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We prove that the transport of any differentiable scalar observable in d-dimensional nonequilibrium
systems is bounded from above by the total entropy production scaled by the amount the observation
“stretches” microscopic coordinates. The result—a time-integrated generalized speed limit—reflects the
thermodynamic cost of transport of observables, and places underdamped and overdamped stochastic
dynamics on equal footing with deterministic motion. Our work allows for stochastic thermodynamics to
make contact with bulk experiments, and fills an important gap in thermodynamic inference, since
microscopic dynamics is, at least for short times, underdamped. Requiring only averages but not sample-to-
sample fluctuations, the proven transport bound is practical and applicable not only to single-molecule but
also bulk experiments where only averages are observed, which we demonstrate by examples. Our results
may facilitate thermodynamic inference on molecular machines without an obvious directionality from
bulk observations of transients probed, e.g., in time-resolved x-ray scattering.

DOI: 10.1103/PhysRevLett.133.067101

A complete thermodynamic characterization and under-
standing of systems driven far from equilibrium remains
elusive. Central to nonequilibrium thermodynamics is the
total entropy production ΔStot, which reflects the displace-
ment from equilibrium [1]. ΔStot embodies the entropy
change in both the system and the environment coupled to
it and is a measure of the violation of time-reversal
symmetry [1,2]. Most importantly, the thermodynamic cost
of nonequilibrium processes (stationary, transient, or even
explicitly time-dependent) at temperature T is in fact
TΔStot, which can thus be seen as the “counterpart” of
free energy in equilibrium. The total entropy production
allows, for example, to quantify the efficiency of molecular
motors [3–5] and gain insight into the energetic budget of
human red blood cells [6]. While most works focus on
nonequilibrium steady-state (NESS) dynamics, transient
processes that approach equilibrium states such as, e.g.,
protein folding [7–15] or thermal relaxation [16], are also
characterized by TΔStot, which then corresponds to an
excess free energy [16–19]. Even more involved are
transients toward NESS, relevant in e.g., the packaging
of viral DNA [20], red blood cell flickering [21], enzymati-
cally facilitated topological relaxation of DNA [22], or

nanoparticle model systems for interrogating the funda-
mental laws of stochastic thermodynamics [23].
Despite its importance, the inference of ΔStot from

experimental observations is far from simple, as it requires
access to all dissipative degrees of freedom is the system,
which is typically precluded by the fact that one only has
access to some observable. Notably, neither the micro-
scopic dynamics nor the projection underlying the observ-
able are typically known, and often one can only observe
transients.
To overcome these intrinsic limitations of experiments,

diverse bounds (i.e., inequalities) on the entropy production
have been derived, in particular thermodynamic uncertainty
relations (TURs) [24–37] and speed limits [38–48]. Such
bounds provide conceptual insight about manifestations of
irreversible behavior, and from a practical perspective they
allow to infer a bound on ΔStot from measured trajectories,
more precisely from the sample-to-sample fluctuations or
speed of observables.
These results remain incomplete from several perspec-

tives. First, their validity typically hinges on the assumption
that the microscopic dynamics is overdamped or even a
Markov-jump process. This is unsatisfactory because
microscopic dynamics is, at least on short timescales,
underdamped and the TUR does not hold for underdamped
dynamics [49] (see, however, progress in [50–53] and
recently [54]). Similarly, thermodynamic speed limits have
so far seemingly not been derived for underdamped
dynamics. While inertial effects may not be important in
colloidal systems [55], they are indeed relevant for, e.g.,
protein dynamics [56–59], and are known to invalidate
overdamped theories even on long timescales [49]. Even
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the basic formulation of path-wise thermodynamics of
inertial systems is fundamentally different, and in the
analysis of densities or integrals over stochastic trajectories
one cannot eliminate short-time inertial effects. Second,
dissipative processes are often, especially in molecular
machines without an obvious directionality (e.g., molecular
chaperones [60]), mediated by intricate collective (and
often fast) open-close motions visible in transients that are
difficult to resolve even with advanced single-molecule
techniques [61]. Experiments providing more detailed
structural information, such as time-resolved x-ray scatter-
ing techniques [7–10,12–15], are available, but probe bulk
behavior for which the existing bounds do not apply. There
is thus a pressing need to close the gaps and to cover
underdamped dynamics and tap into bulk observations.
Here, we present thermodynamic bounds on the gener-

