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A key question in the thermodynamics of open quantum systems is how to partition thermodynamic
quantities such as entropy, work, and internal energy between the system and its environment. We show
that the only partition under which entropy is nonsingular is based on a partition of Hilbert space, which
assigns half the system-environment coupling to the system and half to the environment. However,
quantum work partitions nontrivially under Hilbert-space partition, and we derive a work sum rule that
accounts for quantum work at a distance. All state functions of the system are shown to be path independent
once this nonlocal quantum work is properly accounted for. Our results are illustrated with application to a
driven resonant level strongly coupled to a reservoir.
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The program of scaling the laws of thermodynamics
down to the nanoscale and beyond has proven to be
exceptionally challenging. While substantial progress has
been made [1–21], there exists little consensus on some of
the most foundational questions, especially in the extreme
quantum limit. Formulating the First Law of Thermo-
dynamics for open quantum systems begs the question
of how to partition quantum observables between the
system and its environment. Various competing schemes
have been proposed in the literature [22–29], many of
which involve assigning part of the interfacial energy to the
system and the remainder to the environment.
In this Letter, we analyze the thermodynamics of a

quasistatically driven open quantum system strongly
coupled to its environment, and show that entropy is only
well-defined under a Hilbert-space partition, which divides
the system-environment coupling equally between the
system and the environment. Internal energy, chemical
work, and entropy are partitioned straightforwardly under a
partition of Hilbert space. However, the partition of
quantum work is nontrivial in this framework. We therefore
derive a work sum rule that accounts for the thermody-
namic effect of quantum work at a distance. All state
functions of the system are shown to be path independent
once this nonlocal quantum work is properly accounted for.
The internal energy UðtÞ of the Universe (consisting of

systemþ environment) with Hamiltonian HðtÞ is

UðtÞ ≔ hHðtÞi; ð1Þ

where h i denotes the quantum statistical average
hHðtÞi ¼ TrfHðtÞρðtÞg, where ρðtÞ is the density matrix
of the universe at time t and Trfg denotes the trace over the
full Fock space. The (inclusive) rate of work done by
external forces on the Universe is [5,26,30]

ẆextðtÞ ≔
d
dt

hHðtÞi ¼ hḢðtÞi; ð2Þ

where the second equality follows from the von Neumann
equation for the density matrix (see Sec. I in [31]).
In this Letter, we consider a time-dependent quantum

universe of fermions without interparticle interactions. In
that case, the internal energy and power delivered can be
expressed in terms of the single-particle Green’s function
G<ðt; t0Þ as

UðtÞ ¼ −iTrfhðtÞG<ðt; tÞg; ð3Þ

and

ẆextðtÞ ¼ −iTrfḣðtÞG<ðt; tÞg; ð4Þ

respectively, where hðtÞ ¼ hSðtÞ þ hR þ hSRðtÞ is the
matrix representation of HðtÞ in the one-body Hilbert-
space, and Tr denotes a trace over this Hilbert space (see
Sec. II A in [31] for the definition and evaluation of G<).
Here, hSðtÞ is the driven Hamiltonian of the quantum
subsystem of interest, hR is the Hamiltonian of the macro-
scopic reservoir, and hSRðtÞ is the coupling Hamiltonian.
We consider a quantum system that can exchange energy

and particles with a reservoir in equilibrium at temperature T
and chemical potential μ. The system is driven quasistati-
cally so that it remains in equilibrium with the reservoir
throughout the driving protocol. Under these conditions, the
equal-time Green’s function takes the quasiequilibrium form
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G<ð0Þðt; tÞ ¼
Z

dϵfðϵÞAð0Þðt; ϵÞ; ð5Þ

where Að0Þðt; ϵÞ ¼ δ½ϵ − hðtÞ� is the spectral function in the
quasistatic limit (see Sec. II A in [31]) and fðϵÞ ¼ ð1þ
eβðϵ−μÞÞ−1 is the Fermi-Dirac distribution. Here, the super-
script AðnÞ denotes the order in time derivatives of the driving
Hamiltonian. We note that Eq. (5) is exact to all orders in the
system-reservoir coupling hSRðtÞ, but omits terms involving
ḣðtÞ, ḧðtÞ, etc.
The relevant thermodynamic quantities for such a uni-

verse are evaluated as follows (see Sec. II B in [31]). The
internal energy is given by

Uð0ÞðtÞ ¼
Z

dϵ gðt; ϵÞfðϵÞϵ; ð6Þ

where gðt; ϵÞ ¼ TrfAð0Þðt; ϵÞg is the quasistatic density of
states. Similarly, the quasistatic power delivered may be
computed using Eqs. (4) and (5) as

