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Chiral state transfer along closed loops in the vicinity of an exceptional point is one of the many
counterintuitive observations in non-Hermitian physics. The application of this property beyond proof-of-
principle in quantum physics, is an open question. In this work, we demonstrate chiral state conversion
between singlet and triplet Bell states through fully quantum Liouvillian dynamics. Crucially, we
demonstrate that this property can be used for the chiral production of Bell states from separable states with
a high fidelity and for a large range of parameters. Additionally, we show that the removal of quantum
jumps from the dynamics through postselection can result in near-perfect Bell states from initially separable
states. Our work presents the first application of chiral state transfer in quantum information processing and
demonstrates a novel way to control entangled states by means of dissipation engineering.
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Introduction—In recent years, exceptional points (EPs)
in non-Hermitian systems have seen a surging interest, for
example, in sensing [1–7], topological properties [8–14],
and recently in the quantum control of dynamics [15–18].
Open quantum systems are a natural platform to explore
EPs and associated effects as their evolution is character-
istically non-Hermitian [19]. Chiral state transfer (CST)
along closed trajectories in the vicinity of an EP is a well-
known property of non-Hermitian physics, where eigen-
states can be adiabatically switched, and the final state is
solely determined by the orientation of the trajectories [20].
While this effect was first discussed for classical and
semiclassical systems [21–26], its applications to quantum
settings are only now being discovered. Theoretical works
[27,28] have been accompanied by successful experiments
with superconducting circuits [29,30] and single ions [31].
These results offer a pathway for quantum state control by
utilizing dissipation as a resource. However, presently, they
do not necessarily involve genuinely quantum phenomena,
such as the creation of quantum correlations like entangle-
ment, or offer an advantage in quantum settings.
In this work, we show for the first time, that it is possible

to create highly entangled states by means of CST between
two Bell states. We consider a minimal model of two
interacting qubits, put in an out-of-equilibrium situation by

coupling to thermal environments. This model has been
used to demonstrate the presence of entanglement in the
steady-state regime under autonomous dissipative dynam-
ics only [32–36] and has recently been investigated in the
context of EPs [15]. We demonstrate that slow trajectories
in the parameter space of this system can result in CST
between two Bell states. Importantly, this property can be
utilized to create highly entangled states from arbitrary
initial states. We further demonstrate that the transfer
fidelity and entanglement can be increased by means of
postselection, at the cost of reduced success rate [27,37].
Finally, we demonstrate that our results hold for a wide
range of parameters, including trajectories not necessarily
encircling EPs [12,26].
Model and trajectory in parameter space—We consider

a system of interacting qubits, depicted in Fig. 1(a),
with transition energies ε1 ¼ ε, ε2 ¼ εþ δ. The full

Hamiltonian takes the form H0 ¼
P

j¼1;2 εjσ
ðjÞ
þ σðjÞ− þ

gðσð1Þþ σð2Þ− þ σð1Þ− σð2Þþ Þ (j ¼ 1, 2), where σðjÞ� are the raising
and lowering operators of qubit j and g is the interaction
strength. Each qubit couples to its own fermionic environ-
ment with coupling strength γj. Under the assumption
g; γj; δ ≪ ε, the Markovian evolution of the two qubits can
be expressed in the following Lindblad form (with
ℏ ¼ kB ¼ 1) [38–40],

