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The extraordinary quantum properties of nonequilibrium systems governed by dissipative dynamics
have become a focal point in contemporary scientific inquiry. The nonequilibrium Green’s functions
(NEGF) theory provides a versatile method for addressing driven nondissipative systems, utilizing the
powerful diagrammatic technique to incorporate correlation effects. We here present a second-quantization
approach to the dissipative NEGF theory, reformulating Keldysh ideas to accommodate Lindbladian
dynamics and extending the Kadanoff-Baym equations accordingly. Generalizing diagrammatic pertur-
bation theory for many-body Lindblad operators, the formalism enables correlated and dissipative real-time
simulations for the exploration of transient and steady-state changes in the electronic, transport, and optical

properties of materials.
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Nonequilibrium systems, governed by dissipative
dynamics, have broken into modern science owing to their
remarkable quantum properties. Optical cavities of atoms
[1,2], molecules [3,4] and solid state systems [5,6] offer an
ideal platform to exploit the interplay between coherence
and dissipation [7]. Special attention has thus far been
dedicated to stationary states—in particular the study of
nonequilibrium fixed points and critical exponents [8,9],
phase transitions [10,11], entanglement [12,13], and top-
ology [14]—as well as Floquet states [15,16].

The transient dynamics of dissipative systems subjected
to ultrafast driving fields remains poorly explored. In fact,
the concomitant action of external fields, correlation, and
dissipation calls for innovative many-body frameworks.
The Lindblad equation [17,18] serves as a solid ground to
incorporate the aforementioned physics, preserving the
trace and positivity of the many-body density matrix p.
However, its brute force numerical solution scales expo-
nentially with the system size. Nonequilibrium Green’s
functions (NEGF) theory [19-21] has proven to be a
versatile tool to deal with driven systems; it leverages
the powerful diagrammatic technique to account for corre-
lation effects, thus reducing from exponential to power-law
the numerical scaling. The inclusion of Lindblad dissipa-
tion in NEGF has been accomplished by Sieberer et al. in
the so-called field theory approach [22-25], which is based
on the path integral technique and Schwinger-Keldysh
action [26]. Alternatively, NEGF can be formulated in
the second-quantization approach [19,27-29], where
concepts like the Martin-Schwinger hierarchy [30],
Kadanoff-Baym equations [31,32], conserving approxima-
tions [33,34], and Bethe-Salpeter equation [35,36] are
employed to develop many-body schemes for the
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simulation of carrier [37-39] and phonon [40-42] dynam-
ics, dephasing and thermalization [43], transient photo-
absorbtion [44-47], photoemission [48,49] and Raman
[50,51] spectroscopy, photoexcitations and quenches in
Mott and excitonic insulators [52—55], or time-dependent
quantum transport [56-62]. The question of how the
second-quantization approach—and related concepts—
should be extended to encompass dissipation remains to
be elucidated.

In this work we offer a second-quantization perspective on
the dissipative NEGF theory. We reformulate the original
Keldysh idea to accommodate Lindbladian time evolutions,
and extend the Kadanoff-Baym equations accordingly. We
also show how to generalize the diagrammatic perturbation
theory for many-body Lindblad operators. The resulting
formalism paves the way for conducting real-time simulations
of the correlated and dissipative dynamics of materials.

Keldysh-Lindblad formalism—For systems governed by
a dissipative Lindbladian dynamics the average value of
any, generally time-dependent, operator O(z) at time 7 is
expressed as O(r) = Tr[p(r)O(t)], where the many-body
density matrix satisfies the Lindblad equation (henceforth
sum over repeated indices is implicit)

dp o
= = TilH.plL 2L, pLy — LILp—-pLiL,. (1)

Here, H is the self-adjoint Hamiltonian of the system and I:y
are the Lindblad operators. Equation (1) can equivalently be
cast in the form of an integral equation. Let A, (1) = H(t) —
iL}(t)L,(f) be the “open system” Hamiltonian and define

N ot =iy (3
the nonunitary evolution operator U, (t,1) = Te i fy it
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for t>¢ and U,(t.7)= Te Jr D for 4 < 7,
where T and T are the time and antitime ordering
operators, respectively. Then p(7) = U, (¢,0)p(0)U,(0,1) +
2 Jadny U, (t,00) L, (1)p(11) L], (11)U, (11, 1) solves Eq. (1),
as it can easily be verified by direct differentiation. Iterating
the integral equation and using the cyclic property of the
trace, the time-dependent average O() reads

Ty [p(o)gzk A i, / . 0,(0,6)LE (1),
x Uy (tr,1) L, (1)U, (1,.0)0(0) U, (1,11) L, (1))