alized transport of observables in systems evolving accord-
ing to (generally time-inhomogeneous) overdamped,
underdamped, or even deterministic dynamics, all treated
on an equal footing, generalizing existing results on
transport [4,46]. Technically, the results may be classified
as a time-integrated version of generalized speed limits and
bring several conceptual and practical advantages. As a
demonstration, we use the bounds for thermodynamic
inference based on both single-molecule and bulk (e.g.,
scattering) observables.
Rationale—Consider the simplest case of a Newtonian

particle with position xτ and velocity vτ at time τ dragged
through a viscous medium against the (Stokes) friction
force Fγ ¼ −γvτ with friction constant γ causing a transfer
of energy into the medium. The dissipated heat between
times 0 and t is ΔQγ ¼ γ

R
t
0 vτdxτ ¼ γ

R
t
0 v

2
τdτ and gives

rise to entropy production in the medium [1]. Since deter-
ministic dynamics does not produce entropy otherwise, we
have TΔStot ¼ ΔQγ in τ∈ ½0; t�. This imposes a thermo-
dynamic bound on transport via the Cauchy-Schwarz
inequality ðxt − x0Þ2 ¼ ðR t

0 vτ1dτÞ2 ≤
R
t
0 v

2
τdτ

R
t
0 1

2dτ0,
yielding TΔStot ≥ γðxt − x0Þ2=t with equality for constant
velocity. Therefore, for given t and γ a minimum energy
input ΔQγ is required to achieve a displacement xt − x0.
The intuition that transport requires dissipation extends to
general dynamics and scalar observables as follows.
Main result—The transport of any differentiable scalar

observable zτ ≡ zðxτ; τÞ [see Ref. [62] for zτ ≡ zðxτ; vτ; τÞ]
on a time interval ½0; t� in d-dimensional generally under-
damped and time-inhomogeneous dynamics ðxτ; vτÞ is
bounded from above by TΔStot as

TΔStot ≥
�
zt − z0 −

R
t
0 ∂τzτdτ

�
2

tDzðtÞ
DzðtÞ≡ 1

t

Z
t

0

h½∇xzτ�Tγ−1ðτÞ∇xzτidτ; ð1Þ

where γ is a positive definite, possibly time-dependent,
symmetric friction matrix, h·i denotes an ensemble average

over nonstationary trajectories, and DzðtÞ is a fluctuation-
scale function of the observable that determines how much
the observation z stretches microscopic coordinates x.
While ΔStot for stochastic dynamics differs from
ΔQγ=T, the bound (1) remains valid in the whole spectrum
from Newtonian to underdamped and overdamped stochas-
tic dynamics. The inequality saturates for ∇xzτ ¼
cγνðx; v; τÞ for any constant c and ν defined in Eq. (4).
Note that the application of Eq. (1) does not require
knowledge of the parameters of the underlying motion.
One only needs to infer the average in the numerator and
Dz. To infer the latter, different strategies are presented
toward the end of the Letter.
Setting zτ ¼ xτ for d ¼ 1, Eq. (1) includes the above

deterministic case. In the overdamped limit, Eq. (1) com-
plements the Benamou-Brenier formula that bounds trans-
port in terms of a Wasserstein distance [48,67], and special
cases of the bound correspond to existing overdamped
speed limits [4,5,46] (in particular, Ref. [46] already
contains an overdamped version of Dz; see Ref. [62] for
a detailed connection to the existing literature).
The bound (1) characterizes the thermodynamic cost of