ρ̇ ¼ Lρ ¼ −i½Heff ; ρ�† þ
X
j¼1;2

γþj J
ðjÞ
þ ρþ γ−j J

ðjÞ
− ρ; ð1Þ

where ½a; b�† ≔ ab − b†a† and the effective non-Hermitian

Hamiltonian (NHH) Heff ≔ H0 − ði=2ÞPj γ
−
j σ

ðjÞ
þ σðjÞ− þ

γþj σ
ðjÞ
− σðjÞþ . The superoperators J ðjÞ

� ρ ≔ σðjÞ� ρσðjÞ∓ represent
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quantum jump terms. The corresponding excitation and
deexcitation rates γþj ¼ γjnj and γ−j ¼ γjð1 − njÞ are

determined by the Fermi-Dirac distribution, nj ¼
ðeβjðε1þε2Þ=2 þ 1Þ−1 with inverse temperature βj of reservoir
j. We refer to these rates as “gain” and “loss,” respectively.
The NHH induces coherent nonunitary loss, while quantum
jumps represent continuous monitoring by the environment
[41]. It is possible to interpolate between purely NHH and
fully quantum dynamics by using a hybrid-Liouvillian
framework [37], with a quantum jump parameter, q∈ ½0; 1�,

L½q�ρ ¼ −i½Heff ; ρ�† þ q
X
j¼1;2

γþj J
ðjÞ
þ ρþ γ−j J

ðjÞ
− ρ: ð2Þ

The case q ¼ 1 corresponds to full Lindblad dynamics, 0 <
q < 1 to partial postselection and q ¼ 0 to complete
postselection. The spectra of Heff and L½q� and correspond-
ing EPs are discussed in the Supplemental Material [42],
Secs. I and II. Importantly, the NHH has a second-order EP
involving eigenvectors which become Bell states jΨ�i ¼
ðj10i � j01iÞ= ffiffiffi

2
p

when the system is decoupled from the
reservoirs (conversely, the eigenvectors jΨ�i of H0 are
involved in an EP in the presence of dissipation). By
judicious choice of a parameter trajectory, it is expected that
these Bell states play a central role in CST. This property is
demonstrated on the Riemann sheets corresponding to the
eigenvalues of Heff depicted in Fig. 1(c), and forms the
basis of the upcoming analysis.

We set γ1 ≔ γ and γ2 ≔ αγ1 with α ¼ γ2=γ1 and choose a
closed trajectory in the space of γ and δ [Fig. 1(b)]. We pick
the following form of periodic driving of the parameters:

δðtÞ¼�Δδsin
�
2πt
T

�
; γðtÞ¼ γ0þΔγsin2

�
πt
T

�
; ð3Þ

where γ0 sets the origin, Δδ and Δγ are the amplitudes for
δðtÞ, γðtÞ respectively, and T is the driving period. The “þ”
and “−” signs correspond to clockwise (CW) and counter-
clockwise (CCW) trajectories, respectively. By taking an
appropriately large Δγ, the trajectory can be made to
encircle the EPs. For any degree of postselection,
0 ≤ q ≤ 1, the un-normalized state evolves according to

ρðtÞ ¼ T exp
hR

t
0 L½q�ðt0Þdt0

i
ρð0Þ, where T denotes time

ordering. However, for 0 ≤ q < 1, the dynamics are not
trace preserving. The following numerical results for 0 ≤
q < 1 have been calculated by discretizing the above time-
ordered exponential and numerically renormalizing the
state at every time step.
Chiral Bell-state transfer—We now turn to the core of

this Letter: CST in the vicinity of EPs. We first investigate
the case γ0 ¼ 0, in which the initial and final points (i.e.,
t ¼ 0 and t ¼ T) of the trajectory are γ ¼ δ ¼ 0. In this
case, at the initial and final points of the trajectory, H0

and Heff have the same spectrum and eigenvectors,
fj11i; jΨþi; jΨ−i; j00ig. Moreover, at t ¼ 0, the eigenma-
trices of L can be constructed from the eigenvectors of H0