0, 12)Ly (1) 0,(010) |- @

This result can be written in a more useful form
if we introduce the oriented Keldysh contour C =
C_uC, =(0,1) U (,0). Let z € C denote a contour time;
we write z =t if z€C,. We also define the functions
0.(z)=1 if zeC, and zero otherwise, and
s(z) = 6_(z) — 0, (z). Then

0, (11.1;) = T{e i [ delfi()-i <-)z;<z>z,(z>]}

irtj s ?t j o (3)
where 7 is the contour ordering operator. If we set the times
of all operators L on the C, branch and the times of all
operators L on the C_ branch then the string of operators in
Eq. (2) is contour ordered. Therefore, taking into account
that under the 7 sign the bosonic (fermionic) operators (anti)
commute, we can extend all integration limits to ¢ and divide
by k!. The reordering does not generate minus signs in the
case of fermionic Lindblad operators since the number of
interchanges is always even. In this way the series is
transformed into the Taylor expansion of an exponential,
and the time-dependent average simplifies to

o) =Te[poyT{e 0], @
where

H(z.z")=H(z) —is(z)L](2)L,(2) + 2i0_(Z)L]

and z* = 7 if 7 = 7,. Notice that under integration the last
term in Eq. (5) can alternatively be written as
—2i60, (Z)L}(2)L,(z*) since [.dZF(z,7")=— [-dZF(Z".Z)
for any function F, and 6. (Z) = 0+(Z*). We also observe
that in Eq. (4) the contour C can be extended to infinity, i.e.,
C = (0,00) U (00,0), since K = T{e_lﬁf dZH(Z'Z*)} =1
for all ¢ [63]. This also implies that the contour-time z of
O can be either 7, or 7_.

In analogy with the theory of unitary evolutions we define
the one-particle Keldysh-Lindblad NEGF according to

G,(2.7) = %Tr [ﬁ(O)T{e_ifC FHENad ). o)

where the annihilation operators d; are either bosonic or
fermionic, obeying the (anti)commuation rules [d;, d ]]
0;; (upper sign for bosons and lower sign for fermions). The
contour argument of dand d' in Eq. (6) fixes the position of
these operators along the contour, thus rendering unam-
biguous the action of 7. The identity K=1 implies that the
NEGF satisfies the Keldysh properties G(r,,7,) =
G(r_,t,)fort> 1 and G(t..,1,) = G(to, 1) forr < 7.
Using the rules for the derivative of a contour-ordered
string of operators, see Ref. [19], and introducing the

shorthand notation (...) = Tr[[)(O)T{e_ifcdzmz’z*)...}],
we find the important result

i6y(e2) = ({4 - s L)L, (2]4(2))
=20, (2){[(2). L} (D] L, ()} () )
+20_(2)(L](27)[d,(2). L, (2)) -} ("))
+68(z,7), (7)

where the lower sign applies when both Zii and f,y are
fermionic operators, and the last term is the Dirac delta on
the contour, i.e., [dZ'8(z,2')f(z') = f(z) for any function
f. A similar equation can be derived by differentiating with
respect to 7/, see below and Supplemental Material [64].
The (anti)commutators in Eq. (7) generally give rise to
higher-order NEGFs, the contour-time derivatives of which
generate NEGFs of progressively higher order. In this
manner, the Martin-Schwinger hierarchy [30] (MSH) for
Lindbladian dynamics is established.

Noninteracting systems with one-body loss and gain—
For quadratic self-adjoint Hamiltonians H(r) = H(1) =
Ry (1)dl,d, and linear Lindblad operators ﬁly(t) =
dly(1)d, (one-body loss) and L,, (1) = b};’(t)d} (one-body
gain) the MSH couples the n-particle NEGF exclusively to
the (n — 1)-particle NEGF, and the solution of the MSH is
equivalent to Wick’s theorem [64,65]. Equation (7) and its
counterpart with the derivative of G with respect to z/,
reduce to (in matrix form)

Ld% B ;;@] G(z.2) +2it(2")G(z".2') = 6(z.2).  (8a)

6(z.2) [15 i /)} 2iG(z VA = (2. 7). (8b)
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where h(z=t.)=h(t)—is(z)[¢” ()£ £<(¢)] and £(z=
1) =0_(2)¢” (1) 0, (2)¢=(1). with £5,,(1) =aly (1)l (1)
and ¢;,,(t) = bl (t)bly(t) positive semidefinite and self-
adjoint matrices. The time dependence of /(t) is generally
due to external driving fields. We refer to Egs. (8) as the
noninteracting dissipative equations of motion (EOM).

