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In stochastic exploration of geometrically embedded graphs, intuition suggests that providing a shortcut
between a pair of nodes reduces the mean first passage time of the entire graph. Counterintuitively, we find
a Braess’s paradox analog. For regular diffusion, shortcuts can worsen the overall search efficiency of the
network, although they bridge topologically distant nodes. We propose an optimization scheme under
which each edge adapts its conductivity to minimize the graph’s search time. The optimization reveals a
relationship between the structure and diffusion exponent and a crossover from dense to sparse graphs as
the exponent increases.
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Time is a limiting factor for a plethora of physical
networks that rely on diffusion as a mechanism of transport
and search. Diffusive exploration can describe Euclidean
space trajectories in various length scales, e.g., foraging
animals searching for food or molecules searching for a
binding target [1]. Diffusion is also used to describe
stochastic transitions between the numerous metastable
states in an energy landscape [2,3]. In all of these different
systems, the average timescale in which a random walker
will encounter a target for the first time is given by the mean
first passage time (MFPT) [4].
The diffusive exploration of complex networks is inher-

ently linked to the structural properties of the graph [5,6].
For instance, a random walk on a regular lattice becomes
transient in dimensions higher than 2. This is only a
preamble to the rich phenomenology of diffusion in real-
world networks that exhibit hierarchical structures that
strongly differentiate the graph’s effective dimension from
that of the embedding space [7]. Small-world structures
present in social and neuronal networks [8], or self-similar
structures such as intracellular networks [9], are some
examples of complex architectures.
In addition to the topological features, the physical

properties of a graph, such as the Euclidean edge lengths,
can influence the diffusion dynamics. Deviations from
uniform edge lengths can induce heterogeneity in transit
times between neighboring nodes. Furthermore, waiting
times before performing a step may arise due to barriers
that hinder the diffusive passage, leading to subdiffusive
motion. Conversely, mechanisms of active motion, such as
motors, can accelerate the propagation speed, resulting in
superdiffusion.
Search efficiency is often crucial for the survival of the

random walker and the functionality of the network,
especially in biological systems. This has motivated exten-
sive research on how a node’s location and connectivity can

affect the node’s search time, which is defined as the MFPT
to the target node averaged over all starting nodes also
known as the global mean first passage time (GMFPT)
[10]. More recently, for planar organelle networks,
Ref. [11] studied the effect of loops on the overall network
transport, quantified by the GMFPT averaged over all the
targets (TA-GMFPT) or intuitively graph search time.
However, the graph structure that optimizes diffusive
search remains unknown.
To improve search efficiency, intuition suggests adding a

direct shortcut between topologically distant nodes. This
could reduce the MFPT of the pair and create additional
pathways for the rest, see Fig. 1(a). Counterintuitively, we
find that adding a shortcut can negatively affect the graph
search time. This phenomenon is reminiscent of the Braess
paradox discovered in the context of road networks in
1968, where creating a shortcut road increases the overall
commute time due to congestion [12] (see Supplemental
Material [13]). In the context of diffusive search, delays
arise not from congestion but rather from the substantial

FIG. 1. (a) Sketch of a diffusive search for the absorbing target
T, starting at node H. A shortcut (dotted path) affects both the
MFPT to the target and the graph search time. (b) A junction on a
weighted and spatially embedded graph. The conductivity csi and
length lsi of each link control the transition probability Psi
between neighboring nodes.
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Euclidean lengths of the shortcuts, which can nonlinearly
increase the graph search time. To avoid Braessian-like
links, we propose a general optimization scheme in which
each edge adjusts its weight to minimize the graph’s
search time.
In particular, we consider random walks on spatially

embedded, weighted graphs of N nodes and Ne edges.
Each pair of nodes i,j may be connected by a single edge
with weight wij ¼ ðcij=lijÞ, where wij ¼ 0 implies no
connection. Note that the inverse weight can be thought
of as the resistance rij ¼ w−1

ij of the edge, in a resistor
analog of the random walk [19]. Unlike previous work, see,
e.g., [20], here we consider both a length independent cij
(which can be thought of as the conductivity of the edge)
and the Euclidean distance between the two nodes lij. The
motion of the particle can be treated as a Markov state
model, with each Markov state corresponding to a node
neighborhood. Transitions between neighborhoods are
memoryless. The probability to directly transit from node
i to an adjacent node j is Pij ¼ ðwij=

P
N
j wijÞ.