transport and may be employed in thermodynamic infer-
ence. By only requiring the mean but not sample-to-sample
fluctuations, the bound (1) is simpler than the TUR and
allows to infer ΔStot from transients of bulk observables,
probed, e.g., in time-resolved scattering experiments [7–
10,12–15,68]. A disadvantage of this simplicity is that it is
not useful for stationary states, unless they are translation
invariant or periodic. The observable zτ can represent a
measured projection, whose functional form may be known
(e.g., in x-ray scattering) or unknown (e.g., a reaction
coordinate of a complex process). For optimization of
thermodynamic inference zτ may be chosen a posteriori
and τ-dependent.
Outline—First we describe the setup and discuss differ-

ent notions of ΔStot from deterministic via underdamped to
overdamped dynamics. Next we present examples in the
context of single-molecule versus bulk x-ray scattering
experiments, as well as higher-order transport in stochastic
heat engines. We then explain how to interpret and infer the
fluctuation-scale function DzðtÞ. We conclude with a
perspective.
Setup—Let γ, m be d × d positive definite, symmetric

friction and mass matrices with square root
ffiffiffi
γ

p ffiffiffi
γ

p T ¼ γ.
The full dynamics xτ; vτ ∈Rd evolve according to [69]

dxτ ¼ vτdτ

dvτ ¼ m−1
�
Fðxτ; τÞdτ − γvτdτ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTγ

p
dWτ

�
; ð2Þ

which in the overdamped limit reduce to

dxod
τ ¼ γ−1Fðxod

τ ; τÞdτ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTγ−1

q
dWτ; ð3Þ
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where Fðx; τÞ is a force field and Wτ the d-dimensional
Wiener process. We allow γðτÞ [and later also TðτÞ] to
depend on time but suppress this dependence to simplify
notation. We define the local mean velocity ν of the
probability density ρ in phase space as νNewton ¼ v and

νðx; v; τÞ≡ v þm−1kBT
∇vρðx; v; τÞ
ρðx; v; τÞ

νodðx; τÞ≡ γ−1
�
Fðx; τÞ − kBT

∇xρ
odðx; τÞ

ρodðx; τÞ
�
: ð4Þ

The definition for overdamped dynamics is standard [1],
whereas in the underdamped setting ν is only the “irre-
versible” part of the probability current divided by density
[51]. Note that vτ ¼ dxτ=dτ does not exist for overdamped
dynamics as hjdxτ=dτji → ∞ for dτ → 0 but hdxτi=dτ ¼
γ−1Fðx; τÞ is well-behaved. The overdamped limit is
loosely speaking obtained for γ−1m → 0, whereby details
of this limit depend on F [70].
There are two differences between Newtonian and

stochastic dynamics: (i) the energy exchange between
system and bath counteracts friction, and (ii) changes in
ρ give rise to a change in Gibbs entropy of a stochastic
system, thus contributing to the total entropy production as
ΔStot ¼ ΔSsys þ ΔSbath. In all cases considered we can
write the total entropy production as [1,2,51]

TΔStot ¼
Z

t

0

dτhνTðxτ; vτ; τÞγνðxτ; vτ; τÞi ≥ 0: ð5Þ

Within this setup, an educated guess and stochastic
calculus alongside the Cauchy-Schwarz inequality delivers
the announced bound (1) (see proof in [62]).
Example 1: Colloid in displaced trap—Consider a bead

trapped in a harmonic potential displaced from position 1 to
0 at time τ ¼ 0. Knowing γ and observing only the mean
particle transport hxt − x0i we infer the entropy production
from Eq. (1) to be TΔStot ≥ TΔSboundtot ≡ γhxt − x0i2=t. We
inspect the quality of the bound,Q≡ ΔSboundtot =ΔStot ∈ ½0; 1�,
as a function of time (see Fig. 1). For underdamped
dynamics Q tends to 3=4 at short times due to inertia (see
Ref. [62] for derivation). Using zτ ¼ xνðτÞ (for this example,
ν turns out to be independent of x, v) we achieve saturation
for all times, which is easily understood from our proof (see
Ref. [62]). Saturation for this examplewas also achieved via
the transient correlation TUR [37]. However, the present
approach is expected to be numerically more stable and
requires less statistics (see also Fig. S1 in [62]), since a
determination of fluctuations and derivatives of observables
is not required. Moreover, the simplest version zτ ¼ xτ
outperforms the transient TUR for the simplest current Jt ¼
xt − x0 [dashed line in Fig. 1(b)]. This may be interpreted as
the magnitude of xt − x0 entering (1) being more relevant