Ẇð1Þ
extðtÞ ¼

Z
dϵ fðϵÞTrfḣðtÞAð0Þðt; ϵÞg: ð7Þ

The quasistatic entropy is given by

hSðtÞi ¼ Sð0ÞðtÞ ¼
Z

dϵ gðt; ϵÞsðϵÞ; ð8Þ

where the entropy operator SðtÞ ¼ − ln ρðtÞ, sðϵÞ ¼
βðϵ − μÞfðϵÞ þ lnð1þ e−βðϵ−μÞÞ, and we set kB ¼ 1. The
mean number of particles is given by

Nð0ÞðtÞ ¼
Z

dϵ gðt; ϵÞfðϵÞ: ð9Þ

The grand canonical potential of the Universe is
Ωð0ÞðtÞ ¼ Uð0ÞðtÞ − TSð0ÞðtÞ − μNð0ÞðtÞ, which can be
expressed as

Ωð0ÞðtÞ ¼
Z

dϵ gðt; ϵÞωðϵÞ; ð10Þ

where ωðϵÞ ¼ −ð1=βÞ lnð1þ e−βðϵ−μÞÞ.
The first variations of the thermodynamic quantities

satisfy Ω̇ð1ÞðtÞ¼U̇ð1ÞðtÞ−TṠð1ÞðtÞ−μṄð1ÞðtÞ. Importantly,
the first variation of Ω is equal to the external work

Ẇð1Þ
extðtÞ ¼ Ω̇ð1ÞðtÞ ð11Þ

(see Secs. III A and III B in [31] for derivations).
A central quantity in scanning probe microscopy is the

local density of states [8–10,12,13,16,34–45], which pro-
vides a firm experimental basis to construct local thermo-
dynamic state functions in real quantum systems. The local

density of states of subsystem γ is defined as [46,47]
gγðt; ϵÞ ≔ TrfΠγδ½ϵ − hðtÞ�g, where Πγ ¼

R
x∈ γ dxjxihxj is

the projection operator onto subspace γ of the single-
particle Hilbert-space. gγðt; ϵÞ gives the local spectrum of
the nonlocal operator hðtÞ.
The partitioned thermodynamic quantities UγðtÞ, SγðtÞ,

NγðtÞ, and ΩγðtÞ are defined [48–50] by simply replacing
gðt; ϵÞ by gγðt; ϵÞ in Eqs. (6), (8), (9), and (10), and are the
quantum statistical averages of partitioned quantum observ-
ablesHjγ , Sjγ, and Njγ , respectively, whereOjγ is the Fock-
space operator corresponding to the following operator
defined on the single-particle Hilbert space [51] (see
Sec. IV in [31])

ojγ ¼
1

2
fΠγ; og; ð12Þ

where o is the single-particle Hilbert-space operator cor-
responding to the global Fock-space operator O ¼ P

γ Ojγ,
and the anticommutator (defined as fa; bg ¼ abþ ba)
ensures the Hermiticity of Ojγ .
In analogy with Eq. (11), we define the rate of thermo-

dynamic work done on subsystem γ as Ẇð1Þ
γ ðtÞ ≔ Ω̇ð1Þ

γ ðtÞ,
leading to the First Law of Thermodynamics for a quantum

subsystem U̇ð1Þ
γ ðtÞ ¼ TṠð1Þγ ðtÞ þ μṄð1Þ

γ ðtÞ þ Ẇð1Þ
γ ðtÞ. How-

ever, in general, Ẇð1Þ
γ ðtÞ ≠ hḢjγðtÞi, so that the rate of

thermodynamic work done on a given subsystem is not
equal to the expectation value of the power operator
partitioned on that subsystem. Instead,

Ẇð1Þ
γ ðtÞ ≔ Ω̇ð1Þ

γ ðtÞ ¼ hḢjγðtÞi þ IWγ ðtÞ; ð13Þ

where IWγ ðtÞ represents the instantaneous quantum flow of
free energy into subsystem γ induced by the external drive
ḢðtÞ. IWγ ðtÞ can be thought of as (the rate of) quantum work
at a distance. Quantum work is inherently nonlocal because
even if the external drive is local, the quantum states acted
upon are nonlocal. This nonlocal work predicted in driven
quantum systems is reminiscent of the phenomena of
measurement-induced energy teleportation [52,53] or con-
ditional work at a distance [54] in autonomous quantum
systems.
The Hamiltonian of the open quantum system is HðtÞ¼