Interacting systems with one-body loss and gain—In
interacting systems the Hamiltonian A (1) = Ho (1) + H;y (1),
where H,, is self-adjoint and at least quartic in the field
operators. Expanding Eq. (6) in powers of H;,, and using
Wick’s theorem we obtain the Dyson equation (on the
Keldysh contour) G = Gy + GyXG, where G, satisfies
Egs. (8) and the many-body self-energy X is given by the
sum of all one-particle irreducible Feynman diagrams. The
interacting version of the dissipative EOM follows when
acting with G;' on the Dyson equation; the outcome is
Egs. (8) with a rhs modified by the addition of
Jed72(z,2)G(2,7) for Eq. (8a) and [.dzG(z,Z)%(z,7)
for Eq. (8b).

To derive the Kadanoff-Baym equations (KBE) satisfied
by the lesser or greater NEGF G5(t,7) = G(t4,1,), a
preliminary discussion on the Langreth rules [66] for
convolutions on the Keldysh contour is essential. The
many-body self-energy has the structure [19,32,67]
2i(z.2) = 8(z. 2 )i (1) + (¥i(2)W](2)),,. where ¥; =
d;. ) and the subscript “irr” signifies the irreducible
part of the average. The quantity V(1) = ([d;(z), ‘i’;(z)}q[)
is the mean-field potential, hence the reminder is the
correlation self-energy X", The identity K =1 [63]
guarantees that also X" satisfies the Keldysh properties,
ie, (XOM(r_,f)=X°"(r,,¢,) for t>+¢ and
e (p,, 1) =X (ry, 1) for t<7¢. Therefore the
Langreth rules are not affected by the Lindblad dissipators.
We emphasize here the crucial role played by L;(Z*)I:y(i)
in Eq. (5). Excluding this term would leave us with two
different non-Hermitian Hamiltonians, one on the forward
branch and another on the backward branch, and hence
K # 1. The time-ordered and anti-time-ordered NEGF
would then be independent functions, leading to signifi-
cantly more intricate Langreth rules [68,69]. The KBE for
G=< is obtained by setting z =17_ and z' =1 in the
interacting version of Eq. (8a). The second term on the
lhs yields the anti-time-ordered G'(7,7) =G(t,,7,) =
G=<(t,1') — GA(t,1), where GA(1,1) = —0(¢, 1)[G™ (t,1')—
G=(t,1')] is the advanced NEGF. Taking into account the
definition of /(z) and #(z) we find

dt
=[Z<-GA+ 2R GT)(1.7), ©)

[ii - ho(t)} G=(t,1) £2i¢=(1)GA(¢,1)

where h, (1) = h(t) — i(£” () F £=(t)) is the one-particle
open-system Hamiltonian and the symbol “” is used for

real-time convolutions between O and infinity [70]. As
discussed in Refs. [19,55,72,73] the anti-Hermicity of
G= allows us to close the system of equations by solving
the interacting version of Eq. (8b) for G”. For z = ¢, and
7/ =1_ the second term on the lhs yields again G which
can also be written as G~ —GR, where GR(1,7) =
0(t,7)[G™(t,1') — G=(t,7)] is the retarded NEGF. We then
find

G (1,7) E% - h"o'(t’)] 1 2iGR (1, 1) (1)
=[G”-ZA + GR-=”|(1, 7). (10)

Equations (9) and (10) are the dissipative KBE with one-
body loss and gain. From these equations it is straightfor-
ward to derive the EOM for the retarded NEGHF, i.e.,

4= ho(0] 6 a0y + 2 6. ()

as well as to show that GA(1,7) = [GR(7,1)]", see the
Appendix for details on the derivation.

Lyapunov equation—The EOM for the one-particle
density matrix p=(#) = £iG=(t,t) follows by subtracting
Eq. (9) from its adjoint and then setting ¢ = ':

d

S (8) = =ihy(1)p~(1) + ip=(OR5(0) + 265(1) + 105,

(12)

where (1) = £[E< - G* + =R . G<](t,1) + H.c. is known
as collision integral. Notice that for £ =0, and hence
I = 0, the solution of the dissipative KBE can be written as

G5(1.1) = £GR(1.0)p>(() F p>()GA(r.1).  (13)

with p~ = +iG” (t,t) = p= £ 1, which is identical to the
nondissipative solution, see the Appendix.

