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We consider a quantum system driven out of equilibrium via a small Hamiltonian perturbation. Building
on the paradigmatic framework of linear response theory (LRT), we derive an expression for the full
generating function of the dissipated work. Remarkably, we find that all information about the distribution
can be encoded in a single quantity, the standard relaxation function in LRT, thus opening up new ways to
use phenomenological models to study nonequilibrium fluctuations in complex quantum systems. Our
results establish a number of refined quantum thermodynamic constraints on the work statistics that apply
to regimes of perturbative but arbitrarily fast protocols, and do not rely on assumptions such as slow driving
or weak coupling. Finally, our approach uncovers a distinctly quantum signature in the work statistics that
originates from underlying zero-point energy fluctuations. This causes an increased dispersion of the
probability distribution at short driving times, a feature that can be probed in efforts to witness nonclassical
effects in quantum thermodynamics.

DOI: 10.1103/PhysRevLett.133.070405

At the microscopic level, the traditional laws of thermo-
dynamics fall short at providing an accurate description due
to the fact that fluctuations in work, heat, and entropy
production play a preponderant role [1–3]. Besides being of
fundamental importance, these thermodynamic fluctuations
have several direct implications on the performance of
small-scale engines and (bio)chemical reactions [4–7]. For
these reasons, understanding the statistical aspects of
dissipative processes has been one of the overarching
themes of the field of stochastic thermodynamics [8–10].
At even smaller scales, quantum mechanics represents an
additional source of fluctuations even in the absence of any
thermal agitation. While quantum properties have often
been shown to lead to advantages over classical counter-
parts with regard to expectation values or speedups in total
process time [11–13], many open questions still remain
surrounding the thermodynamic cost associated to quantum
fluctuations (i.e., the process precision) [14–25].
One pressing question is to understand the nature of

quantum fluctuations in finite-time thermodynamic proc-
esses. Recent studies of slowly driven quantum systems
have uncovered a wealth of strong results in this direction,
ranging from finite-time thermodynamic bounds and trade-
offs [25–31], general optimal control strategies [32,33],

geometric phase effects [34], and broad identifications of
quantum signatures in work statistics [35,36]. However,
going beyond slow driving regimes remains a significant
challenge, due to the fact that finite-time processes require
precise knowledge about the underlying dynamics. This is
especially difficult to obtain when a system is driven via
time-dependent Hamiltonian driving or in contact with an
external environment. One way around this is through
linear response theory (LRT), which allows one to utilize
phenomenological models to make thermodynamic pre-
dictions based on the system’s response to small perturba-
tions. Since its original formulation by Kubo [37], LRT has
remained an indispensable tool for studying systems close
to equilibrium [38], with significant applications to quan-
tum transport [39], many-body quantum physics [40], and
quantum field theory [41]. In the context of quantum
thermodynamics [42], one use of LRT has been the
development of general optimization strategies for minimal
average work dissipation protocols [43–45].
In this paper, we develop a broader picture by character-

izing the full quantum work distribution in LRT. In
particular, we derive a universal and model-independent
expression for all the statistical cumulants (average, vari-
ance, and higher fluctuations) of the dissipated work spent
when driving a quantum system out of equilibrium by
means of a finite-time, weak perturbation. Crucially, we
show that all these higher order fluctuations can be directly
obtained through a single well-known quantity; the sys-
tem’s relaxation function [37,44]. The latter is one of the
central quantities in LRT and often represents the basis for
phenomenological thermodynamic descriptions of complex
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many-body systems. Our main result opens new routes to
analyze all the properties of work statistics in complex
systems by means of this easily accessible quantity, as we
exemplify with examples of systems undergoing over-
damped and underdamped Brownian motion.
This result allows us to identify a new set of refined

quantum thermodynamic constraints, including a fluc-
tuation theorem and positivity of all work cumulants.
These solely rely on minimal assumptions such as unitary
dynamics on the full system and small Hamiltonian
perturbations. Operationally speaking, our theory moreover
predicts the existence of a distinctly quantum effect on the
work probability distribution, which results in a significant
broadening of the dispersion at low temperatures and
prevents saturation of the thermodynamic uncertainty
relation. We show that this nonclassical signature can be
deeply connected to the breakdown of the equipartition
theorem in quantum statistical mechanics.
Quantum dissipated work statistics in LRT—We begin by

