtain
the overlap

FD½U;M;m� ¼ jh0⊗N jϕD½U;M;m�ij2
¼��h0⊗N jC†D½U;M;m�jψ ½U;M;m�i��2
¼ jhψD½U;M;m�jψ ½U;M;m�ij2: ð1Þ

By repeating this process, we measure the mirror fidelity
averaged over all possible outcomes m.
How does the behavior of F vary with p? At p ¼ 0, an

MPS withD ≪ 2N is not sufficient to approximate the state
and F approaches zero exponentially with N. At p ¼ 1,
where jψi remains a simple Fock state after each layer, we
expect theMPS to perfectly approximate the circuit and find
F ¼ 1. In between, we may expect it to follow the behavior
of the entropy curve: where the state has area-law or logN
entropy at most, a polynomial D ∼ Nβ may be sufficient to
generate a sufficiently good approximate state so thatF ∼ 1;
while for volume-law entropy, the MPS will fail to capture
the state and we expect the mirror fidelity to drop off
exponentially with N. This is sketched out in Fig. 2.
Upper bound on entropy—To quantify this relation, we

consider the Schmidt decomposition of jψi to the subsets of
qubits f1;…; ng, fnþ 1;…; Ng,

jψi ¼
X2n̄

i¼1

ffiffiffiffiffiffiffiffi
μðnÞi

q
jψ1…nijψnþ1…Ni; ð2Þ

where n̄ ¼ min½n;N − n�, P
i μ

ðnÞ
i ¼ 1, and μðnÞi ≥ μðnÞiþ1.

The Schmidt error [26] is then defined as

(a)

(b)

(c)

(d)

FIG. 1. Outline of our proposed scheme. (a) A randomly
monitored circuit is run on a quantum device generating a state
jψi. (b) The gate parameters and measurement results are fed into
a classical processor, generating a deterministic circuit where
measurements have been replaced with projection operators
(marked as diamonds). We classically calculate an MPS jψDi
approximating the output of this circuit, and from it a “unitary
mirror” circuit that generates it, CDj0⊗Ni ¼ jψDi. (c) Finally, we
apply the inverted mirror C†D to jψi and measure all qubits.
(d) The probability of finding the all-zero state is proportional to
the overlap jhψDjψij2.

FIG. 2. Expectations from the mirror fidelity of a monitored
circuit of N qubits, sketched out as a function of the measurement
probability p and the bond dimensions D (in log scale). Where
the graph is shaded we expect some finite fidelity, while where it
is left white we expect the fidelity to be exponentially small in the
number of qubits. On the left, for p < pc, we expect the wave
function to have volume-law entropy behavior and so the bond
dimension required to approximate it is exponentially large in the
qubit number N. For p > pc, where the wave function has area-
law entropy, a polynomial bond dimension should be sufficient.
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ϵðnÞD ¼
X2n̄

i¼Dþ1

μðnÞi : ð3Þ

By construction, the mirror fidelity is bounded by

F ≤ 1 −maxnϵ
ðnÞ
D [25].

Next, consider the von Neuman entanglement entropy
on the subset, SðnÞ ¼ −

P
i μ

ðnÞ
i log μðnÞi . For a given

Schmidt error, the entropy can be maximized by taking

μi≤D ¼ ð1 − ϵðnÞD Þ=D, μi>D ¼ ϵðnÞD =ð2n̄ −DÞ. Thus, given

ϵðnÞD , the entanglement entropy of the subset i ¼ 1;…; n is
bounded by

SðnÞ ≤ S̄ðϵðnÞD Þ þ
�
1 − ϵðnÞD

�
logDþ ϵðnÞD logð2n̄ −DÞ; ð4Þ

where S̄ðϵÞ ¼ −ð1 − ϵÞ logð1 − ϵÞ − ϵ log ϵ.
Combining the two bounds [25], we arrive at our main

result. We find that given a state approximated by an MPS
of bond dimension D with mirror fidelity F, the entangle-
ment entropy for half the chain is bounded by

SðN=2Þ ≤ ½1þ Nð1 − FÞ=2� log 2þ F logD: ð5Þ

This bound allows us to experimentally probe the limits
of volume law behavior. Consider the scaling behavior of F
as we increase the number of qubitsN, and in particular, the
scaling of the bond dimension required to keep the fidelity
close enough to unity so that 1 − F ≤ 2=N. As long as we
are able to do so for some D ≤ ðANÞβ, then Eq. (5) can be
used to rule out any arbitrarily small volume law coefficient
by increasing the number of qubits,