In the stationary case, i.e., (d/dt)p= =0, and for I =0
(no interaction) Eq. (12) reduces to a Lyapunov equation,
whose properties, e.g., topological phases [74-76],
exceptional points [24,77], and bulk-edge correspondence
[78-80], are currently under intense investigation, see
also Refs. [22,24,25] for an overview. A simple approach
to include correlation effects is by evaluating the
collision integral in the Boltzmann approximation, i.e.,
[ =—[(I” +T<),p<]. +2I'<, where the rates 'S [p=] for
in or out scatterings are functionals of p= [81]. In this way,
we revert to the noninteracting EOM with renormalized
5 — ¢5 +T5. In particular the stationary solution
becomes a nonlinear Lyapunov equation to be solved
self-consistently.

Initial correlations—As with any set of differential
equations the dissipative KBE must be solved with an
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initial condition. For a system in thermal equilibrium before
any external driving, we have p(0) = exp[—g(H — uN)|/Z,
with g the inverse temperature, x4 the chemical potential, N
the total number of particle operator, and Z the partition
function. Initial correlations can be included by extending
the Keldysh contour along the imaginary time axis until the
point —if [82,83]. This results in a generalization of the
KBE since the self-energy X(z,z’) is nonvanishing for
7,7/ €(0,—if). Following Refs. [19,84] we introduce the
left X'(z,t) = X(—ir,ty) and right X!(t,7) = X(t,, —it)
correlators with one real and one imaginary time argument
(in X" and X! we can use either 7, or 7_ since K = 1). Then
Egs. (9) and (10) are modified with the inclusion of terms
[Z1xG'] and [G'xZ(] on the rhs, respectively, where the
symbol “*” is used for imaginary-time convolutions
between 0 and f. Taking into account that /(z.)—
2if(t5) = ho(t) and h(ty) + 2if(ty) = hi(t), the inter-
acting version of Egs. (8) yield the following EOM for the
left and right NEGF

L% - ho(z>] Gl(t,7) = [£1- G* +ZM%G1(1.7), (14a)

Gl (z,7) B%—hi(r’)] =[Gl ZA+GM-ZM)(1,¢).  (14b)

The Matsubara correlators XM(z, 7) = X (—iz, —i7’) satisfy
the Dyson equation GM = GM + GY'xEMxGM. This equa-
tion is decoupled from the left, right, lesser, and greater
NEGEF, and its solution provides the initial values for the
dissipative KBE [19,72].

Two-particle loss—We say that the system experiences
n-body losses (gains) if the Lindblad operators f,y are
polynomials of order n in the annihilation (creation) field
operators. For n > 1 the analytic solution is, in general, not
available. We here show how to tackle the problem by
extending the many-body diagrammatic method. For the
sake of definiteness we consider the set of Lindblad
operators f,y = aynd,,d, (two-particle loss), with al, =
~+a,, for bosons or fermions. These dissipators are relevant
in the context of exciton-polariton systems [85,86]. Higher
order loss and gain dissipators can be treated similarly.
After some algebraic manipulation the operator in Eq. (5)
can be expressed as

x dj(z)d}(z")d,(2)d,(Z). (15

where v}0,,,(z,2") = iv}h,,(1)[s(2)8(2',2) +20. (2)5(',2")]
and v}, (1) = 2d%; (N ahn (1) = £, (1) = £0ib, (1),

jimn ijnm

(Hartree)

2P /
m, 2 J.z ULJVL"L(Z Z)

2p /
A o5
S (2, 2') = T N

i,z n,2 i,z n, z

FIG. 1. Dissipation-induced self-energy diagrams—oriented
double lines represent G and zigzag lines represent »*. The

(£) prefactor of the Hartree diagram can be reabsorbed as
+07P =4 hence XM = 3F. It is readily seen that this

ijmn ijnm?

property holds true at any order.

The second term in Eq. (15) is quartic in the field
operators and can be treated perturbatively, leading again to
a Dyson equation. Unlike physical, e.g., Coulomb, inter-
actions the contour-times z and 7' are shared by two
creation (d'd") and annihilation (dd) operators rather
than by particle-hole-like operators (d'd). This fact gives
rise to slightly different self-energy diagrams, with exam-
ples provided in Fig. 1. This difference is crucial to show
that the number of topological equivalent diagrams of order
k is the same as for Coulomb-like interactions, i.e., 2€k!,
despite v?P(z, z') being not symmetric under the exchange
7 <> 7, see the Appendix for the explicit proof. Thus the
prefactors of the Feynman diagrams are the same as in
ordinary many-body perturbation theory. Taking into
account the (anti)symmetry properties of v?P, the Hartree
(tadpole) and Fock (oyster) diagrams in Fig. 1 are identical,
ie., TM = 3F = I3HF with

