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The Langevin equation is a common tool to model diffusion at a single-particle level. In nonhomo-
geneous environments, such as aqueous two-phase systems or biological condensates with different
diffusion coefficients in different phases, the solution to a Langevin equation is not unique unless the
interpretation of stochastic integrals involved is selected. We analyze the diffusion of particles in such
systems and evaluate the mean, the mean square displacement, and the distribution of particles, as well as
the variance of the time-averaged mean-square displacements. Our analytical results provide a method to
choose the interpretation parameter from single-particle tracking experiments.
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Diffusion is a fundamental process that is ubiquitous
in physics, chemistry, and biology. The first successful
attempts to understand such motion came from Einstein
and, independently, from Smoluchowski, who described
the probabilistic nature of Brownian motion [1,2]. Shortly
after these seminal works, Langevin introduced a single-
particle formalism equivalent to Newton’s second law of
motion in the context of statistical physics [3]. The
Langevin equation is a differential equation for the position
XðtÞ of a tracer particle that includes a random force ξðtÞ
related to the interactions of the tracer with the particles
forming the medium [4–6]. The strength of the random
force is proportional to the square root of the diffusion
coefficient D. Thus, a heterogeneous environment involv-
ing variations in local diffusivity yields local fluctuations in
the random forces.
During the last decade, heterogeneous processes have

received increased attention due to the broad use of single-
particle tracking methods and their sensitivity to probe
local diffusive properties [7–22]. In particular, systems
having a boundary that separates two liquid phases where
particles have different diffusivities are gaining technologi-
cal interest in food science, chemical synthesis, and
biomedical engineering [23–25]. Aqueous two-phase sys-
tems are spontaneously formed by the separation of two
incompatible polymers above a critical concentration. Their
key property is that small molecules can diffuse across the
interface. Currently, they are employed in the separation
and purification of biomolecules [26], carbon nanotubes

[27], and metal ions [28]. Furthermore, liquid phase
separation has been recently found to play fundamental
roles in cellular processes, such as genetic regulation [29]
and signaling cascades [30]. In the life sciences, these
compartments are thought of as membraneless organelles
composed of dense assemblies of proteins and nucleic
acids and are termed biological condensates [31,32]. Thus,
modeling the diffusion of molecules across these bounda-
ries has importance both from scientific and technological
perspectives. In addition to two-phase systems, hetero-
geneous diffusion has been probed in a wide variety
of systems, including porous media [33], supercooled
liquids [34], and micropillar matrices [35].
The Langevin equation for a particle in a homogeneous

environment is well defined [36]. However, for hetero-
geneous environments, the integrals appearing when solv-
ing the Langevin equation are not uniquely defined. The
lack of uniqueness is rooted in the integrand function
having a random nature. The problem becomes severe
when the diffusivity landscape has abrupt changes, such as
those encountered in a two-phase system. In practice,
stochastic integrals are defined as sums over infinitesimal
rectangles, and, contrary to the case of smooth functions,
the integral depends on the position of the points where the
function is evaluated. This dependence thus requires addi-
tional information known as interpretation [37–43].
Because of its lack of a unique solution, some authors
prefer to term the Langevin equation a preequation [39].
The first approach to solving the Langevin equation

via stochastic integration was introduced by Itô, employing
the initial point of the infinitesimal interval to compute
the integrals [44]. Then, Stratonovich introduced an*Contact author: diego.krapf@colostate.edu
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alternative method by which the midpoint of the interval is
selected [45,46]. Finally, Hänggi and co-workers intro-
duced yet another prescription, taking the last point of the
infinitesimal interval [47–50]. Such freedom at selecting an
interpretation gives rise to the problem of choosing the
“correct” interpretation [51]. Thus, when developing mod-
els to describe dynamics in heterogeneous environments,
a choice is made a priori, typically employing either Itô
[52], Stratonovich [8], or Hänggi-Klimontovich (HK) [53]
prescriptions.
Nowadays, it is accepted that the choice of interpretation

