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Entanglement propagation provides a key routine to understand quantum many-body dynamics in and
out of equilibrium. Entanglement entropy (EE) usually approaches to a subsaturation known as the Page
value S̃P ¼ S̃ − dS (with S̃ the maximum of EE and dS the Page correction) in, e.g., the random unitary
evolutions. The ballistic spreading of EE usually appears in the early time and will be deviated far before
the Page value is reached. In this work, we uncover that the magnetic field that maximizes the EE robustly
induces persistent ballistic spreading of entanglement in quantum spin chains. The linear growth of EE is
demonstrated to persist until the maximal S̃ (along with a flat entanglement spectrum) is reached. The
robustness of ballistic spreading and the enhancement of EE under such an optimal control are
demonstrated, considering particularly perturbing the initial state by random pure states (RPSs). These
are argued as the results from the endomorphism of the time evolution under such an entanglement-
enhancing optimal control for the RPSs.
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Quantum entanglement is a fundamental concept to
reveal the essence of quantum systems in contrast to
classical ones [1,2]. The dynamics of quantum entangle-
ment under unitary time evolution provides a key routine to
investigating the exotic phenomena and properties of
quantum many-body physics, such as quasiparticle exci-
tations [3,4], information propagation [5–8], many-body
localization [9–16], and causality [17].
Among the novel phenomena in quantum many-body

dynamics, the emergence of ballistic transport of entangle-
ment attracts much attention. It is mostly observed in the
integrable models, indicating the presence of quasiparticle
propagations [3,18,19]. Exceptions have been found where
ballistic spreading appears in the diffusive nonintegrable
systems [20–22]. In both cases, the bipartite entanglement
entropy (EE) grows linearly with time according to the
Kardar-Parisi-Zhang equation [23,24]. Other examples
exhibiting this property include the random unitary dy-
namics [25,26] and Floquet spin models [27].
However, previous works suggest that the ballistic

spreading persists generally in a relatively short time,
and the EE eventually converges to a subsaturation known
as the Page value [28]

S̃P ¼ S̃ −
NA

2 ln 2NB
−O

�
1

2N

�
; ð1Þ

where S̃ ¼ log22NA ¼ NA is the maximum of EE, N is the
total number of spins, NA and NB are the numbers of spins

in the two subsystems, respectively (with NA þ NB ¼ N;
we take NA ¼ NB below for simplicity), and Oð1=2NÞ
represents the rest of the higher-order contributions.
Equation (1) can be deduced from the random matrix
theory. The final state is similar to a random pure state
(RPS) [20,28]. It is thus of theoretical and practical interest
to seek the dynamical processes where the EE exceeds the
Page value with persistent ballistic spreading behavior
during the evolution.
In this work, we show that quantum control by magnetic

field can robustly reach the maximal S̃. Different EEs
reachable by some typical 1D quantum systems are
illustrated in Fig. 1. The magnetic field is determined
variationally by maximizing the EE in the center of the final
state, which is dubbed the “variational entanglement-
enhancing” field (VEEF). Different from the previous
works [29,30], ballistic spreading of entanglement is
observed, where the EE SðtÞ at the time t obeys

SðtÞ ≃ vt; ð2Þ

with v the velocity. The linear growth with VEEF will
persist till the EE reaches S̃ ¼ N=2, when the evolution
time T satisfies

T ≤ TS ≡ N
2v

: ð3Þ

Note TS can be defined when the linear growth of EE can
persist until S̃ is reached. In this case, the velocity defined
as v ¼ dSðtÞ=dt is a constant for t ≤ TS. For T > TS, the
EE still increases to the maximum S̃ at t ¼ T. But during*Contact author: sjran@cnu.edu.cn
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the evolution, the instantaneous velocity vðtÞ≡ dSðtÞ=dt is
allowed to vary [in fact, one has vðtÞ ≤ v ¼ S̃=TS, where v
can be considered as the maximal velocity that the system
can reach]. In the case of T ¼ TS in comparison, the
instantaneous velocity vðtÞ has to be constantly v so that
the EE can reach S̃ ¼ vTS at t ¼ T. We also demonstrate
the persistent ballistic spreading of EE on a localized model
with VEEF. Generally, EE should spread subballistically in
the localized models [9,10,31].
The persistent ballistic spreading of EE is shown to be