ZBzF( /) =+ Q’I,Uzjmn(Z < )ij(zl’z+)

= —2i[s(2)8(2, 2) + 260, (2)5(2, 2")]
XV tjmn( )pmj( ) (16)

At the Hartree-Fock (HF) mean-field level the rhs of
the EOM Eq. (8) is modified by the addition of
Jcdz=M(2,2)G(z, 2'). Remarkably, this term renormal-

izes ¢~ according to ¢;,(t) = £7,(1) + 21},2})”( )P (1)
while it leaves £= unchanged, see appendix material for
details on the derivation. Such asymmetry is due to the

absence of two-body gain. Had we included Lindblad
operators of the form ﬁy = bﬁ,,fl;fljn we would have found
a similar renormalization for <. We infer that the mean-
field treatment of two-body loss and gain is equivalent to
considering one-body loss and gain.

Particle-hole loss—The treatment of mixed Lindblad
operators, containing both d and d', deserves a separate
discussion, but it does not pose a conceptual problem [87].
Let us consider the set ﬁy = af,mflilgln (particle-hole loss).
As these dissipators are relevant in the context of phonon-
induced relaxation of hot electrons in solids [89,90] we
focus on the fermionic case. The normal-ordered form of
the operator in Eq. (5) reads
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H(z7)=H(z)—is(?) Vi (D)d) (2)d,(z)

1 A A - N
" E/Cdf’vf»’}‘mn<z,2'>dZ(?*)d}(#)dm(adn(?),

(17)
where of},,(2,2) =00}, (1) [=is(2)8(2',2)+2i0_(2)5(.2")],
with of}, (1) = 2al;(t)d), (1), and Vi (1) =L ob (1)

The VP' term renormalizes the one-particle Hamiltonian
in Egs. (8) according to h(z) — h(z) — is(z) VP (1), but it
does not renormalize the function #(z). We now show that
the mathematical structure of the dissipative KBE is
recovered when treating P! at the HF mean-field level.

For simplicity we take @)y, = a,. The diagrams with
vP! interaction lines are standard since the contour times z
and 7’ are shared by particle-hole-like operators [91]. The
Hartree (tadpole) diagram is easily shown to vanish
whereas the Fock diagram yields

[ ph h
Efn (Z’ Z/) = E [U?jnm (Z’ Z/) + U?jnm (Z/’ Z)]ij(Z, Z/Jr)

= 5(2)05,, (N[6('. 2) = 8(2'. 2)]|Goj(2. 7).
(18)

Let us discuss how this term affects the dissipative
KBE, refer to appendix material for details on the
calculations. The rhs of Eq. (8a) is modified by the addition
of [-dz%F(z,2)G(z.7/), the lesser component of
which (z=1_, 7/ =1,) reads 2iW<(t)GA(t,1') where
W5(1) :%v?;jq(t)pjp(t). This term, together with the
VPh_renormalization of %, leads to a noninteracting
dissipative KBE for G= with one-body loss and gain
renormalized according to £5 — /5 + WS, where
W> = VPP — W<_ Similarly, the rhs of Eq. (8b) is
modified by the addition of [.dzG(z,z)Z"(z,Z/), the
greater component of which (z=17,, 7/ =1_) reads

—2iGR (1.1 ) W3, (1) +2iG, (1.0 ) VE (7).
account the VP renormalization of /& we find a non-
interacting dissipative KBE for G~ with the same renor-
malized #5 as for G=. Once again, although through a
different path, the mean-field treatment reduces the prob-
lem to considering one-body loss and gain.

Beyond mean-field—The self-energy diagrams do, in
general, contain both physical and dissipation-induced
interaction lines. Let us inspect the structure of the total
self-energy as a correlator on the Keldysh contour. In
Supplemental Material [64] we show that the total self-
energy can be written as £ = SHF 4 3¢ where ZHF ig the
sum of all HF contributions and X" satisfies the Keldysh
properties. Therefore the Langreth rules remain unchanged
and the dissipative KBE are still given by Egs. (9) and (10)
with mean-field renormalized #5 and with £ — X,

Taking  into

Conclusions—The second-quantization approach of
NEGF theory has been extended to dissipative
Lindbladian dynamics. We have shown how to derive
the MSH for the n-particle NEGF and established the
dissipative KBE for G5. We have generalized the dia-
grammatic rules for approximate treatments, derived the
EOM at the mean-field level, and elucidated the structure of
the total self-energy as a correlator on the Keldysh contour.
The dissipative KBE open the door to studies of transient
phenomena and time-resolved spectra of open systems.
Their applications span a wide range, from transport
responses of diffusive nanoscale systems [92-94] to optical
[95,96] and electronic [97] properties of materials in cavity
quantum electrodynamics, as well as quantum computing
dynamics in solid-state devices [98]. The dissipative KBE
also offer an alternative method to solving the Lindblad
equation, complementing methods such as the matrix
product operator ansatz [99], quantum Monte Carlo [100],
and third quantization [101]. Noteworthy, they can deal
with time-dependent Hamiltonians and time-dependent
Lindblad operators with no additional numerical complex-
ity compared to their time-independent counterparts.
Moreover, they can be readily implemented in available
KBE codes [55,71,102,103].