than its precision entering the TUR for this example. In
contrast to the TUR [49], we also have the advantage that
Eq. (1) holds for underdamped dynamics.
A disadvantage of Eq. (1) is that it is not useful for

steady-state dynamics, since there hzt − z0i ¼ 0. An excep-
tion is spatially periodic systems treated as NESS [3,4]. A
particular example are overdamped Brownian clocks [71]
where for given ΔStot the TUR limits precision, whereas
Eq. (1) limits the magnitude of transport, i.e., the size of the
clock. For a quantitative periodic example including
comparisons to TURs see Fig. S1 in [62].
Example 2: Scattering experiments—Since Eq. (1) only

requires averages, it is applicable beyond single-molecule
probes to bulk experiments, i.e., experiments on samples of
many molecules probing mean properties, e.g., scattering
techniques. The recent surge in the development of time-
resolved x-ray scattering on proteins [7–15] renders our
boundparticularly useful. Here, transientsmay be excited by
a pressure [72,73] or temperature [74] quench, or one
directly monitors slow kinetics [75]. One typically observes
the structure factor SðqÞ≡ ð1=NÞPN

j;k¼1he−iq·ðr
j
t−rkt Þi

[55,76], where the sum runs over all scatterers (atoms,
particles, etc.). This also applies to interacting colloid
suspensions, where SðqÞ is the Fourier transform of
the pair correlation function [55]. An even simpler observ-
able is the radius of gyration, R2

g ≡ ð1=NÞPN
j¼1hðrj − r̄Þ2i

[11,55,77], where r̄≡ ð1=NÞPN
j¼1 rj is the center of

mass. R2
g reflects the (statistical) size of molecules

and is easily inferred from small q via Guinier’s law,

SðjqjÞ ¼jqj→0
Sð0Þe−jqj2R2

g=3 [55,77].
We consider the structure factor averaged over spatial

dimensions SðqÞ (see Ref. [62] for the vector version). For
simplicity assume that γ is a known scalar. We observe how
SðqÞ changes over time. From Eq. (1) we can derive the
bounds (see Ref. [62])

(a) (b)

FIG. 1. Particle xt in a harmonic trap displaced from x ¼ 1 to
x ¼ 0 at time 0. (a) The particle’s mean position hx0i ¼ 1 moves
toward the new center of the trap, whereby oscillations occur for
small damping. The probability density around hxτi in this
example is a Gaussian of constant width (see Ref. [62] for
details and parameters). (b) Quality factor Q of the transport
bound for the simplest observable zτ ¼ xτ, and quality factor of
the TUR for the current Jt ¼ xt − x0 in the overdamped case. Full
saturationQ ¼ 1 at all times can be achieved for overdamped and
underdamped dynamics as described below.
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TΔStot ≥
3γ½StðqÞ − S0ðqÞ�2
q2

R
t
0½N − Sτð2qÞ�dτ

≥
3γ½StðqÞ − S0ðqÞ�2

q2tmaxτ½N − Sτð2qÞ�

TΔStot ≥
N½R2

gðtÞ − R2
gð0Þ�2

4
R
t
0 dτR

2
gðτÞ=γ

≥
N½R2

gðtÞ − R2
gð0Þ�2

4tmaxτ½R2
gðτÞ�=γ

: ð6Þ

The second bound in each line is a simplification when the
maximum over time is known, and it is not necessary to
measure for all τ. The quality of these bounds for entropy
production of internal degrees of freedom during relaxation
is shown in Fig. 2 for a solution of (b),(c) Rouse polymers
upon a temperature quench [see Figs. 2(b) and 2(c); probing,
e.g., the thermal relaxation asymmetry [16,19,78] ] and
confined nanocrystals upon a structural transformation
[see Figs. 2(d) and 2(e)], respectively. Dissipative processes
occur on distinct length scales, leading to changes of StðqÞ at
distinct q [Figs. 2(b) and 2(d)]. In both cases, the sharpness
of the bounds (6) depends on q, giving insight into the
participation of distinct modes in dissipation. The q depend-
ence can in turn be used for optimization of inference. For
small q modes we recover the bound in terms of R2