HSðtÞþHRþHSRðtÞ, where HSðtÞ ¼
P

n;m½hSðtÞ�nmd†ndm
is the system Hamiltonian and HR ¼ P

k ϵkc
†
kck is the

reservoir Hamiltonian. Finally, the coupling Hamiltonian
HSRðtÞ, describing the interface between the system and the
reservoir, is HSRðtÞ ¼

P
k;n½VknðtÞc†kdn þ H:c:�. Definition

(12) implies that the Hamiltonian partitioned on the
system is

HjSðtÞ ¼ HSðtÞ þ
1

2
HSRðtÞ; ð14Þ
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so that the coupling Hamiltonian is partitioned equally
between the system and the reservoir.
The following sum rule for external work can be derived

for open systems (see Sec. V in [31] for a derivation)

Ẇð1Þ
extðtÞ ¼ Ω̇ð1Þ

S ðtÞ þ δΩ̇ð1Þ
R ðtÞ; ð15Þ

where δΩR ¼ ΩR − ΩR;0 is the change in the reservoir
grand potential induced due to the change in its spectrum as
a result of its coupling to the system. A similar construction
was introduced by Friedel [55] to describe the cloud of
screening charge induced in a metal due to the presence of
an impurity.
An interesting and important case to consider is that where

only the system is time-dependent so that ḢjSðtÞ ¼ ḢSðtÞ
and ḢjRðtÞ ¼ 0. Nonetheless, generically δΩ̇RðtÞ ≠ 0, so the
work sum rule becomes

hḢSðtÞi ¼ḢSR¼0Ω̇ð1Þ
S ðtÞ þ δΩ̇ð1Þ

R ðtÞ: ð16Þ

Thus, even if external forces act only inside the system, the
instantaneous thermodynamic work done on the reservoir is
nonzero. For this case, Eqs. (13) and (16) imply that the
rate of nonlocal quantum work done on the system is

IWS ¼ḢSR¼0 − δΩ̇ð1Þ
R , or minus the rate of nonlocal quantum

work done on the reservoir.
Using the internal energy USðtÞ ¼ hHjSðtÞi, the First

Law for the open system becomes

d
dt

hHSðtÞ þ
1

2
HSRðtÞi ¼ TṠð1ÞS þ μṄð1Þ

S þ Ẇð1Þ
S ; ð17Þ

where SS is the entropy partitioned on the system Hilbert
space, and

Ẇð1Þ
S ¼ Ẇð1Þ

ext − δΩ̇ð1Þ
R ¼ hḢjSi þ IWS ð18Þ

is the rate of thermodynamic work done on the system.
Using the nonequilibrium Green’s function (NEGF)

formalism [56–58], each term in the First Law
[Eq. (17)] can be expressed in terms of the quasistatic
system Green’s functions (see Sec. V in [31] for deriva-
tions). The terms contributing to the (partitioned) quasi-
static power [Eq. (7)] delivered by external forces are

hḢSðtÞi ¼
Z

dϵ
π
fðϵÞImTr

�
ḣSðtÞGAð0Þðt; ϵÞ�; ð19Þ

hḢSRðtÞi ¼
Z

dϵ
π
fðϵÞImTr

�
Σ̇Aðt; ϵÞGAð0Þðt; ϵÞ�; ð20Þ

where GAð0Þ and ΣA are the quasistatic advanced system
Green’s function and self-energy, respectively, defined in
Sec. II in [31]. The rate of nonlocal work done on the

system is

IWS ðtÞ ¼ −
1

2
hḢSRðtÞi þ

Z
dϵ
π
ImTr

�
∂GAð0Þðt; ϵÞ

∂t
∂ΣAðt; ϵÞ

∂ϵ

−
∂GAð0Þðt; ϵÞ

∂ϵ

∂ΣAðt; ϵÞ
∂t

�
ωðϵÞ; ð21Þ

where the second term on the rhs may be interpreted as an
instantaneous flow of free energy into the system induced
by the time-dependent external drive, while the nonlocality
of the first term on the rhs is trivial since HSR is itself
nonlocal.
We note that in the broadband limit [∂ϵΣAðt; ϵÞ ¼ 0] the

rate of nonlocal quantum work vanishes, in contrast to the
notion proposed in Ref. [25] and discussed in Ref. [29] (see
Sec. VI in [31]).
The work sum rule and Hilbert-space partition of the

thermodynamics derived above are illustrated with an appli-
cation to the driven resonant-level model. (See Sec. VIII in
[31] for an extension to multiple reservoirs and analysis of a
driven two-level system coupled to two reservoirs.) The
system Hamiltonian is HSðtÞ ¼ εsðtÞd†d, the reservoir is
modeled as a semi-infinite tight-binding chain with hopping
integral t0, HR¼ t0