We hope that our contribution inspires further develop-
ments in the theory of many-body dissipative dynamics and
stimulates first-principles studies of driven correlated open
systems.

Acknowledgments—This work has been supported by
MIUR PRIN (Grant No. 2022WZ8LME) and INFN
through the TIME2QUEST project.

[1] H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger,
Cold atoms in cavity-generated dynamical optical
potentials, Rev. Mod. Phys. 85, 553 (2013).

[2] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger,
Dicke quantum phase transition with a superfluid gas in an
optical cavity, Nature (London) 464, 1301 (2010).

[3] J. Flick, M. Ruggenthaler, H. Appel, and A. Rubio, Atoms
and molecules in cavities, from weak to strong coupling in
quantum-electrodynamics (QED) chemistry, Proc. Natl.
Acad. Sci. U.S.A. 114, 3026 (2017).

[4] A. Mandal, M. A. Taylor, B. M. Weight, E. R. Koessler, X.
Li, and P. Huo, Theoretical advances in polariton chemistry
and molecular cavity quantum electrodynamics, Chem.
Rev. 123, 9786 (2023).

[5] H. Hiibener, U. De Giovannini, C. Schifer, J. Andberger,
M. Ruggenthaler, J. Faist, and A. Rubio, Engineering
quantum materials with chiral optical cavities, Nat. Mater.
20, 438 (2021).

[6] F. Schlawin, D. M. Kennes, and M. A. Sentef, Cavity
quantum materials, Appl. Phys. Rev. 9, 011312 (2022).

[7] F. Verstraete, M. M. Wolf, and J. Ignacio Cirac, Quantum
computation and quantum-state engineering driven by
dissipation, Nat. Phys. 5, 633 (2009).

066901-5


https://doi.org/10.1103/RevModPhys.85.553
https://doi.org/10.1038/nature09009
https://doi.org/10.1073/pnas.1615509114
https://doi.org/10.1073/pnas.1615509114
https://doi.org/10.1021/acs.chemrev.2c00855
https://doi.org/10.1021/acs.chemrev.2c00855
https://doi.org/10.1038/s41563-020-00801-7
https://doi.org/10.1038/s41563-020-00801-7
https://doi.org/10.1063/5.0083825
https://doi.org/10.1038/nphys1342

PHYSICAL REVIEW LETTERS 133, 066901 (2024)

[8] L. M. Sieberer, S.D. Huber, E. Altman, and S. Diehl,
Dynamical critical phenomena in driven-dissipative sys-
tems, Phys. Rev. Lett. 110, 195301 (2013).

[9] M. Kulkarni, B. Oztop, and H. E. Tiireci, Cavity-mediated
near-critical dissipative dynamics of a driven condensate,
Phys. Rev. Lett. 111, 220408 (2013).

[10] E. G. Dalla Torre, E. Demler, T. Giamarchi, and E. Altman,
Quantum critical states and phase transitions in the
presence of non-equilibrium noise, Nat. Phys. 6, 806
(2010).

[11] J. Raftery, D. Sadri, S. Schmidt, H. E. Tiireci, and A. A.
Houck, Observation of a dissipation-induced classical to
quantum transition, Phys. Rev. X 4, 031043 (2014).

[12] H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M.
Petersen, J.I. Cirac, and E.S. Polzik, Entanglement
generated by dissipation and steady state entanglement of
two macroscopic objects, Phys. Rev. Lett. 107, 080503
(2011).

[13] M.J. Kastoryano, F. Reiter, and A.S. Sgrensen, Dissipa-
tive preparation of entanglement in optical cavities, Phys.
Rev. Lett. 106, 090502 (2011).

[14] E.J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional
topology of non-Hermitian systems, Rev. Mod. Phys. 93,
015005 (2021).

[15] S. A. Sato, U. D. Giovannini, S. Aeschlimann, I. Gierz, H.
Hiibener, and A. Rubio, Floquet states in dissipative open
quantum systems, J. Phys. B 53, 225601 (2020).