gðτÞ. We
recover∼30%ofΔStot in the quenchedpolymer solution and
∼15% for the transforming nanocrystal. This is in fact
a lot considering that we only measure a 1D projection of
3ðN − 1Þ internal degrees of freedom. Note that here the
large contribution from low q modes is intuitive, since the
temperature change mostly affects the overall statistical size
of the polymer.
The bound (1) will be useful for many bulk experiments

beyond scattering. Consider, for example, a bulk measure-
ment of the mean FRET efficiency for a pair of donor and
acceptor chromophores with Förster distance R0 attached to

some macromolecule, Et ¼ hð1þ ½ðxdon
t − xacc

t Þ=R0�6Þ−1i,
where the simplest bound reads TΔStot ≥ R2

0γðEt −
E0Þ2=8t (for details see Ref. [62]).
Example 3: Higher-order transport—Consider now a

centered transient process xτ, i.e., with constant mean
hxt − x0i ¼ 0. There is no mean transport. However, there
is higher-order transport, in the simplest case hx2t − x20i ≠ 0.
Setting zτ ¼ x2τ we then have TΔStot ≥ γhx2t − x20i2=
4
R
t
0 dτhx2τi. A concrete example is Brownian heat engines

[79–81] in Fig. 3, where an “effective temperature” in a
parabolic trap with stiffness κðτÞ is defined as TpðτÞ≡
κðτÞhx2τi=kB [81]. In this scenario, where the medium
temperature varies in time, the left-hand side of the transport
bound (1) becomes TΔStot → ΔðTStotÞ≡ R

t
0 dτTðτÞṠtotðτÞ,

yielding [82]

ΔðTStotÞ ≥
h
TpðtÞ − Tpð0Þ −

R
t
0 TpðτÞ ∂τκðτÞκðτÞ dτ

i
2

4
R
t
0 TpðτÞκðτÞdτ=kBγ

: ð7Þ

During an isochoric heating step (κ ¼ constant such that
∂τκðτÞ ¼ 0) highlighted in Fig. 3(a), no work is performed
[79], and the dissipation ΔðTStotÞ of an efficient engine
should be minimal. Thus, to achieve a given TpðtÞ − Tpð0Þ
[83] for minimalΔðTStotÞ, assuming that we can saturate the
bound (as we can in the overdamped case), we either need
long t or must maximize

R
t
0 dτTpðτÞ, implying substantial

heating at the beginning of the time interval ½0; t�. For time-
dependent κðτÞ [see Fig. 3(b) or the Carnot engine [80] ], the
bound in Eq. (7) is more complicated since all terms
contribute when ∂τκðτÞ ≠ 0. However, the bound still serves
as a fundamental limit that can be evaluated for any given
protocol. Note that the results equally apply to underdamped
heat engines (as theoretically considered in, e.g., [84]).
Of mathematical interest for higher-order transport is the

moment-generating function ϕτðqÞ≡ he−q·xτi, giving

TΔStot ≥
½ϕtðqÞ − ϕ0ðqÞ�2R

t
0 dτϕτð2qÞqTγ−1ðτÞq ; ð8Þ

FIG. 2. (a) Sketch of a scattering setup with (b),(c) Rouse
polymers with N ¼ 10 beads subject to a temperature quench
from T0 ¼ 2T to T at t ¼ 0, and (d),(e) harmonically confined
“nanocrystal” with N ¼ 16 with Hookean neighbor interactions
subject to a quench in rest positions (see Ref. [62] for model
details and parameters). (b),(d) Structure factors and (c),(e) cor-
responding quality factors [see Eq. (6); “simpler” bound contains
maxτ instead of integral].