P∞
j¼1ðc†jcjþ1þH:c:Þ, and the inter-

face between system and reservoir is modeled by
HSRðtÞ ¼ VðtÞd†c1 þ H:c. Two driving protocols are inves-
tigated: in protocol 1, the level εsðtÞ is varied while V is held
fixed. In protocol 2, both εsðtÞ and VðtÞ are varied.
A verification of the work sum rule for protocol 1

[Eq. (16)] is shown in Fig. 1, where the nonlocal quantum
work on the reservoir is clearly visible as the difference
between ΔΩS (dashed blue curve) and the total work done
Wext (green dots). The nonlocal quantum work done on the
reservoir may be positive [Fig. 1(a)] or negative [Fig. 1(b)]
depending on system parameters, and increases in magni-
tude as the coupling V between the system and reservoir
increases.

FIG. 1. Verification of the work sum rule [Eqs. (15), (16)] for an
open quantum system: the resonant-level model. Only the level
εsðtÞ is driven (a) from 1 to 1.5, and (b) from −1.5 to −1. The
reservoir is maintained at temperature T ¼ 0.02 and chemical
potential μ ¼ 0, with t0 ¼ 1.25.
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Let us compare our analysis of the thermodynamics of a
quasistatically driven open quantum system with some
previous frameworks found in the literature [22–25,27].
These frameworks can be described as α partitions of the
internal energy, where α∈ ½0; 1� describes the fraction of
the coupling Hamiltonian HSR included in the internal
energy of the open system. In the α partition, the internal
energy of the open quantum system is [59]

α-USðtÞ ¼ hHSðtÞ þ αHSRðtÞi; ð22Þ

and the rate of external work done on the system is
identified by some authors as [23]

α-ẆSðtÞ ¼ hḢSðtÞ þ αḢSRðtÞi: ð23Þ

The Hilbert-space partition proposed in this Letter corre-
sponds to setting α ¼ 1=2 in Eq. (22). However, as
discussed above, the rate of external work done on the
system is given by Eq. (18), and cannot in general be
expressed as in Eq. (23) for any value of α.
For independent quantum particles, the entropy operator

− ln ρ̂ð0Þ under quasistatic driving is also a one-body
observable, and can be partitioned in the same way [60].
One finds for the α partition of the entropy of subsystem γ
(see Sec. VII in [31])

α-Sð0Þγ ðtÞ ¼ 2α

Z
dϵ gγðt; ϵÞsðϵÞ

þ ð1 − 2αÞ
Z

dϵ
Z

dϵ0 TrfÃγðt; ϵÞÃγðt; ϵ0Þg

× f−fðϵÞ ln½fðϵ0Þ� − ½1 − fðϵÞ� ln½1 − fðϵ0Þ�g;
ð24Þ

where Ãγðt; ϵÞ ¼ Πγδ½ϵ − hðtÞ�Πγ .
Although it might appear that one could construct the

partitioned thermodynamics for arbitrary values of α, a
severe problem arises in α-Sγ if α ≠ 1=2. For α > 1=2, the
term beginning on the second line Eq. (24) is negative and
unbounded, while for α < 1=2, the partitioned entropy of
the subspace complementary to γ is negative and
unbounded. Since entropy is a non-negative quantity,
any partition that yields a negative subsystem entropy
should be ruled out on principle as unphysical. Moreover,
in fermionic systems there are generically tightly bound
core states with occupancy f → 1 and high-lying scattering
states with occupancy f → 0, for both of which Eq. (24) is
undefined for α ≠ 1=2. Thus, we are forced to conclude that
the only physically allowable partitioning of the entropy is
α ¼ 1=2, namely, the Hilbert-space partition as previously
proposed in Ref. [49].
Figure 2(a) shows a comparison of the small physical

value of the system entropy for α ¼ 1=2 and the large
(positive or negative) unphysical entropy for α ≠ 1=2 for

the resonant-level model with εs ¼ −1, V ¼ 1, μ ¼ 0, and
T ¼ 0.02. Under Hilbert-space partition, the system
entropy is bounded by 0 ≤ SS ≤ ln 2. Note that the slope
of the green curve representing α-SS tends to −∞ as T → 0,
indicating a severe contradiction of the Third Law of
Thermodynamics for α ≠ 1=2, as pointed out previously
in Refs. [23,49]. Figure 2(b) plots the coefficient of
ð1 − 2αÞ in Eq. (24) (second term on the rhs) as a function
of inverse temperature at μ ¼ 0 for several values of the
resonant level εs, indicating that this unphysical contribu-
tion to the entropy partition diverges ∝ 1=T as T → 0, as
can be readily understood from Eq. (24) and the functional
form of the Fermi-Dirac distribution.
Figure 3(a) plots WS [defined in Eq. (18)] and α-WS