and Heff [19]. This equivalence between Hamiltonian,
NHH, and Liouvillian dynamics at the origin of the
trajectory is essential for chiral Bell-state transfer. For a
setup with fermionic reservoirs, we choose the inverse
temperatures β1 → −∞ and β2 → ∞. This corresponds to
perfect population inversion in reservoir 1 (n1 ¼ 1) and to
initialization in the lowest energy level (n2 ¼ 0) for
reservoir 2, leading to the gain and loss situation shown
in Fig. 1(a). As we will see later, this corresponds to the
optimal setup for chiral Bell-state transfer. It also has a
connection to parity-time symmetry in the setup (see the
Supplemental Material [42], Sec. IV, and Ref. [43]). We
characterize the state along the trajectory with its fidelity
with respect to one of the Bell states, F jΨ�iðtÞ ≔
TrfjΨ�ihΨ�jρðtÞg.
When q ¼ 0, Heff dictates the dynamics, and CST is

expected with near-perfect fidelity due to the conservation
of purity (see the Supplemental Material [42], Sec. III). At
the origin of the trajectory, the two states involved in the EP
are jΨ�i. Starting in jΨþi, the system either switches to
jΨ−i or ends up again in jΨþi, depending on the orientation
of the trajectory. In Fig. 2(a) (blue curves), we show this
effect starting with jΨþi, which ends up at time t ¼ T
nearly perfectly in the jΨ−i state for a CCW trajectory
(solid) or comes back to jΨþi for a CW trajectory (dashed).
Therefore, switching between the states is chiral in nature.

(a)

(c)(b)

FIG. 1. (a) Two interacting qubits subject to gain and loss.
(b) CW and CCW trajectories in the space of δ and γ, and
depictions of EPs for different levels of postselection of quantum
jumps, q ¼ 0 (complete postselection), q ¼ 1 (no postselection),
and 0 < q < 1 (partial postselection). (c) Riemann sheets corre-
sponding to the NHH eigenvalues involved in the EP and a CCW
trajectory showing state transfer. The more decaying branch of
the eigenvalues (i.e., with more negative imaginary part) is
depicted in red.
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As shown in the Supplemental Material [42], Sec. V, for
q ¼ 0, we find that maximal transfer fidelity can be
achieved simply by taking sufficiently slow trajectories,
i.e., CST is an adiabatic property.
Without complete postselection (q ≠ 0), maximal trans-

fer fidelity cannot be reached as Liouvillian dynamics do
not preserve purity [44]. The case q ¼ 1, which corre-
sponds to full Liouvillian dynamics, is shown in red in
Fig. 2(a) reaching a final fidelity F jΨ−i ¼ 0.83. We note
that this is not an upper bound, and a higher fidelity can be
achieved by suitably altering the parameters. The chirality
of the state jΨ−i can similarly be verified; switching to
jΨþi is observed for a CW trajectory, while the state returns
to jΨ−i for a CCWone, with the transfer fidelity remaining
the same. In Fig. 2(b), we show that there is a monotonic
decrease in transfer fidelity with increasing q (decreasing
postselection). This corresponds to recent observations
[27,29] and can be traced to the loss of purity with quantum
jumps. Crucially, the inset in Fig. 2(b) shows a drastic
fidelity loss for trajectories with origins far from γ0 ¼ 0.
When the trajectory origin is chosen away from γ0 ¼ 0,
Bell states are not the eigenstates of the NHH at the start

and end of the trajectory. This means that state transfer
occurs between some other states, which may be far from
Bell states. This highlights the importance of the spectra of
H0,Heff , and L being equivalent at the origin. Our analysis
shows that CST is a property of the eigenstates of Heff .
While L½q� (for 0 < q ≤ 1) shows it to a large extent, the
fidelity is lowered due to loss of purity induced by
quantum jumps.
For q ¼ 1, the behavior can be analytically understood