robust under random perturbations. A collapsing point is
given by the EE curves from the initial states perturbed by
different strengths of randomness. Such a behavior is
explained and analyzed based on the random unitary
evolution and the endomorphism of the VEEF evolution
for the RPSs.
Variational entanglement-enhancing field—Recent works

revealed the inspiring prospective on applying machine
learning (ML) methods in studying quantum dynamics
and control [32–41]. Here, our aim is to enhance quan-
tum entanglement by developing a ML-assisted quantum-
control scheme. Enhancing entanglement [29,30,42,43] is
important since entanglement is a fragile resource in noisy
environments.
We consider the time evolution with the Hamiltonian

ĤðtÞ ¼
X
m;n

Ĥmn þ
X
n

X
α¼x;z

hαnðtÞσ̂αn; ð4Þ

where Ĥmn represents the time-independent two-body
interaction between the mth and nth sites, σ̂αn is the Pauli
operator (α ¼ x, y, z) on the nth site, and hαnðtÞ denotes the
time-dependent field. The time evolution is a mapping

U∶ jψ0i → jψðtÞi ¼ e−i
R

t

τ¼0
ĤðτÞdτjψ0i; ð5Þ

with jψ0i the initial state. Here, we consider hαnðtÞ as the
variational parameters of U, and optimize them by
maximizing the EE S of the final state jψðTÞi (with T
the total evolution time). We dub the field satisfying
the maximization condition ∂SðTÞ=∂hαnðtÞ ¼ 0 as the

variational entanglement-enhancing field. In other words,
the “VEEF dynamics” shows the properties of U by
imposing ∂SðTÞ=∂hαnðtÞ ¼ 0.
To obtain VEEF, we adopt the automatic differentiation

technique that originated from the field of ML [40,44]. The
time evolution is simulated by means of Trotter-Suzuki
decomposition [45,46]. In the simulations, we take the
Planck constant ℏ ¼ 1 as the energy scale, and the time
discretization for hαnðtÞ as τ ¼ 1=64 ∼Oð10−2Þ (which
determines the highest frequency of hαnðtÞ). With the
bipartition to two halves denoted as A and B, the EE of
jψðtÞi satisfies

SðtÞ ¼ −TrA½ρ̂ðtÞlog2ρ̂ðtÞ�; ð6Þ

with ρ̂ðtÞ ¼ TrBjψðtÞihψðtÞj the reduced density matrix of
A by tracing over the degrees of freedom of B. The same
results will be obtained by the reduced density matrix of B.
The maximal point is reached by using the gradient descent
method, hαnðtÞ as hαnðtÞ ← hαnðtÞ þ η½∂SðTÞ=∂hαnðtÞ� with
SðTÞ the EE measured at the center of the final state.
The gradients are obtained by the automatic differentiation
technique and η is the gradient step (or the learning rate in
term of ML). To enhance the stability, we employ the fine-
grained time optimization strategy [40], and the ADAM
optimizer [47] that has been widely used in ML.
Without losing generality, we take the initial state as a

product state jψ0i ¼
Q

N
⊗n¼1 jsni, where each spin jsni ¼

cosðθn=2Þj0ni þ eiϕn sinðθn=2Þj1ni points in a random di-
rection on the Bloch sphere [θn ∈ ½0; πÞ and ϕn ∈ ½0; 2πÞ].
The states j0ni and j1ni are the two eigenstates of σ̂zn.
Obviously, the initial state is not an eigenstate of the
Hamiltonian.
Persistent ballistic spreading of entanglement—We con-

sider the one-dimensional (1D) quantum Isingmodel (QIM)
with periodic boundary condition, whose Hamiltonian
can be written as ĤQIMðtÞ ¼