considering a quantum system unitarily driven out of
equilibrium by means of a time-dependent Hamiltonian
driving, Ht ≔ H0 þ λtV, over a finite interval t∈ ½0; τ�.
Here, t ↦ λt is a dimensionless function characterizing a
particular driving protocol, and the operator V is treated as a
perturbation that is turned on at time t ¼ 0 (i.e., λ0 ¼ 0). The
system is initially prepared in a thermal Gibbs state ρ0 ¼ π0
at inverse temperature β ¼ 1=ðkBTÞ, where we denote
πt ≔ e−βHt=Zt. After the driven evolution, the final state

is given by ρτ ¼ Uτπ0U
†
τ, with Uτ ¼ T⃖ expði=ℏ R τ

0 dt
0Ht0 Þ.

The main thermodynamic quantity of interest is the dissi-
pated work irreversibly spent to drive the system out of
equilibrium:

Wdiss ≔ W − ΔF; ð1Þ

with W denoting the stochastic quantum work defined
through a two-time projective energy measurement at the
beginning and end of the driving [46,47], and with ΔF ¼
−β−1 lnðZτ=Z0Þ being the change in equilibrium free energy.
A full stochastic thermodynamic description of the process
can be derived from the resulting distribution in dissipated
work PðWdissÞ. As shown in Ref. [48], this information is
quantified by the quantum Renyi divergence between the
instantaneous equilibrium state πτ and the nonequilibrium
state ρτ, since the cumulant generating function (CGF) of the
process is found to be

KðηÞ ≔ lnhe−ηβWdissi ¼ ðη − 1ÞSηðπτjjρτÞ; ð2Þ

where Sαðρ1jjρ2Þ ≔ ðα − 1Þ−1 ln Trðρα1ρ1−α2 Þ is the Renyi
divergence of order α > 0, generalizing the quantum relative
entropy. From the CGF, we can derive cumulants using the
formula κkW ≔ ð−kBTÞklimη→0∂

kKðηÞ=∂ηk.
In LRT one assumes a weak perturbation such that

jλtj ≪ 1 for ∀ t∈ ½0; τ�, with normalization kVk ¼ 1,

resulting in a small deviation from the initial equilibrium
state at all times given by [49]

ρt ¼ π0 −
i
ℏ

Z
t

0

dt0λt0 ½Vðt − t0Þ; π0�; ð3Þ

with notation AðtÞ ≔ eiH0t=ℏAe−iH0t=ℏ indicating the inter-
action picture.
Under this approximation, it is known that the linear-

order correction to the average dissipated work is given in
terms of the two-time integral [43,44,50]

βhWdissi ¼
1

2

Z
τ

0

dt
Z

τ

0

dt0 Ψ0ðt − t0Þλ̇tλ̇t0 : ð4Þ

Here t ↦ Ψ0ðtÞ denotes a central object in LRT known as
the relaxation function [37], which can be expressed using
the Kubo covariance as follows:

Ψ0ðtÞ ≔ β

Z
β

0

dshVð−iℏsÞVðtÞi0 − β2hVi20; ð5Þ

where h:i0 denotes the average with respect to the thermal
state π0. Physically, in LRT Ψ0 allows one to introduce
a characteristic timescale τR ≔

R∞
0 dtΨ0ðtÞ=Ψ0ð0Þ over

which two-time correlations in t ↦ VðtÞ decay in time.
While the calculation of the relaxation function in principle
requires knowledge of the exact dynamics of the system,
the power of LRT lies in the fact that one may often use
phenomenological models of Ψ0 to investigate the generic
behavior of systems where this information may not be
available. To do this one must impose certain constraints on
any ansatz that would ensure both dynamical and thermo-
dynamic consistency. The two key properties we require are

Ψ0ðtÞ ¼ Ψ0ð−tÞ; ∀ tΨ̃0ðωÞ ≥ 0 ∀ω∈R; ð6Þ

where Ψ̃0ðωÞ ¼ F ½Ψ0�ðωÞ denotes the Fourier transform of
the relaxation function. The first property reflects time-
reversal symmetry due to the underlying Hamiltonian
dynamics. The second property in (6) expresses the
positivity of its Fourier transform, and is equivalent to
hWdissi ≥ 0 in agreement with the second law of thermo-
dynamics [51]. Both conditions (6) follow from a fully
Hamiltonian description and thus provide a consistency
check for any approximate, phenomenological model
of Ψ0ðtÞ.
Going beyond average quantities is however necessary in

order to properly characterize the thermodynamics of
nanoscale processes, both classical and quantum even
within LRT. In what follows we achieve this goal by
systematically exploiting the state expansion, Eq. (3), in
order to obtain the linear order corrections to the full
cumulant generating function of the dissipated work,
Eq. (2), and consequently to all its higher statistical
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cumulants κkW . Expanding the Renyi divergences in Eq. (2)
up to second order in the perturbation strength, we arrive at
our first main result for the full CGF in LRT,