depends on the underlying mechanisms that dictate the
fluctuations of the physical system [36,39]. However,
methods that assign an interpretation of a Langevin equation
to experimental physical systems are still missing. Given the
broad interest in diffusion in heterogeneous media, this
problem and its implications need careful consideration.
Particularly, tools to infer the interpretation parameter from
physical observables can help guide experimentalists and
theoreticians in the use of a Langevin equation.
In this Letter, we study the diffusion of particles in a

heterogeneous environment that mirrors a two-phase
system, namely, having different diffusion coefficients
on each side of an interface. We consider the interpretation
as a parameter, focusing on the Itô, Stratonovich, and HK
interpretations. The simple situation considered here elu-
cidates significant variations between solutions associated
with different interpretations and leads to distinctive
experimental predictions. We observe that typical charac-
terizations, such as the mean, the mean square displacement
(MSD), and the displacement probability density function
(PDF) for different interpretations have different forms.
Our results provide a tool to infer the interpretation
parameter in experimental settings from the measured
density of particles at both sides of an interface.
We start by considering a Langevin equation with

position-dependent diffusion coefficient DðxÞ [54],

dXðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D½XðtÞ�

p
dBðtÞ; ð1Þ

where BðtÞ is standard Brownian motion. In the math-
ematical literature, such a process is said to have “multi-
plicative noise,” as opposed to “additive noise” where
the diffusion coefficient is either constant or a function of
time [54]. To integrate this equation, one splits the time
interval ½0; t� into N subintervals of size Δt ¼ t=N, leading
to N integrals that are Riemann approximated,

Z
tnþ1

tn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D½XðsÞ�

p
dBðsÞ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D½Xðt0Þ�

p
ξn; ð2Þ

where tn ¼ nΔt, n ¼ 0;…; N, t0 ∈ ½tn; tnþ1�, and ξn ¼
Bðtnþ1Þ − BðtnÞ are the increments of Brownian motion,
i.e., independent and identically distributed Gaussian ran-
dom variables with variance Δt. In contrast to additive

noise, the choice of t0 alters the evolution of the system
because different times within ½tn; tnþ1� can give different
diffusion coefficients.
Let us express t0 as t0 ¼ tn þ αðtnþ1 − tnÞ, with α∈ ½0; 1�

known as the interpretation parameter. Performing a
Taylor expansion to first order of Xðt0Þ around tn, we find
Xðt0Þ ≈ XðtnÞ þ αΔXn, with ΔXn ¼ Xðtnþ1Þ − XðtnÞ, and
by replacing this expression in Eq. (2),

XðtÞ ¼
XN−1

n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D½XðtnÞ þ αΔXn�

p
ξn: ð3Þ

The Langevin equation with multiplicative noise
[Eq. (1)] is associated with a Fokker-Planck equation for
the PDF pðx; tÞ of the particle’s position at time t [36,54],

∂pðx; tÞ
∂t

¼ ∂

∂x

�
DαðxÞ ∂

∂x
½D1−αðxÞpðx; tÞ�

�
; ð4Þ

where α is the interpretation parameter.
To numerically study this Fokker-Planck equation,

we consider a discrete space with lattice constant a.
Equation (4) becomes

dpiðtÞ
dt

¼ Dα
i−1=2D

1−α
i−1

a2
pi−1ðtÞ

−
Dα

iþ1=2D
1−α
i þDα

i−1=2D
1−α
i

a2
piðtÞ

þDα
iþ1=2D

1−α
iþ1

a2
piþ1ðtÞ; ð5Þ

where piðtÞ is the probability to find the particle on site i
at time t, that is, piðtÞ ¼ pðx ¼ ia; tÞ, and Di�1=2 ¼
D½x ¼ ði� 1=2Þa�. This equation has the form of a master
equation [55] with transition rates ωi→j from position i to j,

ωi→j ¼
D1−α

i Dα
k

a2
; ð6Þ

with k ¼ ðiþ jÞ=2 for j ¼ i� 1.
We consider the master equation using a simple diffusion

coefficient function of the form

DðxÞ ¼
�
D− if x < 0;