through the spectrum of the one-cycle evolution super-
operator PðTÞ ¼ T exp

�R
T
0 Lðt0Þdt0� [45]. It has eigenval-

ues which either are 1 or lie within the unit circle. For long
driving time periods T, the fixed point of the superoperator
is reached, which corresponds to the unique eigenmatrix
with eigenvalue 1. In the time-independent case, this
eigenmatrix with eigenvalue 1 is equivalent to the eigen-
matrix with eigenvalue 0 of the time-independent
Liouvillian L, corresponding to the usual steady state.
This fixed point is independent of the initial state and only
depends on the system and driving parameters. This can be
understood within the framework of Floquet theory
[45,46], which can also be useful to look at in the general
case, q∈ ½0; 1�, with a corresponding P½q�ðTÞ. While slow
trajectories (i.e., with large T) are required for higher
fidelities (see the Supplemental Material [42], Sec. V),
adiabatic trajectories will drive the system to its instanta-
neous steady state at every point in the trajectory. Driving
too slow may also lead to a loss of chirality [28]. We expect
further insights may come from slow-driving perturbation
theory, by calculating corrections to adiabatic evolution [47].
We now extend our predictions to the case where

transport is not unidirectional, i.e., without perfect control
of dissipation. We let β2 → ∞, implying perfect loss at
qubit two, and calculate the final fidelity as a function of β1
(β1 < 0 implying population inversion). The absence of
complete population inversion induces a decrease in the
fidelity as shown in Fig. 3(a). Optimal fidelity is achieved
for perfect population inversion, β1 → −∞, independently
of q. Moreover, for thermal environments (β1 > 0), there is
a drastic reduction in fidelity; the maximum is achieved for
low β1 (β1 → 0 or n1 → 1=2). Our analysis demonstrates
that high transfer fidelity requires n1 > 1=2, which corre-
sponds to population inversion. It can further be verified
that simultaneously, a low temperature for reservoir 2 is
required for a high fidelity.
Finally, let us comment on the role of EPs in our

predictions. It has recently been observed in some semi-
classical settings that encircling EPs is not necessary for
CST [25,26]. We find that encircling EPs in our setup is not
necessary to achieve chiral Bell-state transfer. We illustrate
this in Fig. 3(b) for different values of q, by varying the
radius Δγ of the trajectory along γ [see Eq. (3)]. The left
side of each dashed line corresponds to trajectories not
encircling the corresponding EP, while the right side
corresponds to encircling trajectories. The plot showcases

FIG. 2. (a) Fidelity of ρðtÞ with the Bell state jΨ−i as a function
of time, for CW (dashed) and CCW (solid) trajectories. (b) The
final fidelity (at time T) as a function of the quantum jump
parameter q, shown only for the CCW trajectory. The inset shows
the fidelity as a function of γ0, which sets the origin of the
trajectory, for q ¼ 0 (blue) and q ¼ 1 (red). The parameters are
ε ¼ 1, Δδ=ε ¼ 0.04, γ0 ¼ 0, Δγ=ε ¼ 0.008, g=ε ¼ 0.01,
α ¼ 1.2, β1 → −∞, β2 → ∞, and Tε ¼ 2500.

PHYSICAL REVIEW LETTERS 133, 070403 (2024)

070403-3



the robustness of CST to changes in Δγ. Interestingly, we
find that the maximum fidelity is obtained for trajectories
not encircling the EPs. Whether there is a fundamental
principle underlying this observation is an interesting
question beyond the scope of this work.
Chiral production of Bell states—We now exploit chiral

Bell-state transfer to demonstrate the generation of maxi-
mal two-qubit entanglement starting from any separable
initial state. We consider the two qubits to be initially in a
maximally mixed state, ρð0Þ ¼ 1=4, and take the same
parameter driving as discussed above. Apart from the
fidelity, we characterize the amount of entanglement
through the concurrence C [48]. For density matrices ρ
involved in our scheme, its expression simplifies to
CðρÞ ≔ 2maxf0; jcj − ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p11p00

p g, with the populations
p11 ¼ h11jρj11i and p00 ¼ h00jρj00i, and coherence
c ¼ h01jρj10i; C ¼ 0 for a separable state, and C ¼ 1
for a maximally entangled state. In Fig. 4, the concurrence
increases from 0 at t ¼ 0, to its maximum at time t ¼ T,
where the system is driven close to the jΨ−i state.
Importantly, for any q, a high concurrence can be obtained;
specifically for q ¼ 1, C > 0.83. Although this is not an
upper bound, it far exceeds the highest possible concur-