P
N−1
n¼1 σ̂

z
nσ̂

z
nþ1 þ σ̂z1σ̂

z
NþP

N
n¼1

P
α¼x;z h

α
nðtÞσ̂αn. The field is restricted to the spin x

and spin z directions, which is a common scenario in
theoretical and experimental investigations [48,49].
Figure 2 demonstrates the SðtÞ [Eq. (6)] with N ¼ 10

spins with the field taken in different ways. The VEEF-
driven spreading exhibits persistent linear growth until the
maximal EE S̃ is reached (see the purple solid line in
Fig. 2 with T ¼ 1.8 ≃ TS). This means ∂SðTÞ=∂hαnðtÞ ¼ 0

[∼Oð10−8Þ from our numeric results] is satisfied for any
t ≤ TS, consistent with the persistency of linear EE spread-
ing with VEEF and the fact that 1D chains can at most
exhibit linear growth of EE. Note S̃ corresponds to equal
Schmidt coefficients (Λ1 ¼ Λ2 ¼ � � �). The matrization of
the state coefficients with S ¼ S̃ gives a unitary matrix.
Such a state can be regarded as the Choi state of a unitary
operator [50]. The measurement on one subsystem of the
Choi state will result in a unitary transformation on the
collapsed state. In comparison, the Schmidt coefficients of

FIG. 1. The illustration of different EEs (with equal bipartition)
reachable by the 1D quantum systems with some typical
examples listed in the right-hand side. The wavy lines among
the arrows indicate the strength of entanglement.
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the states whose EEs give the Page value deviate from
being equal, particularly for moderately large sizes [51,61].
We have TS ¼ 1.81 by Eq. (3) for the 1D QIM. The
velocity v ¼ 2.76 with VEEF is much larger than v ¼ 1.65
obtained with the fixed field hxnðtÞ ¼ 0.9045, hznðtÞ ¼
0.8090 (where the system robustly becomes nonintegral
[20,27,62–67]). The linear growth of SðtÞ is only observed
at the early time (for about t < 3) with such a fixed field.
For hαnðtÞ ¼ 0, all terms in the Hamiltonian commute

with each other and SðtÞ oscillates with t far below the Page
value [27]. With random hαnðtÞ, SðtÞ tends to increase over
time, eventually approaching to the Page value in the long-
time limit [28] (about t > 60 shown in the inset), behaving
on average like a random pure state [20]. In short, the
previous means of implementing field reach the Page value
of EE and induce a linear growth at the early time with a
lower velocity.
Extra degrees of freedom emerges for the paths to a state

with a maximal EE S̃ for T > TS. A consequence is that the
linear growth is deviated before S̃ is achieved (see the blue
solid line in Fig. 2 with T ¼ 10 ≫ TS), meaning
∂SðTÞ=∂hαnðtÞ ¼ 0 may not be satisfied in the duration
t < T. But S̃ is robustly reached for the final state.
Figure 3 demonstrates the ability of VEEF on changing

the behaviors of EE spreading (that reflects the information
spreading) from being diffusive to ballistic. The diffusive
spreading of EE usually appears in the localized models
[9,10,31]. We take the XXZ chain with periodic boundary
condition, where the local interaction satisfies Ĥn;nþ1 ¼
σ̂xnσ̂

x
nþ1 þ σ̂ynσ̂

y
nþ1 þ δσ̂znσ̂

z
nþ1 (with δ ¼ 3 in Fig. 3) and the

VEEF is restricted in the x and z directions. With the zero or

random field, diffusive spreading is expected, with SðtÞ ∼
ln t [9,10]. With VEEF, linear growth SðtÞ ∼ vt with v ≃
8.37 is obtained, which persists till S̃ is reached at t ¼ Ts.
Robustness—Figure 4 demonstrates the robustness of the