In each link, the dynamics are treated as 1D anomalous
diffusion, and the mean transit time through a link is

ðl2βij =DβÞ, where Dβ is the diffusivity. This is the time at
which the standard deviation of the random walk displace-

ment equals the edge length
ffiffiffiffiffiffiffiffiffiffiffiffi
hΔx2i

p
¼ lij. The anomalous

diffusion exponent β captures two distinct regimes: β < 1

for superdiffusive motion and β > 1 for subdiffusion [21].
The (weighted) waiting time to transit from i to any

neighboring node is τi ≡P
N
j wijðl2βij =DβÞ.

We consider the trapping problem of continuous time
random walks in a weighted graph G when a target node y
is a perfect absorber. The MFPT from node i to the target
can be expressed using the truncated weighted LaplacianL
as Ti→y ¼

P
N−1
j;j≠y L

−1
ij τj [22,23]. From the graph Laplacian

defined as Lij ¼ −wij for i ≠ j and Lii ¼
P

N
j wij, we

obtain the truncated L after deleting the yth row and
column that contain the zero escape weights of the
absorbing node, notably L is invertible. We also remove
the yth row of τ that corresponds to the waiting time of the
trap. Equivalently, the MFPT can be derived by replacing
the edge weights wij with the transition probabilities Pij,
leading to a normalized Laplacian and a mean waiting time
(see Supplemental Material [13]).
To estimate the efficiency of diffusive search on graph G

we study the graph search time as the average MFPT over
all pairs of initial and target nodes hTi ¼ ½1=NðN−
1Þ�PN

y

P
N−1
i;i≠y Ti→y. Spectral analysis simplifies this dou-

ble sum, expressing L−1 as a function of the nonzero
eigenvalues λk > 0 for k > 1 and the corresponding eigen-
vectors of the Laplacian L [20]. These eigenvalues are
related to the effective resistance of the graph [24], as
follows:

R ¼ N
XN
k¼2

1

λk
: ð1Þ

Here R ¼ P
i>j Rij and Rij is the effective resistance

between nodes i, j if a unit current is inserted on i and
retrieved at j and the voltage drop represents the MFPT
[19]. Finally, we can derive a relation for the graph search
time that reveals the interplay between diffusion and the
graph structure:

hTi ¼ R
NðN − 1Þ

XN
i;j

wij

l2βij
Dβ

; ð2Þ

the sum is the overall edge transit time and depends on
the anomalous diffusion exponent β (see Supplemental
Material [13]).
To examine the impact of topological modifications on

the diffusive search efficiency of the graph, we consider
circular graphs with lattice constant l0, see Fig. 2(a). Two
non-neighboring nodes separated by n > 1 edges in the
original lattice can be directly linked with a shortcut sn. We
distinguish two cases: nonspatially embedded graphs where
all the edges are assigned equal lengths ln ¼ l0 and spatially
embedded networks where the edge lengths can be hetero-
geneous depending on the Euclidean distance between
nodes.
If all the edge lengths are equal then the transit time

through each link is the same: ðl2β0 =DβÞ. This is analogous
to a superdiffusive β ¼ 0, for which the edge transit time
does not depend on the length. For equal lengths and fixed

FIG. 2. (a) Diffusive search in a 1D circular lattice of N ¼ 20
nodes labeled by their topological distance n from node 0.
Without shortcuts, all the nodes on the circle have equal search
times. The heat map shows each node’s search time defined as
½1=ðN − 1Þ�PN−1

i;i≠n Ti→n, after adding the longest chord l�.
(b) The graph search time hTi after adding a shortcut of length
ln is normalized by the ring’s search time without the shortcut and
is plotted as a function of topological distance n. For diffusion
β ¼ 1, if all the edges are assigned equal lengths (ln ¼ l0), a
shortcut always improves the graph search time (empty triangles).
However, when the edge lengths are determined by the node
Euclidean distances (ln > l0), any shortcut on the circle increases
the graph search time (filled triangles). The Braess’s paradox
resolves for ballistic propagation (β ¼ 0.5) as the shortcuts
improve the search despite their long lengths (crosses).
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sum of weights
P