KðηÞ ≔ −
Z

τ

0

dt
Z

t

0

dt0 λ̇tλ̇t0⟪δVðtÞ; δVðt0Þ⟫η
0; ð7Þ

with δA ≔ A − TrðAπ0Þ [52]. The bilinear form in (7)
denotes a generalized version of the Kubo correlation
function, Eq. (5), defined as

⟪A; B⟫η
0 ≔

Z
βη

0
dx

Z
β−βx

βx
dyhBð−iℏyÞAi0: ð8Þ

Here the integration over imaginary time relates to the
Green-Kubo-Mori-Zwanzig product [55]. This quantity
originates from the field of quantum information geometry
[56,57] and has recently found applications in stochastic
thermodynamics, e.g., in slowly driven processes [35], and
in the context of the locality of temperature [58]. It is
however worth noting that, at variance with what happens
in the slow driving regime where one neglects correlations
over long times, the LRT accounts for memory effects due
to finite-time driving, as reflected by the double time
integral in Eq. (7).
Our second main result establishes a link between Eq. (7)

and the Kubo relaxation functionΨ0ðtÞ in Eq. (5). By using
similar arguments of Ref. [59] combined with the time-
reversal symmetry Ψ0ðtÞ ¼ Ψ0ð−tÞ, one can re-express
Eq. (7) as

KðηÞ ¼ −
Z

τ

0

dt
Z

τ

0

dt0 λ̇tλ̇t0 ½gη � Ψ0�ðt − t0Þ; ð9Þ

where

gηðtÞ ≔ F−1
�
sinh½βℏωð1 − ηÞ=2� sinhðβℏωη=2Þ

βℏω sinhðβℏω=2Þ
�
ðtÞ ð10Þ

is the inverse Fourier transform of a model- and process-
independent function [52]. The key insight of Eq. (9) is that
the relaxation function now fully characterizes the stochas-
tic thermodynamics of a process for small perturbations,
with gη acting as a universal generating function for the
higher order fluctuations via its convolution with Ψ0. The
benefit of this expression is thus that one can now derive a
number of general properties of the dissipated work
statistics. Firstly, it is straightforward to see from Eq. (9)
that the symmetry KðηÞ ¼ Kð1 − ηÞ holds true for all η.
This in turn implies, via an inverse Laplace transform, the
validity of the Evan-Searles fluctuation theorem [60] for
PðWdissÞ∶

PðWdissÞ
Pð−WdissÞ

¼ eβWdiss : ð11Þ

While this has been known to apply to systems driven
slowly [35] or via time-symmetric driving protocols [61],
here its validity is also demonstrated in LRT.
In contrast to what is typically expected for linear

response regimes in classical stochastic thermodynamics
[62–64], our result predicts a quantum work distribution
that is distinctly non-Gaussian at finite temperatures. This
can be seen by showing that the cumulants higher than the
variance (i.e., skewness, kurtosis, etc.) are nonzero. Taking
derivatives of Eq. (9) and using the convolution theorem,
we obtain that all cumulants in dissipated work are positive
and given by

βkκkW ¼
Z
R

dωffiffiffiffiffiffi
2π

p Ψ̃0ðωÞγkðωÞ
����
Z

τ

0

dt λ̇teiωt
����
2

≥ 0; ð12Þ

where

γkðωÞ ≔
� 1

2
ðβℏωÞk−1 cothðβℏω=2Þ if k even;

1
2
ðβℏωÞk−1 if k odd:

ð13Þ

This positivity is a consequence of Ψ̃0ðωÞ ≥ 0. These
relations provide a refined set of constraints on the shape
of PðWdissÞ, demonstrating the presence of non-Gaussian
tails for values Wdiss > 0. These right tails have notable
physical implications, since their presence and magnitude
quantify an increased likelihood of large dissipation
accompanying the realizations of the given driving proto-
col. An analogous non-Gaussian signature has been shown
to occur in slowly driven systems [22,35], and also many-
body systems driven in finite time across a phase transition
[65]. We emphasize the quantum origin of these tails;
classical Gaussian behavior can be recovered by either
taking a high temperature limit, or assuming a commuting
perturbation ½V;H0� ¼ 0 [52].
Statistical interpretation of quantum signatures—As a

final result, our linear response approach also highlights a
quantum signature in the statistics via a thermodynamic
uncertainty relation (TUR). It is known that distributions
satisfying the fluctuations in relation (11) are constrained
by the TUR, which in the LRT regime can be expressed in
terms of a lower bound,