ballistic EE spreading for different total evolution times T.
The inset shows that the curves with different T’s “per-
fectly” collapse to the linear relation given by Eq. (2) for the
early times. In all cases, S̃ is reached for the final state. Note
the states with the maximal EE are obviously not unique
but form a subspace. The coefficients of a state therein is a
unitary matrix from its Schmidt decomposition Ψ ¼
UV†=Z (with Z denotes the normalization factor), where
the Schmidt coefficients are equal.
We conjecture that the whole subspace with maximal EE

is in principle accessible by the VEEF for any T ≥ TS. To
verify this conjecture, we take the target state as jψðT 0Þi
with T 0 ≥ TS and its EE S ¼ S̃, and try to evolve a random
product state to jψðT 0Þi in an evolution time T > TS. The

FIG. 2. The EE SðtÞ against time t with zero field hαnðtÞ ¼ 0
(black dashed line), the constant field hxnðtÞ ¼ 0.9045 and
hznðtÞ ¼ 0.8090 where the system is nonintegrable [20] (red
dash-dot line), random hαnðtÞ (green solid line), and VEEF
(T ¼ 1.8 by purple solid line and T ¼ 10 by blue solid line).
We here consider the N ¼ 10 quantum Ising chain with periodic
boundary condition. The inset shows that EE converges to the
Page value [Eq. (1)] in the long-time limit [28]. The results with
the random hαnðtÞ are estimated by implementing ten independent
simulations, where the variance is indicated by the error bars.

FIG. 3. The EE SðtÞ for the N ¼ 10 XXZ model obeys the
logarithmic (diffusive) spreading with zero or random field
[9,10], but the linear (ballistic) spreading with VEEF. The inset
shows the enlargement of the area for t ≤ TS.

FIG. 4. The EE SðtÞ of the 1D QIM (N ¼ 10) against the time t
with different total evolution time T. The inset shows the SðtÞ for
T < TS, which satisfies the linear relation SðtÞ ¼ 2.76t.
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field is optimized by minimizing the infidelity FinðT;T 0Þ ¼
1 − jhψðT 0Þje−i

R
t

τ¼0
ĤðτÞdτjψð0Þij [40]. Taking T ¼ 4, T 0 ¼

6 (T < T 0) and T ¼ 6, T 0 ¼ 4 (T > T 0) as two examples,
vanishing infidelity with FinðT;T 0Þ ∼Oð10−4Þ is obtained,
which supports our conjecture.
From the optimization process, VEEF should depend on

the choice of the initial state jψ0i. Figure 5 illustrates the
robustness against random perturbations on jψ0i by

jψ 0
0i ¼ cos μjψ0i þ sin μjψ ri; ð7Þ

with μ controlling the strength of perturbation and jψ ri a
RPS whose coefficients are randomly generated with a
normal distribution. For μ ¼ 0, no perturbation is added
and the EE S0ðtÞ satisfies Eq. (2). For μ ¼ π=2, the
evolution starts from a RPS with S0ðt ¼ 0Þ ≃ S̃P, and
S0ðtÞ is almost a constant. This shows the time evolution
U with VEEF is “endomorphic” for the RPS subspace, i.e.,
UVEEFðjψ riÞ∈RPS for jψ ri∈RPS. The VEEF evolution
(optimized with a specific initial state) resembles the
random unitary evolution when taking a RPS as the initial
state.
For an arbitrary μ, the perturbed initial state is the

weighted superposition between the original initial state
and a RPS. The perturbation preserves the linear behavior
of EE but with lower velocities. This is reasonable since
adjusting the field (one-body operators) does not alter the
structure of the underlying quantum circuit, and therefore
essentially does not change the Haar dynamics for the
evolution of the RPS part (recall the endomorphism of U
with VEEF, which maps a RPS to RPS). The data collapse
at the crossing point of the two curves S0ðtÞ ¼ vt [Eq. (2)
with no perturbation] and S0ðtÞ ¼ S̃P (Page value with
RPS). Consequently, we have S0ðTÞ → S̃P as μ → ðπ=2Þ
[see the inset of Fig. 5(a)]. This implies we could exceed
the Page value S0ðTÞ > S̃P by implementing VEEF on an
initial state jψ 0