Dþ if x ≥ 0;
ð7Þ

with D� > 0. This function represents a two-phase system
with a diffusivity change at the boundary. Setting a ¼ 1,
we use a fourth-order Runge-Kutta integration scheme [56]
with an integration step of Δt ¼ 0.01 to numerically solve
the above master equation for different values of the
interpretation parameter α. We found that the PDF for
any α is described by a generalized two-piece Gaussian
distribution [57]

PHYSICAL REVIEW LETTERS 133, 067102 (2024)

067102-2



pðx; t;αÞ ¼

8>><
>>:

2βðαÞffiffiffiffiffiffiffiffiffiffi
4πD−t

p exp
�
− x2

4D−t

�
; x < 0;

2½1−βðαÞ�ffiffiffiffiffiffiffiffiffiffi
4πDþt

p exp
�
− x2

4Dþt

�
; x ≥ 0;

ð8Þ

where βðαÞ is the probability that the particle is in the
negative part of the axis, i.e., β ¼ P½XðtÞ < 0�, which is
independent of time. We verified that the identified PDF
[Eq. (8)] is the solution to the Fokker-Planck equation
[Eq. (4)] [57]. Then, using matching conditions on both
sides of the origin, we find the probability β [57],

βðαÞ ¼
�
1þ

�
D−

Dþ

	ð1=2−αÞ
−1
: ð9Þ

We focus on the first two moments, corresponding to the
mean position and the MSD,

hXðtÞi ¼ 2ffiffiffi
π

p
h ffiffiffiffiffiffiffi

Dþ
p

− βðαÞ
� ffiffiffiffiffiffiffi

D−
p

þ ffiffiffiffiffiffiffi
Dþ

p �i
t1=2; ð10Þ

and

hX2ðtÞi ¼ 2½Dþ þ βðαÞðD− −DþÞ�t: ð11Þ

For any interpretation, the MSD is linear, i.e., it resembles
normal diffusion with an effective diffusion coefficient that
depends on α. However, except for α ¼ 0, the process is not
centered and the mean scales as t1=2. A summary of the
results for the Itô, Stratonovich, and HK interpretations is
shown in Table I.
To visualize the role of the interpretation, we analyze a

process with D− ¼ 2 and Dþ ¼ 1, via analytical solutions
and numerical simulations. The probability of finding the
tracer in the region x < 0, following Eq. (9), is presented in
Fig. 1(a). Figures 1(b) and 1(c) show the mean hXðtÞi and
MSDhX2ðtÞi for the three considered interpretations
ðα ¼ 0; 1=2; 1Þ. Next, the PDFs of the position at t ¼ 1024
are shown in Figs. 1(d)–1(f). In the three cases, the
numerical integration of the master equation [Eq. (5)]
agrees with the analytical expression [Eqs. (8) and (9)].
Often, trajectories of individual particles are analyzed in

terms of the time-averaged MSD (TAMSD) [9,66,67],
defined in an observation time T, at lag time τ, as

δ2ðτÞ ¼ 1

T − τ

Z
T−τ

0

½Xðτ þ tÞ − XðtÞ�2dt: ð12Þ

This quantity is often suitable for the analysis of exper-
imental data, with a limited number of trajectories.
Brownian motion is an ergodic process where the

TAMSD is δ2ðτÞ ¼ 2Dτ. In the two-phase system, the
time a tracer spends on one side before switching to
the other is the first return time of a standard Brownian
motion. The occupation time fraction in the region x < 0 is
a random variable fα, and its mean yields the mean of the
TAMSD [57],

D
δ2ðτÞ

E
∼ 2½Dþ þ ðD− −DþÞβðαÞ�τ; ð13Þ

which shows that
D
δ2ðτÞ

E
¼ hX2ðτÞi, in contrast to most

nonstationary processes. However, the TAMSD remains a
random variable at long realization times, a signature of
weak ergodicity breaking. We consider the coefficient
of variation (CV) of the TAMSD, defined as the ratio
between the standard deviation σδ2 and the mean, i.e.,