FW ≔
varðWÞ
hWdissi

≥ 2kBT; ð14Þ

on the Fano factor (or relative dispersion) of the work
distribution [24]. Classically, for a system that remains
close to equilibrium such as in LRT [64,66] or slow driving
[63,67] one should expect to saturate the TUR. However,
we show here that for finite temperatures the TUR cannot
be saturated due to the influence of quantum fluctuations,
and we provide a clear-cut statistical interpretation of this
effect. To achieve this goal, we use Ψ̃0ðωÞ to define a
normalized probability distribution over the continuum of
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frequencies ω∈ ½0;∞Þ associated with the system dynam-
ics, which we refer to as pseudomodes:

P̃ðωÞ ≔ Ψ̃0ðωÞj
R
τ
0 dt λ̇te

iωtj2R
∞
0 dω Ψ̃0ðωÞj

R
τ
0 dt λ̇te

iωtj2 ; ð15Þ

where the positivity is guaranteed by thermodynamic
consistency [Eq. (6)]. Crucially, it now becomes apparent
that the average energies of these modes determine the
dispersion of the work distribution. First one can notice
that, since Ψ0ðtÞ ¼ Ψ0ð−tÞ, then Ψ̃0ðωÞ is necessarily an
even function of ω. It is then straightforward to show from
Eq. (12) that the Fano factor, Eq. (14), can be expressed as

FW ¼ �
ℏω cothðβℏω=2Þ�P̃ ¼ 2hEωiP̃; ð16Þ

where h·iP̃ denotes an average with respect to the pseudo-
mode distribution ω ↦ P̃ðωÞ in Eq. (15). We can now
recognize the rhs as twice the average total energy Eω of a
quantum harmonic oscillator at frequency ω and in thermal
equilibrium. Interestingly, this is still true even if the
original system at hand is not a harmonic system. This
highlights a statistical-mechanical connection between the
physical dissipated-work fluctuations and the effective
energy distribution of the pseudomodes associated with
the driving protocol. Some key properties of this quantity
can then be inferred, such as the following inequality:

FW ≥ ℏhωiP̃ cothðβℏhωiP̃=2Þ: ð17Þ

This follows from Jensen’s inequality for the convex function
x ↦ x cothðβx=2Þ, and is tighter than the TUR (14). The
genuine quantum origin of this effect is clear since the term
ℏhωi represents in fact the average zero-point energy of the
pseudomodes with respect to P̃ðωÞ, and is responsible for
preventing any saturation of the TUR. In fact, at low
temperatures and short times we may approximate
ℏω cothðβℏω=2Þ ≃ ℏjωj meaning that FW ≈ ℏhωi for
βℏ=τR ≫ 1, and hence the distribution will exhibit nonzero
dispersion at absolute zero unlike a classical system. We can
relate these nonvanishing fluctuations to the breakdown of
the equipartition theorem in quantum statistical mechanics
[68]. Traditionally, this consideration applies to quantum
systems in equilibrium and expresses the fact that energy
cannot be equally shared amongst all degrees of freedom due
to its discrete nature, implying a frequency dependence on
the average energy rather than the classical prediction of
hEωi ¼ kT [69]. In the present context, we see that a similar
breakdown occurs for nonequilibrium processes in linear
response, preventing the saturation of the TUR.
Finally, consistency with classical thermodynamics is

ensured in the high-temperature–long-time limit βℏ=τR≪1,
since xcothðxÞ≃1 for x≪1, and one recovers FW → 2kBT.
While a similar-in-spirit quantum signature has been

derived for slowly driven Markovian systems [33,35],
the result obtained here goes significantly beyond that as
it applies to arbitrary processes driving a system out of
equilibrium in finite-time regimes, provided that the per-
turbation to the local Hamiltonian remains weak.
Examples—As mentioned above, one of the most power-

ful consequences of our main result, Eq. (9), is that it allows
one to characterize the full statistics of dissipation in more
complex systems, where we may not have solutions to the
full Hamiltonian dynamics. This is especially relevant for
driven open quantum systems, whose dissipated work’s
statistics can still be described using our Eq. (9) provided
one is simply given a good ansatz or approximation for the
relaxation function. Here we benchmark this by consider-
ing the following two phenomenological models of Ψ0,
which are thermodynamically consistent according to
Eq. (6) [52]:

Ψð1Þ
0 ðtÞ ≔ Ψð1Þ

0 ð0Þe−γjtj; ð18Þ
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FIG. 1. Fano factor (14) for the work distribution in units of
kBT as a function of the rescaled time γτ. Inset: rescaled
dissipated work βhWdissi=½Ψ0ð0Þδλ2� as a function of the rescaled
time γτ. Panel (a) depicts the overdamped model Ψð1Þ

0 in Eq. (18),
and the other curves correspond to different values of ℏβγ ¼ 0.5
(blue), 2 (purple), 5 (magenta), and 10 (red). Panel (b) refers to

the underdamped model Ψð2Þ
0 , and the curves correspond to fixed

low temperature β ¼ 5 and different values of the frequency
ν ¼ 2γ (blue dotted), 5γ (blue dot-dashed), 10γ (blue dashed),
and 15γ (blue solid).

PHYSICAL REVIEW LETTERS 133, 070405 (2024)

070405-4



Ψð2Þ
0 ðtÞ ≔ Ψð2Þ

0 ð0Þe−γjtj
	
cosðνtÞ þ ðγ=νÞ sinðνjtjÞ



: ð19Þ

In practice, such models can be built from the Kramers-
Kronig relations and sum rules by imposing a number of
Hamiltonian constraints that adequately characterize the

system behavior [70]. In the first instance, Ψð1Þ
0 ðtÞ provides

a reasonable description of an overdamped Brownian
dynamics [44], with free parameter γ ¼ 1=τR setting the
characteristic timescale over which the relaxation function
decays. It also can describe many-body quantum systems
such as the two-dimensional Ising model in a transverse

field [71]. The second model, i.e., Ψð2Þ
0 , includes an

oscillatory behavior with an additional degree of freedom
ν that quantifies the frequency of an external potential, and
should be viewed as a model of underdamped Brownian
motion [44]. This model arises, for example, from the
quantum dynamics of weakly interacting magnetic systems
[72]. A remarkable feature of the linear response regime is
that we can predict how the dispersion of the dissipated
work distribution changes over time independent of the
system-specific features contained inΨ0ð0Þ. In Fig. 1(a) we
plot the dispersion of the overdamped model as a function
of time for different temperatures and using a linearly
driven protocol. In this case, we see that the correction
monotonically decays in the long time limit γτ → ∞,
indicating that the quantum fluctuations become less
relevant at long times. Conversely, at short times we see
a dramatic quantum signature with large dispersion in the
work distribution above the classical fluctuation-dissipa-
tion relation FW ¼ 2kBT. While long time decay can be
ensured via the damping terms in (18), monotonicity is not
necessarily guaranteed. This is clearly seen in the under-
damped dynamics in Fig. 1(b), which indeed shows non-
monotonic changes in the dispersion at short times. In the
Supplemental Material [52], we also consider a nonexpo-
nential model of Ψ0ðtÞ, and use the bound (17) to derive
analytic predictions for the Fano factor.
Conclusions—In summary, we have systematically

extended a linear response analysis to characterize the full
distribution for the quantum dissipated work statistics done
along weakly perturbed processes. Our general formula for
the CGF, Eq. (9), paves new ways for studying properties of
higher order work statistics of complex systems via
phenomenological models of the relaxation function.
This can be used to explore thermodynamic optimization
problems that revolve around stochastic fluctuations such
as Pareto optimal work extraction [73] and free energy
estimation [74]. The precise connection between the work
distribution and relaxation function could also be used to
explore the impact of non-Markovianity [75] and phase
transitions [76] on work statistics from a general perspec-
tive. Our results have also predicted a clear quantum
signature (16) that causes an increase in the dispersion
of the work distribution at short driving times and finite

temperatures, and is universally applicable to composite
systems that are driven by local perturbations. Since the
Fano factor FW can be measured experimentally from the
work statistics [77], this offers a clear route to detecting
truly nonclassical behavior from thermodynamic variables.
Finally, it would be interesting to explore generalizations of
our formalism to study more general nonequilibrium
states [78].
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