SðN=2Þ=N ≤ ð2 log 2þ βF log½AN�Þ=N: ð6Þ

Importantly, the relation in Eq. (5) is linear, and so any
averaging over F corresponds directly to the equivalent
averaging for S. This is significant as the experimental
result we obtain averages over the different circuit out-
comes m. By averaging over U, M, we can find an upper
bound on the half-chain entropy and so bound the maxi-
mum volume law coefficient. This in turn can be used to
find a maximum bound on pc.
We numerically explore this bound in Figs. 3 and 4 for

two sets of gates U [27–29]. For two-qubit gates sampled
from the set of Haar-random gates, we consider small
chains, up toN ¼ 16. For U consisting of the set of Clifford
gates, we consider up to N ¼ 60. In both cases we consider
various bond dimensions up toD ¼ N. We observe, in both
cases, behavior consistent with the real bound, shown as a
black line.
For the Haar-random gates, numerics provide limited

evidence; as for the largest qubit number one has
N=2N=2 ¼ 16=256 ¼ 0.0625, which may be in line with
the volume law coefficient near pc. For the Clifford gates,

we observe that for N ¼ 60,D ¼ 60 the F curve appears to
be in line with the D ¼ N cut of the sketch in Fig. 2. Thus,
one may find that this is a tight bound on the entropy,
allowing us to estimate pc from the behavior of the curve
for large N.
To probe pc, we adopt an ε test, ruling out volume-law

behavior whenever the entropy per unit is below some
threshold, SðN=2Þ ≤ εN=2. This can be used to determine an
upper bound on the critical point pc, defined as the smallest
pwhere the right-hand side of Eq. (5) is smaller than εN=2.
Rigorously, we then know that for any p > pc, the volume-
law coefficient for the entropy of the state would be smaller
than the threshold. As noted above, we have numerical
evidence that for large N, one may find that this upper
bound approaches the critical point pc → pc.
Lower bound estimates—Next, we consider whether a

small mirror fidelity can be interpreted as a lower bound on
the amount of entropy in the system. We can follow a
similar procedure to that of the previous section. The upper
bound for the entropy is [25]

SðnÞ ≥ S̄ðϵðnÞD Þ þ ϵðnÞD ð1þ log½D logD�Þ: ð7Þ

Unfortunately, we have found no easy way to bound ϵðnÞD
from below with the fidelity F. Reference [26] has shown
that there exists a specific MPS construction that has

1 −
P

N−1
n¼1 ϵ

ðnÞ
D ≤

ffiffiffiffi
F

p
, but the time to calculate it from

the given circuit scales exponentially with N. In addition,
this is a very loose bound, as evidenced by the left hand side
quickly becoming negative for large values of N.
Instead, let us consider the evolution of the approximate

wave function along the circuit. We obtain jψDi by a simple
iterative process [25]: we begin with the initial state used in
the circuit, jψ0

Di ¼ j0⊗Ni. Then, given an approximate state
jψl−1

D i, we generate jψl
Di by applying the gates and

projection operators of layer l, and then truncating the
state back to bond dimension D. We can obtain the
truncation error of these individual steps as we perform
the calculation, which will be smaller than the total Schmidt
error. Thus, we can substitute it into Eq. (7) to obtain a
lower bound on the entropy of the real state.
The form of Eq. (7) dictates the form of the lower bound

we obtain this way. As ϵðnÞD ≤ 1, to get better bounds we
need to increase the bond dimensionD. If the Schmidt error
remains roughly constant as we increase it polynomially,

ϵðN=2Þ
D¼Nβ ≈ ϵ0, we can rule out weak logarithmic behavior by

obtaining SðnÞ ≥ βϵ0 logN. If the behavior at the critical
point is known, and in particular if it is logarithmic with
some known coefficient, one could show that the entropy is
higher than that for a particular p. Alternately, this
information can be used as qualitative evidence for,
especially if we find a sharp transition at the same p we
observe a break in the upper bound described above.
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Notably, this lower bound estimate makes no use of F; it
relies entirely on feedback from the numerical estimate of
the MPS. This obviously reduces the quantum overhead
required, but it also reduces the classical computation
somewhat, as a smaller light-cone style circuit can be

calculated to extract only ϵðN=2Þ
D . Still, this bound is

logarithmic in D and so the resource requirements scale
unfavorably. However, as mentioned above, the upper
bound, which has polynomial requirements, appears to
be tight and may prove sufficient to extract the critical point
pc. Alternately, one may combine the upper bound
from F with lower bounds estimated by some other means
[19,31].
Computational overhead and realization—We consider

the computational resources required by our proposed
protocol, both classical and quantum. The quantum resour-
ces required are outlined in Fig. 1. These are polynomial in
N by construction: the application of the monitored random
circuit requires a depth of L ∝ N layers, with each layer
having N=2 concurrent two-qubit gates and pN concurrent
measurements. The inverted circuit can be straightfor-
wardly decomposed into N unitary log2D-qubit operations
[23–25], which can be further decomposed into OðD2Þ
two-qubit gates each [32,33] or Õð ffiffiffiffi

D
p Þ gates and OðDÞ

ancillas [34].