N
i;j wij ¼ 1, the graph search time be-

comes hTi ¼ ½l2β0 =NðN − 1ÞDβ�R, which is a convex
function of the weights (or cij, as lij ¼ const) [24]. In this
case, the optimal search architecture is a fully connected
graph with uniform edge weights [25].
However, in most physical networks there is hetero-

geneity in the length and conductivity distributions. A
periodic 1D lattice embedded in the circle can reveal the
competing relationship between topology, geometry, and
diffusion. Suppose a shortcut s� with conductivity c� and
length l� is added between antipodal nodes. This addition
will have a twofold effect. While it bridges the most distant
nodes, the shortcut’s long Euclidean length requires a long
transit time.
Counterintuitively, we find that for regular and sub-

diffusive exploration (β ≥ 1), adding any chord between
topologically distant nodes in a circular node embedding
increases the total search time, see Fig. 2(b). This is
analogous to Braess’s paradox, where increasing the
available pathways can reduce overall efficiency. Such
behavior can occur in physical networks: in traffic networks
adding a road can increase the total transportation time
[26], or in power grids, adding extra transmission lines
could promote blackouts [27].
To find the architecture that minimizes the graph search

time hTi, and eliminates Brassian edges we develop a
gradient descent algorithm inspired by the adaptation
mechanisms of flow networks [28,29]. During minimiza-
tion, each edge adapts its conductivity cij while its length
lij is kept fixed (see Supplemental Material [13]). The
updated conductivities at the nþ 1 iteration are cnþ1

ij ¼
cnij þ δcnij and the weights w

nþ1
ij ¼ ðcnþ1

ij =lijÞ. The variation
of the conductivities is δcnij ≈ −vð∂E=∂cnijÞ, where v is the
step size and E is the objective function,

E ¼ hTi þ λ

�XN
i;j

wij −Wtot

�
: ð3Þ

The Lagrange multiplier λ conserves the sum of the weights
Wtot during minimization [29].
We allow all possible link connections between pairs of

nodes embedded in a circle to ensure full degrees of
freedom for approximating the optimal architecture. The
initial conductivity of each link is assigned equal to its
length c0ij ¼ lij to impose uniform initial weights w0

ij ¼ 1.
We then apply the adaptation rule to find the optimal graphs
for different values of the diffusion exponent β. To ana-
lyze the weighted network features, we employ robust
topological measures, including the clustering coefficient
Cl [30] and mean shortest path length L [31].
In one dimension, for superdiffusive motion (β < 1), the

optimal network has shortcuts and is highly clustered, see
Figs. 3(a) and 3(b). For subdiffusive motion (β ≥ 1), long

links vanish and the optimal graph is a 1D ring lattice, with
minimal clustering and a large shortest path length. The
transition from dense to sparse graphs depends on the
system size and occurs asymptotically for βc ¼ 1 in one
dimension, asN → ∞, see Fig. 4(b). Notably, the crossover
occurs at the same βc for any convex constraint function of
the conductivities

P
ij c

γ
ij, γ ≥ 1, and even when the

constraint is softened to an upper bound. This indicates
that the maintenance or not of an edge is dictated by the
graph’s search time hTi and not by the resource constraint.
The optimization algorithm finds the edge weight dis-

tribution that minimizes hTi, irrespective of the initial edge
weight assignment (see Supplemental Material [13]). We
further probe the stability using global minimization tech-
niques like basin hopping [32,33], and the obtained minima
match those from gradient descent. Our analysis also
extends to sparse graphs embedded on regular lattices when
the density of added shortcuts is low ½Ne=NðN − 1Þ� ≪ 1. In
sparse topologies, the optimal architecture is restricted by
the allowed edge connections leading to less efficient
minima than those of dense graphs. However, we observe
a crossover for subdiffusion (β ≥ 1) regardless of the
shortcut density. In a circular embedding, the optimal
architecture is the 1D circular graph with minimal edge
lengths (see Supplemental Material [13]).
We now test how the optimal search architecture depends

on the dimension of the embedding space and the node
positions. We study 2D and 3D using square and cubic