CV ¼ σδ2=hδ2ðτÞi.
The ergodicity breaking parameter is the square of

the CV, which is often used in the study of weak non-
ergodicity [68]. By computing the variance of fα [57], we
obtain

CV ∼
jD− −Dþj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðαÞ½1 − βðαÞ�=2p

Dþ þ ðD− −DþÞβðαÞ
; ð14Þ

as shown in Supplemental Material Fig. 1 [57].
A natural question that arises is, given a physical system,

how should experimental measurements in the vicinity of
an interface guide the choice of the interpretation param-
eter? The most detailed measurements of particle dynamics
are obtained using single-particle tracking. Using this
method, diffusion coefficients and the PDF of localization
can be obtained on both sides of the two-phase system. For
proper initial conditions, trajectories should start when the
tracer is at the interface. A continuous density indicates
α ¼ 1 [HK prescription, Fig. 1(f)]. Otherwise, a disconti-
nuity in the PDF at the interface indicates α ≠ 1, and the
interpretation is dictated by the measured probability of
being on one side (β). By inverting Eq. (9),

TABLE I. Summary of the probabilistic analyses for the Itô (α ¼ 0), Stratonovich (α ¼ 1=2), and HK (α ¼ 1)
interpretations.

Mean hXðtÞi MSD hX2ðtÞi β

Itô 0 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DþD−

p
t

�
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D−=Dþ
p �−1

Stratonovich ð1= ffiffiffi
π

p Þ� ffiffiffiffiffiffiffi
Dþ

p
−

ffiffiffiffiffiffiffi
D−

p �
t1=2 ðDþ þD−Þt 1=2

HK ð2= ffiffiffi
π

p Þ� ffiffiffiffiffiffiffi
Dþ

p
−

ffiffiffiffiffiffiffi
D−

p �
t1=2 2

�
Dþ þD− −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DþD−

p �
t

�
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dþ=D−
p �−1
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α ¼ 1

2
−
lnðβ−1 − 1Þ
lnðD−=DþÞ

: ð15Þ

To illustrate the proposed methodology, we employ
simulations that represent an experimental system. Our
model system is bovine serum albumin (BSA) labeled with
AlexaFluor fluorophores within two aqueous phases con-
taining dextran and polyethylene glycol (PEG) [23]. The
left phase contains 13.2 wt% dextran 500 000, and the right
phase contains 7.1 wt% PEG 6000, yielding diffusion
coefficients for BSA of 14 and 24 μm2=s, respectively.
For these simulations, we assume the system follows the
Stratonovich interpretation (α ¼ 1=2), and data are col-
lected every 0.1 s. We obtained 2000 trajectories of 100
data points each. This combination of trajectory number
and length is experimentally realistic in single-particle
tracking [67]. Figure 2(a) shows representative simulations
of BSA trajectories.
While it is possible to use the mean, MSD, or TAMSD

CV to infer the interpretation α, we showcase a simplified
method using only the fraction of trajectories to the left of
the interface at a given time. If the selected interpretation is
correct, the predictions for MSD and CV should ensue.
Figure 2(a) presents βðtÞ obtained as the fraction of points
to the left of the interface. The time average for this dataset
is β̄ ¼ 0.504, which yields an interpretation α ¼ 0.470,
according to Eq. (15). To assess estimation error, we
repeated the described procedure 100 times. The statistical

results are β̄¼0.501�0.007 and, in turn, α ¼ 0.49� 0.06
(mean � standard deviation). Histograms of β̄ and α are
presented in Supplemental Material Fig. 2 [57].
The simplicity of a system with a single interface allows