The classical computation to calculate the MPS at each
gate consists of matrix multiplication and application of the
two-qubit gate followed by a singular value decomposition,
with complexity OðD3Þ, repeated N=2 times at each layer.
This process is done sequentially in parallel with the
quantum computation as output arrives, as each update
of the MPS requires only the measurement results from a
single layer. Alternately, the finished state would be held in
quantum memory as the computation takes place.
Conclusion and outlook—We have presented here a

hybrid quantum algorithm for probing the entropy tran-
sition in monitored random circuits by generating a unitary
mirror, showing a path to obtain a rigorous upper bound on
the amount of entanglement entropy in a qubit chain, and so

(a) (d)

(b) (e)

(c) (f)

(g) (h)

FIG. 4. The upper bound on the value of the volume-law
coefficient, derived from overlaps shown in Fig. 3, as described in
the text. Shown for circuits using (a)–(c),(g) randomly chosen
two-qubit Clifford gates and (d)–(f),(h) Haar-random two-qubit
gates as entanglers. The dotted gray lines denote the critical point
pc [30]. (a)–(f) Each subplot corresponds to the noted chain
length N, and each curve corresponds to a different bond
dimension D, corresponding to the same plot in Fig. 3. We
observe the logD behavior implied by Eq. (5). (g),(h) We extract
an overall curve for each N by taking the minimum value of S
over D. We can see how the bound on the volume law decreases
as we increase N; this takes the form of the 1=N dependence
shown in Eq. (6).

(a) (d)

(b) (e)

(c) (f)

FIG. 3. The average overlap F of the unitary mirror gene-
rated by the MPS for various random circuits. Shown for circuits
using (a)–(c) randomly chosen two-qubit Clifford gates and
(d)–(f) Haar-random two-qubit gates as entanglers. The dotted
gray lines denote the critical point pc [30]. Each subplot
corresponds to the noted chain length N, and each curve
corresponds to a different bond dimension D. For the Clifford
circuits, we see a clear inflection point at the critical density; for
the Haar circuits, we see signs of a similar phenomenon.
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on the critical point pc, with only polynomial quantum and
classical resources.
Throughout the Letter, we have focused on the common

case of a one-dimensional chain. In fact, the derivation
described in Eq. (3) to (6) generalizes to higher dimensional
systems. The number of terms in the Schmidt decompo-
sition of the tensor network simply goes from D → DjAj,
where jAj is the number of qubits in the boundary of the
subset, and the same bounds follow. However, it may not be
straightforward to generate an appropriate high-fidelity
MPS in polynomial time and convert it into a unitary
mirror circuit with a polynomial number of gates. These
may still be possible with specific forms of the tensor
network [35].
While we focus here on pinpointing the volume law

transition, the mirror fidelity may in itself have interesting
properties [36]. We have hypothesized that the upper bound
pc is tight. If it is not, then perhaps there is a different

critical point pðFÞ
c ; a divergence of these could hint at some

measure of entanglement in a state beyond the entangle-
ment entropy which could be probed by the unitary mirror.
Alternatively, one can imagine a version of the scheme

where the mirror circuit is applied directly to a set of
auxiliary qubits, generating the state jψi ⊗ jψDi. This
could be used as a resource in any number of generalized
schemes to probe the monitored circuit ensemble [31].
In addition, while our algorithm focuses on producing F,

the mirrors calculated can be stored beyond the initial run.
Where we find F ∼ 1, they are good approximations of the
real state, and so analyzing them can give us any insights
we desire about the actual state produced by the monitored
circuits. This may be true up to the critical point itself.
Finally, we note that the resources needed to produce a

quantum-advantage result here are not large. The quantum
resources required for the unitary mirror, in particular, may
be as little as D ancilla qubits and a depth of Oð ffiffiffiffi

D
p Þ gates

[25,34]. Thus, they are likely to be smaller than those
required for the monitored circuit itself. The other road-
block to implementing such algorithms is the need to
implement quantum-classical communication midcircuit,
and go beyond simple if statements in the quantum code.
Such capabilities would open the door to many more hybrid
algorithms.
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