[16] T. Mori, Floquet states in open quantum systems, Annu.
Rev. Condens. Matter Phys. 14, 35 (2023).

[17] G. Lindblad, On the generators of quantum dynamical
semigroups, Commun. Math. Phys. 48, 119 (1976).

[18] H.-P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University Press, New York,
2007).

[19] G. Stefanucci and R. van Leeuwen, Nonequilibrium
Many-Body Theory of Quantum Systems: A Modern
Introduction (Cambridge University Press, Cambridge,
England, 2013).

[20] A. Kamenev, Field Theory of Non-Equilibrium Systems
(Cambridge University Press, Cambridge, England,
2011).

[21] H. Haug and A.-P. Jauho, Quantum Kinetics in Transport
and Optics of Semiconductors (Springer, New York,
2008).

[22] L. M. Sieberer, M. Buchhold, and S. Diehl, Keldysh field
theory for driven open quantum systems, Rep. Prog. Phys.
79, 096001 (2016).

[23] H. C. Fogedby, Field-theoretical approach to open quan-
tum systems and the Lindblad equation, Phys. Rev. A 106,
022205 (2022).

[24] F. Thompson and A. Kamenev, Field theory of many-body
Lindbladian dynamics, Ann. Phys. (Amsterdam) 455,
169385 (2023).

[25] L. M. Sieberer, M. Buchhold, J. Marino, and S. Diehl,
Universality in driven open quantum matter, arXiv:
2312.03073.

[26] A. Altland and B.D. Simons, Condensed Matter Field
Theory, 2nd ed. (Cambridge University Press, Cambridge,
England, 2010).

[27] J. Rammer, Quantum Field Theory of Non-Equilibrium
States (Cambridge University Press, Cambridge, England,
2007).

[28] K. Balzer and M. Bonitz, Nonequilibrium Green’s
Functions Approach to Inhomogeneous Systems (Springer,
New York, 2013).

[29] G. Stefanucci, R. van Leeuwen, and E. Perfetto, In and out-
of-equilibrium ab initio theory of electrons and phonons,
Phys. Rev. X 13, 031026 (2023).

[30] P.C. Martin and J. Schwinger, Theory of many-particle
systems. I, Phys. Rev. 115, 1342 (1959).

[31] L.P. Kadanoff and G. Baym, Quantum Statistical
Mechanics (W. A. Benjamin, Inc., New York, 1962).

[32] P. Danielewicz, Quantum theory of nonequilibrium
processes, I, Ann. Phys. (N.Y.) 152, 239 (1984).

[33] G. Baym and L.P. Kadanoff, Conservation laws and
correlation functions, Phys. Rev. 124, 287 (1961).

[34] G. Baym, Self-consistent approximations in many-body
systems, Phys. Rev. 127, 1391 (1962).

[35] G. Strinati, Application of the Green's functions method to
the study of the optical properties of semiconductors, Riv.
Nuovo Cimento 11, 1 (1986).

[36] T. Sander, E. Maggio, and G. Kresse, Beyond the Tamm-
Dancoff approximation for extended systems using exact
diagonalization, Phys. Rev. B 92, 045209 (2015).

[37] A. Steinhoff, M. Florian, M. Rosner, M. Lorke, T.O.
Wehling, C. Gies, and F. Jahnke, Nonequilibrium carrier
dynamics in transition metal dichalcogenide semiconduc-
tors, 2D Mater. 3, 031006 (2016).

[38] A. Molina-Sanchez, D. Sangalli, L. Wirtz, and A. Marini,
Ab initio calculations of ultrashort carrier dynamics in two-
dimensional materials: Valley depolarization in single-
layer WSe,, Nano Lett. 17, 4549 (2017).

[39] E. Perfetto, Y. Pavlyukh, and G. Stefanucci, Real-time
GW: Toward an ab initio description of the ultrafast carrier
and exciton dynamics in two-dimensional materials, Phys.
Rev. Lett. 128, 016801 (2022).

[40] X. Tong and M. Bernardi, Toward precise simulations of
the coupled ultrafast dynamics of electrons and atomic
vibrations in materials, Phys. Rev. Res. 3, 023072 (2021).

[41] F. Caruso, Nonequilibrium lattice dynamics in monolayer
MoS,, J. Phys. Chem. Lett. 12, 1734 (2021).

[42] F. Caruso and D. Novko, Ultrafast dynamics of electrons
and phonons: From the two-temperature model to the time-
dependent Boltzmann equation, Adv. Phys. 7, 2095925
(2022).