0i with jhψ0jψ 0
0ij > 0 when the orthogonal

part is described by a RPS. In this case, the perturbation
will enlarge the EE [S0ðtÞ > SðtÞ with SðtÞ the EE without
perturbation] for the time duration before the collaps-
ing point.
To further analyze S0ðtÞ, we assuming the following

orthogonal conditions between the Schmidt basis states of
jψ0i and jψ ri as

ihψAðtÞjψA
r ðtÞii0 ∼ 0; ihψBðtÞjψB

r ðtÞii0 ∼ 0: ð8Þ

with fjψAðtÞii; jψBðtÞiig and fjψA
r ðtÞii; jψB

r ðtÞiig the
left or right Schmidt basis states of UVEEFðjψ0iÞ and
UVEEFðjψ riÞ, respectively. Then, the EE approximately
obeys

S0ðtÞ ≃ S̃μ þ S̃Psin2μþ SðtÞcos2μ; ð9Þ

where S̃μ ¼ −cos2μlog2cos2μ − sin2μlog2sin2μ can be
treated as an additional entropy from a two-level probabi-
listic distribution pðμÞ ¼ ½cos2μ; sin2μ� [51]. Equation (9)
implies the linear growth of S0ðtÞ since SðtÞ satis-
fies Eq. (2).
At t ¼ 0, the EE of the initial state can be well pre-

dicted by Eq. (9), particularly for N ¼ 14, since the
orthogonal conditions between a RPS and a product
state can be well satisfied with a moderately large N [see
Fig. 5(b); note Sð0Þ ¼ 0]. The violation of Eq. (8) is

FIG. 5. (a) The EE S0ðtÞ of 1D QIM against time t for the initial
states jψ 0

0i with different μ controlling the strength of random
perturbation [Eq. (7)]. jψ0i is the unperturbed initial state for
obtaining the VEEF, and jψ ri is a RPS. The results are the
average of 10 independent simulations, and the error bars
(∼Oð10−3Þ) are given by the variances. The insets show the
S0ðTÞ versus μ. (b) The EE S0ð0Þ of the perturbed initial state vs μ
for different system sizes N, obtained by numerical simulations
(symbols) and by Eq. (9) (solid lines). The violation of the
orthogonal conditions is characterized by ϵ. (c) The S0ðtÞ obtained
by numerical simulations (symbols) and by Eq. (9) (solid lines)
for N ¼ 12, 14 and μ ¼ π=6; π=8; π=16.
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characterized by ϵ ¼ ð1=2DÞ�PD
i¼1

��hψAð0ÞjψA
r ð0Þii

��þP
D
i¼1

��hψBð0ÞjψB
r ð0Þii

���, which should, in general, vanish
exponentially in the N → ∞ limit. For t > 0, the deviation
between theVEEF results and Eq. (9) is small for small μ and
t, and for large N [Fig. 5(c)]. For large μ or t, we essentially
require the corresponding orthogonality between a RPS and
an entangled state, which is more difficult to achieve and thus
requires larger N [51]. We expect Eq. (9) to be held for
N → ∞.
Summary—We have uncovered the persistent ballistic

spreading of entanglement under the variational entangle-
ment-enhancing field that maximizes the entanglement
entropy of the final state. By persistent, we mean that
the linear growth of EE (with equal bipartition) holds until
the maximal EE is reached. This is in contrast to the
previous results, where the EE generally converges to the
Page value in the long-time limit and the linear growth just
appears at the early time of evolution. The robustness of the
EE ballistic spreading under VEEF is investigated. When
the perturbation is described by a random pure state (RPS),
the VEEF can enlarge the EE in a predictable manner and
its persistent linear growth can be preserved. This is a result
of the endomorphism of the VEEF time evolution for
the RPSs.
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