FIG. 3. (a)–(c) Optimal search weights (edge thickness) for
different diffusive exponents β, for a complete graph of N ¼ 20
nodes regularly placed (l0 ¼ 1) on a circle. As β increases, the
long edge weights decrease while the short edge weights increase.
For subdiffusion β ≥ 1, only the shortest edges remain. (d) Shows
the initial hTiinit and optimal hTiopt search times. (e) The
weighted mean shortest path length L and the graph effective
resistance R increase with β. The weighted clustering coefficient
Cl decreases with β, and drops at a minimum for βc ≈ 0.95
(dashed line). In one dimension, the transition from a dense graph
with long-range links to a sparse short-range lattice occurs at
βc ¼ 1 as (N → ∞). The crossover exponent βc is obtained
numerically when the clustering plateaus, see Supplemental
Material [13].
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lattice node embeddings, respectively (see Supplemental
Material [13] for 3D visualization). In the regular lattice,
we introduce links with probability p ∼ 0.02 between
random unconnected pairs of nodes to obtain networks
with high clustering and nonlocal connections as demon-
strated in the examples of Fig. 4(a) (inset). Unlike our
approach in one dimension, here we focus on the edge
length distribution of the optimal graphs for different
diffusive exponents.
As the random walk propagation speed decreases

(β increases), both the average edge length hli≡P
N
i;jðwij=WtotÞlij and its coefficient of variation σ=hli

decrease in the optimal graphs. Ultimately, there is a
transition from dense networks with long-range links to
short-range sparse graphs with connections between geo-
metrical nearest neighbors. If the nodes are regularly
embedded and β > βc, the optimum network forms a
lattice of minimal edge length and zero length variance,
see Fig. 4(a) (inset). The diffusive exponent at which the
transition occurs depends on the embedding dimension as
follows β1Dc > β2Dc > β3Dc [Fig. 4(b)].
We study random node embeddings by perturbing the

nodes of regular lattices, see Fig. 4(a) (inset). Initially, the
distribution of weights is uniform across all edges.
However, after optimization shorter edges acquire larger
weights than longer ones, reducing the average edge length.
Particularly for β ≥ 0.5, optimal search networks in ran-
domized lattices achieve a lower average edge length than
their regular lattice counterparts. This can affect the search

efficiency since the average edge length establishes
a lower bound on the graph search time. It can be
shown using Jensen’s inequality [34] for β ≥ 0.5,
that: hli2β½RWtot=NðN − 1ÞDβ� ≤ hTi.
To shed light on the crossover from dense to sparse

optimal search graphs, we investigate when a shortcut
addition can reduce the graph search time. LetG be a graph
with N nodes approximately arranged on a D-dimensional
hypercubic lattice with spacing l0 ≃ 1, conductivity c0 ¼ 1,
and weights w0 ¼ 1. The augmented graph Gþ s� has an
additional shortcut s�, connecting the lattice’s opposite
nodes with Euclidean distance l� ≈ Nð1=DÞ and weight
w� ¼ ð1=l�Þ. The addition of s� always increases the total
edge length and induces a travel time ðl2β� =DβÞ. Conversely,
s� reduces the graph resistance Rþs� < R in line with
Rayleigh’s monotonicity law [19]. The shortcut is advanta-
geous if

hTiþs�
hTi ¼

�
1þ 2w�l

2β
�P

N
i;j wijl

2β
ij

�
Rþs�
R

< 1: ð4Þ

For a regular lattice with Ne ∝ N edges, inequality (4) be-
comes

�
1þ αN½ð2β−1Þ=D�−1�ðRþs�=RÞ < 1, where α > 0 is a

constant independent of N.
The improvement in graph resistance due to the addition

of a shortcut between nodes ði; jÞ, depends on how its
weight compares to the effective weight of all paths
between ði; jÞ, denoted by Wij ¼ R−1

ij . If the shortcut has
a small weight (e.g., long length) or the graph is “loopy”
with an inherently low average pairwise resistance, then
w�Rij → 0 for larger networks and the shortcut’s improve-
ment on the graph resistance gradually vanishes. For
context, in one dimension, Rij ∼ N; in two dimensions,
Rij ∼ logN; and in three dimensions Rij ∼ const [35,36].
Understanding how ðRþs�=RÞ scales with the system size

and the embedding dimension allows a prediction for the
crossover exponent. However, an analytical estimation is
challenging for noncirculant graphs (see Supplemental
Material [13]). Instead, we can obtain a useful upper bound
for the crossover βc by observing that the graph resistance
can reduce at most by