[defined in Eq. (23)] for two different paths in protocol 2
(see inset) as a function of α. The quasistatic work for a
system in the grand canonical ensemble at constant T and μ
should be independent of path. It is clear that α-WS, the
definition of the work done on the system proposed in
Ref. [23], is only path independent in the limit α → 1,
wherein limα→1α-WS ¼ Wext, which unsurprisingly is in-
deed path independent. However, our definition [Eq. (18)]
of the work WS done on the Hilbert space of the system,
including nonlocal quantum work, is path independent and
generally not equal to the total external work Wext for
nonzero system-reservoir coupling.
Using their definitions of internal energy [Eq. (22)] and

of work done on the system [Eq. (23)], Esposito, Ochoa,
and Galperin [23] use the thermodynamic identity

TΔSEOGS ¼ Δðα-USÞ − μΔNS − α-WS ð25Þ
to define the change in system entropyΔSEOGS for a process.
ΔSEOGS is plotted in Fig. 3(b) as a function of α for two
different paths in protocol 2. Also plotted is the change in

FIG. 2. Results for the α partition of the entropy [Eq. (24)] in
the resonant-level model with μ ¼ 0, V ¼ 1, and t0 ¼ 1.25.
(a) Comparison of α-SS to the entropy under Hilbert-space
partition (α ¼ 1=2) at T ¼ 0.02. (b) Coefficient of (1 − 2α) in
Eq. (24) (second term on the rhs) versus inverse temperature for
various values of the level energy εs ¼ 0;�1;�2.
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α-SS, the α partition of statistical mechanical entropy
[Eq. (24)]. Although our model is slightly different than
that used in Ref. [23] (we utilize a semi-infinite 1D tight-
binding model of the reservoir while Ref. [23] uses a
phenomenological self-energy), the quantitative results for
the two models are comparable (see Sec. II A in [31]).
As shown in Fig. 3(b) and in Ref. [23], ΔSEOGS is path

independent only for α ¼ 1. Based on this fact, Esposito,
Ochoa, and Galperin suggest that α ¼ 1 should be chosen
in the partition of the internal energy [Eq. (22)], despite the
acknowledged violation of the Third Law of
Thermodynamics for α ¼ 1. It is noteworthy that the
magnitude of ΔSEOGS greatly exceeds ln2 [see red dashed
lines in Fig. 3(b)], the maximum entropy of the system
under Hilbert-space partition. In fact, ΔSEOGS jα¼1 ¼ 5.57 is
opposite in sign and 80.9 times larger in magnitude than the
actual entropy change ΔSS ¼ −0.068 for the process
shown in Fig. 3. We would argue that there is no room
in the Hilbert space of the system for so much entropy, no
matter how the level is broadened and shifted due to a finite
coupling to the reservoir.
The problem with the entropy [23] defined thermody-

namically via Eq. (25), which is not equal to the statistical
mechanical partition α-SS for any value of α, stems from the
incorrect definition [Eq. (23)] of the work done on the
system, which does not take into account the nonlocal
quantum work

R
IWS dt. Once the correct definition of work

[Eq. (18)] is used, the Hilbert-space partition (α ¼ 1=2) of
the statistical mechanical entropy [Eq. (24)] satisfies the
First Law [Eq. (17)], and is path independent, as shown in
Fig. 3(b).

In this Letter, we have derived a work sum rule
describing the thermodynamic effects of nonlocal quantum
work. An open quantum system is analogous to a quantum
impurity problem, and nonlocal quantum work is a
thermodynamic effect analogous to the screening charge
that must be included in the Friedel sum rule [55]. We
emphasize that our thermodynamic partition of the entropy
is different than the usual information-theoretic partition
based on the reduced state of a quantum subsystem [61];
due to the nonlocality of quantum information, the reduced-
state description introduces entanglement entropy that is
not associated with any thermodynamic process [51].
The thermodynamic partition proposed in this Letter is

based on a partition of Hilbert space, and is consistent with
the analysis of Ref. [22], which circumnavigates the issue
of partitioning quantum work. Alternative attempts [23] to
partition the thermodynamics of open quantum systems
have failed due to an incorrect partition of quantum work.
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