FIG. 3. Schematic of (a) a Stirling heat engine as realized in
Ref. [79] and (b) a Carnot heat engine with adiabatic heating and
cooling [85] as realized in Ref. [80]. Note that the stiffness is
constant (“isochoric”) during heating and cooling in (a) but not in
(b). Red denotes hot and blue cold temperatures TðτÞ of the
environment (not to be confused with Tp).
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which quantifies how changes of the qth mode of the
probability density contribute toΔStot and will be useful for
proving future bounds.
Interpretation and handling ofDzðtÞ—The interpretation

of DzðtÞ is intuitive: for a process xτ with given cost ΔStot,
the transport hzt − z0i will be larger for a function z that
stretches x more. This stretching is rescaled by ∇xz in the
quadratic form DzðtÞ since ΔStot does not depend on z.
For simple marginal observations, zðxÞ ¼ xi, we have

that Dz ¼ γ−1ii . Moreover, if we only observe zτ but not xτ,
we can often bound DzðtÞ in terms of hzτi or in terms of
constants, such as in the case of R2

g and StðqÞ before (e.g., it
suffices to know that zτ has bounded derivatives). In the
challenging case where we only observe zτ but do not know
the function zðxÞ (i.e., it is some unknown projection or
reaction coordinate), we can, given sufficient time reso-
lution, determine or estimate Dz as follows: for over-
damped dynamics we have tDzðtÞ ¼ R

t
0 dτfvar½dzτ�=

2kBTdτg (for steady-state dynamics see Ref. [86], where
Dz recently appeared in a correlation inequality). For
underdamped dynamics, scalar m, γ, and zτ ¼ zðxτÞ
(no explicit time dependence) we can obtain DzðtÞ if
we know the momentum relaxation time m=γ via
fvarðd½ðd=dτÞzðxτÞ�Þ=2kBTdtg ¼ ðγ2=m2Þhγ−1½∇xzðxτÞ�2i.
If the system relaxes to equilibrium we can obtain γ=m
from observations of zτ via equilibrium measurements of
varðd½ðd=dτÞzðxτÞ�Þ and var½dzðxτÞ� (see Ref. [62]). If the
system relaxes to a NESS, we can upper boundDz by using
that m=γ ≤ trel with the relaxation time of the system
determined, e.g., from correlation functions t−1rel ¼
−limt→∞t−1 ln½hztz0i − hztihz0i� (see Ref. [62]).
Conclusion—We proved an inequality upper-bounding

transport of any differentiable scalar observable in a general
d-dimensional nonequilibrium system in terms of the total
entropy production and fluctuation-scale function that
“corrects” for the amount the observation stretches micro-
scopic coordinates. We explained how to saturate the
bound. The result, classifiable as a time-integrated gener-
alized speed limit, may be understood as a thermodynamic
cost of transport of observables and allows for inferring a
lower bound on dissipation, thus complementing the TUR
and existing speed limits. The bound places underdamped
and overdamped stochastic as well as deterministic systems
on equal footing. This fills an important gap, because
microscopic dynamics is—at least on short timescales—
underdamped, and the TUR does not hold for underdamped
dynamics. In particular short-time TURs for overdamped
dynamics [29,30,87] are expected to fail.
By only requiring averages, the transport bound is

statistically less demanding and applicable to both sin-
gle-molecule as well as bulk experiments. This is attractive
in the context of time-resolved x-ray scattering on bio-
molecules, as it will allow thermodynamic inference from
bulk observations of controlled transients [72–75]. This
may facilitate thermodynamic inference on molecular

machines without an obvious directionality such molecular
chaperones [60], which remains challenging even with
most advanced single-molecule techniques [61]. The bound
allows for versatile applications and generalizations to
vectorial observables z and adaptations for Markov-jump
dynamics.
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