rence, CðautÞmax ≈ 0.31 [35,49], possible with the two-qubit
system being operated autonomously (i.e., in the absence of

driving or external control). Crucially, the production of
Bell states has an associated chirality; for a CCW state, the
system is driven to the jΨ−i state, while for a CW
trajectory, to the jΨþi state. Although the final state is
independent of the initial state (for sufficiently large T), it is
dependent on the parameters of the system. As the inset
shows, a higher fidelity F ∼ 0.9 is obtained for the q ¼ 1
case than in Fig. 2.
Experimental scope—We anticipate that an experimental

implementation is readily achievable in the circuit QED
platform [50], by utilizing a superconducting device con-
sisting of two transmon circuits [51] that interact via a
resonator-mediated coupling. The two transmons have
individual readout resonators [52] that allow us to introduce
the respective thermal baths. Positive and negative temper-
ature fermionic baths can be replaced with engineered
bosonic baths harnessing cavity assisted bath engineering
[53], where population inversion can be achieved through
off resonant driving of the qubit and associated cavity.
Here, the qubit is driven with a detuning Δ and resonant
Rabi frequency Ω0. The cavity is driven with a detuning
Δ0 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δþ Ω0

p
. For positive (blue detuned) cavity drive,

the qubit is pumped to the excited state, and the purity of
the inversion is limited by the ratio of the cavity assisted
bath engineering rate (ultimately limited by the cavity
decay rate κ ¼ 1.3 rad=μs), to the coherence times of the
qubit. In this setup, coherence times are approximately
T1; T�

2 ≃ 30 μs. Hence we expect n ¼ 0.98. The limit q ¼
1 (Lindblad dynamics) can be attained by harnessing the
lowest two energy levels of the transmon [29,30], while
q ¼ 0 can be accessed by utilizing its higher manifold of
states coupled with postselection [54]. Postselection, how-
ever, comes with the cost of reduced success probability for
the protocol. The fidelity of the q ¼ 1 limit can be
deterministically improved by preventing transitions to
the j11i state (see the Supplemental Material [42],
Sec. VI). This can be achieved in a superconducting

(a)

(b)

FIG. 3. (a) The final fidelity F jΨ−iðTÞ as a function of β1, with
β2 → ∞. (b) The final fidelity as a function of the amplitude Δγ.
The trajectories are EP encircling on the right of each corre-
sponding dashed line. The other parameters are taken from Fig. 2.

FIG. 4. Concurrence as a function of time with ρð0Þ ¼ 1=4,
for various q. The inset shows the corresponding fidelity with
jΨ−i. The parameters are ε ¼ 1, Δδ=ε ¼ 0.06, γ0 ¼ 0,
Δγ=ε ¼ 0.01, g=ε ¼ 0.01, α ¼ 1.2, β1 → −∞, β2 → ∞, and
Tε ¼ 2500. The trajectory is CCW.
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platform through the Zeno effect to decouple this state from
the dynamics [55,56].
Discussion—We have theoretically demonstrated

Liouvillian CST involving Bell states in a system of two
dissipative qubits. This property allows for the chiral
production of near-perfect Bell states starting with any
separable initial state, breaking the bounds for autonomous
dissipative entanglement production. The results hold for a
large range of parameters, operating in the vicinity of an EP,
without the necessity of encircling it.
Our results have implications beyond simple two-qubit

models, and present a recipe for quantum state control
through controlled dissipation and clever eigenstate engi-
neering. For example, by judicious choice of many-qubit
Hamiltonians and dissipation, our results suggest that CST,
and by extension, entanglement production, can be seen for
genuinely multipartite entangled states, like the W or GHZ
state [57].
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