us to obtain analytical results and highlights the differences
between interpretations. Even though our approach is for
the general case, we focus our analysis on the three most
widely used interpretations. Each of these prescriptions has
appealing strengths: with the Itô interpretation, the mean
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FIG. 1. Characterization of heterogeneous Brownian motion withD− ¼ 2 andDþ ¼ 1. (a) Probability β of finding the tracer in the left
half plane as a function of α, as found analytically [Eq. (9)]. (b) Mean hXðtÞi for three interpretation parameters α ¼ 0; 1=2, and 1,
corresponding, respectively to Itô, Stratonovich, and Hänggi-Klimontovich. Thick lines are numerical simulations and thin dashed lines
are analytical solutions. (c) MSD hX2ðtÞi for the interpretation parameters α ¼ 0; 1=2, and 1. Thick lines are simulations and thin dashed
lines are analytical solutions. (d)–(f) PDF at time t ¼ 1024 for the three interpretations. Thick lines are numerical simulations of the
master equation [Eq. (5)] and thin dashed lines are analytical solutions given by Eq. (8).
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FIG. 2. Inference of the interpretation from a set of trajectories
in a two-phase system. (a) Representative simulated two-
dimensional trajectories of BSA in dextran- and PEG-rich phases.
The black vertical line delineates the interface. (b) Fraction of
trajectories for which the tracer is found on the left yields βðtÞ. In
this case, the time average of βðtÞ for 100 data points is
β ¼ 0.504, shown as a dashed line.
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is always zero, a consequence of this process being a
martingale; that is, the conditional expectation of the next
value in a sequence equals the current value, regardless of
its history [5]. While the Itô interpretation maintains a
constant mean position (martingale property), the
Stratonovich one preserves the median in the two-phase
system. With the Stratonovich interpretation, a tracer has
equal probabilities of being on either side of the origin,
i.e., P½XðtÞ < 0� ¼ 1=2. With the HK interpretation, the
Fokker-Planck equation coincides with that obtained from
combining Fick’s first law of diffusion and the continuity
equation, and the PDF of displacements is continuous at the
origin. The Fokker-Planck equations for the three inter-
pretations are listed in Supplemental Material Table I [57].
To make sense of the results for different interpretations

in inhomogeneous systems, we briefly consider a system in
a box with reflecting boundary conditions. As this system
equilibrates, the distribution converges to pðxÞ ∼Dα−1ðxÞ
[57]. From this Boltzmann distribution, we obtain an
effective potential UðxÞ ¼ −kBT lnpðxÞ of the form

UðxÞ ¼ kBTð1 − αÞ lnDðxÞ þ const; ð16Þ

which has a discontinuity, except for the HK case. Overall,
the changes inD imply changes in the interactions between
the tracer and its surroundings. The properties of the
nonequilibrium PDFs follow from the discontinuity in
the potential, i.e., from an unbalanced force in the vicinity
of the boundary toward the domain with a lower diffusion
coefficient.
The process treated in the main part of this Letter (Fig. 1)

is not confined and, as such, it describes an out-of-
equilibrium system that does not reach a steady state.
Because of the absence of confinement, a so-called infinite
density emerges [69,70]. Several statistical properties of
these processes and their relation with infinite ergodic
theory have been previously analyzed [71,72]. Despite
these complexities, the probability β does not depend on
time, facilitating the analysis of experimental results. Given
the interpretation, using infinite ergodic theory formalism,
it is possible to obtain thermodynamical properties of the
system and relations between time- and ensemble-averaged
observables.
One interesting aspect is that Brownian motion with

alternating diffusivities maintains the linear time behavior
of the MSD, regardless of the interpretation. However, the
effective diffusion coefficient depends on the interpretation.
With the Itô interpretation, the effective diffusivity is equal
to the geometric mean of the two diffusion coefficients,
while with the Stratonovich interpretation, the effective
diffusivity is equal to their arithmetic mean.
Throughout the study of a simple two-phase hetero-

geneous environment, we have shown how the overall
characterization of the motion depends on the interpretation
parameter. This result encourages researchers modeling

diffusion in heterogeneous environments to consider which
interpretation suits best the physics of their system. These
results do not imply one interpretation is better than the
others or that choosing one makes the others incorrect.
Selecting an interpretation simply states how the Langevin
equation will be treated.
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