�
Rþs�=R

� ¼ 1
2
, when s� connects the

antipodal nodes of a path graph G (edges in series) so that
Gþ s� is converted into a cycle. From inequality (4), we
obtain βDc < ½ðDþ 1Þ=2�, implying that as β increases, it
becomes unfeasible to offset the diffusive delay. This
agrees with the optimal search graphs depicted in Fig. 4(a)
which prioritized minimizing the average edge length
rather than maximizing connectivity.
Previously, diffusive search was classified based on its

compactness [37–39]. If a random walk explores a graph of
linear size S ¼ N1=df , where df is its fractal dimension, the
exploration is compact if 2β > df and noncompact if
2β < df. Our findings indicate that compactness alone is

FIG. 4. (a) Shows the mean edge length hli and the coefficient
of variation ðσ=hliÞ, for optimal search networks of N ¼ 144 in a
regular (black) and a random node embedding (orange). Before
optimization, all the edges have uniform weights and the initial
hli, ðσ=hliÞ are shown in red. For β smaller than β2Dc ¼ 0.87
(dashed line), the optimal graphs (left of the inset, smaller
example) have long-range links. For β > β2Dc , there is a crossover
at which only the shortest edges survive and the variance of the
lengths plateaus at a minimum. Notably, networks with random-
ized node positions achieve lower average edge lengths than their
regular lattice counterparts. (b) The crossover occurs at different
exponents βc depending on the system size N, and the dimension
of the lattice embedding. Here, each βc is numerically determined
when ðσ=hliÞ plateaus, similar results can be obtained using the
clustering Cl, see Supplemental Material [13].
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not enough to capture the crossover of the optimal
search architecture from long-range links to a short-range
lattice. This transition depends on the type of diffusion, the
system size, and the node embedding dimension as shown
in Fig. 4(b). In one dimension, the crossover occurs
asymptotically at β ¼ 1 while the compactness changes at
β ¼ 0.5. In two dimensions, the compactness changes at
β ¼ 1 but the crossover is already observed for β2Dc < 1 for
the tested graphs up to N ≈ 104. In three dimensions,
the compactness changes for β ¼ 1.5 but the crossover
occurs for lower values, depending on the network size,
e.g., for N ¼ 123, β3Dc ≈ 0.71. Although our work focused
on networks embedded in regular lattices and their
perturbations, the crossover in the optimal search archi-
tecture should be examined for universality across
different classes of networks, including fractal and
scale-free graphs [39–41].
In this Letter, we investigated the topological and

geometrical features for weighted and spatially hetero-
geneous networks that minimize the average mean first
passage time between all node pairs. In physical network
diffusion, the transit time through an edge depends on the
edge’s Euclidean length [11], and the propagation speed is
determined by the type of anomalous random walk. As the
epitome of this interplay, we find a Braess paradox analog,
where for subdiffusion β ≥ 1, extending the network with a
shortcut between topologically distant nodes can worsen
the overall search time if the link has a significant
Euclidean length. However, a faster diffusive propagation,
β < βc, reduces the transit time, making topological short-
cuts preferred.
Finding the optimal search architecture is crucial for

transport efficiency in real-world networks and porous
media [11,42]. To this end, we developed an optimization
scheme under which each link adapts its conductivity to
minimize the overall search time while conserving avail-
able resources. This process eliminates Braessian edges and
enhances links that improve transport. The optimal search
graph undergoes a crossover that depends on the diffusive
exponent β and the embedding dimension. For β < βDc , we
obtain dense graphs with long-range links, while for β ≥
βDc the optimal networks have short-range links between
geometrical nearest neighbors. Our theory is broadly
applicable since it is agnostic to the system-specific physics
underlying diffusion. It requires only the scaling of the
mean squared displacement within edges, node embedding,
and graph topology. Therefore, it can offer insights across a
range of systems that rely on diffusive transport in various
length scales, including chemical reaction networks [37],
intracellular networks [9], and microswimmers navigating
mazes [43].
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