[43] E. Perfetto and G. Stefanucci, Real-time GW-Ehrenfest-
Fan-Migdal method for nonequilibrium 2d materials, Nano
Lett. 23, 7029 (2023).

[44] C. Attaccalite, M. Griining, and A. Marini, Real-time
approach to the optical properties of solids and nano-
structures: Time-dependent Bethe-Salpeter equation, Phys.
Rev. B 84, 245110 (2011).

[45] X. Jiang, Q. Zheng, Z. Lan, W. A. Saidi, X. Ren, and J.
Zhao, Real-time GW-BSE investigations on spin-valley
exciton dynamics in monolayer transition metal dichalco-
genide, Sci. Adv. 7, eabf3759 (2021).

[46] E. Perfetto, D. Sangalli, A. Marini, and G. Stefanucci,
Nonequilibrium Bethe-Salpeter equation for transient

066901-6


https://doi.org/10.1103/PhysRevLett.110.195301
https://doi.org/10.1103/PhysRevLett.111.220408
https://doi.org/10.1038/nphys1754
https://doi.org/10.1038/nphys1754
https://doi.org/10.1103/PhysRevX.4.031043
https://doi.org/10.1103/PhysRevLett.107.080503
https://doi.org/10.1103/PhysRevLett.107.080503
https://doi.org/10.1103/PhysRevLett.106.090502
https://doi.org/10.1103/PhysRevLett.106.090502
https://doi.org/10.1103/RevModPhys.93.015005
https://doi.org/10.1103/RevModPhys.93.015005
https://doi.org/10.1088/1361-6455/abb127
https://doi.org/10.1146/annurev-conmatphys-040721-015537
https://doi.org/10.1146/annurev-conmatphys-040721-015537
https://doi.org/10.1007/BF01608499
https://doi.org/10.1088/0034-4885/79/9/096001
https://doi.org/10.1088/0034-4885/79/9/096001
https://doi.org/10.1103/PhysRevA.106.022205
https://doi.org/10.1103/PhysRevA.106.022205
https://doi.org/10.1016/j.aop.2023.169385
https://doi.org/10.1016/j.aop.2023.169385
https://arXiv.org/abs/2312.03073
https://arXiv.org/abs/2312.03073
https://doi.org/10.1103/PhysRevX.13.031026
https://doi.org/10.1103/PhysRev.115.1342
https://doi.org/10.1016/0003-4916(84)90092-7
https://doi.org/10.1103/PhysRev.124.287
https://doi.org/10.1103/PhysRev.127.1391
https://doi.org/10.1007/BF02725962
https://doi.org/10.1007/BF02725962
https://doi.org/10.1103/PhysRevB.92.045209
https://doi.org/10.1088/2053-1583/3/3/031006
https://doi.org/10.1021/acs.nanolett.7b00175
https://doi.org/10.1103/PhysRevLett.128.016801
https://doi.org/10.1103/PhysRevLett.128.016801
https://doi.org/10.1103/PhysRevResearch.3.023072
https://doi.org/10.1021/acs.jpclett.0c03616
https://doi.org/10.1080/23746149.2022.2095925
https://doi.org/10.1080/23746149.2022.2095925
https://doi.org/10.1021/acs.nanolett.3c01772
https://doi.org/10.1021/acs.nanolett.3c01772
https://doi.org/10.1103/PhysRevB.84.245110
https://doi.org/10.1103/PhysRevB.84.245110
https://doi.org/10.1126/sciadv.abf3759

PHYSICAL REVIEW LETTERS 133, 066901 (2024)

photoabsorption spectroscopy, Phys. Rev. B 92, 205304
(2015).

[47] R. Tuovinen, D. Golez, M. Eckstein, and M. A. Sentef,
Comparing the generalized Kadanoff-Baym ansatz with the
full Kadanoff-Baym equations for an excitonic insulator out
of equilibrium, Phys. Rev. B 102, 115157 (2020).

[48] J. K. Freericks, H.R. Krishnamurthy, and T. Pruschke,
Theoretical description of time-resolved photoemission
spectroscopy: Application to pump-probe experiments,
Phys. Rev. Lett. 102, 136401 (2009).

[49] E. Perfetto, D. Sangalli, A. Marini, and G. Stefanucci,
First-principles approach to excitons in time-resolved and
angle-resolved photoemission spectra, Phys. Rev. B 94,
245303 (2016).

[50] M. Galperin, M. A. Ratner, and A. Nitzan, Raman scatter-
ing in current-carrying molecular junctions, J. Chem. Phys.
130, 144109 (2009).

[51] P. Werner, M. Eckstein, and N. Tsuji, Nonequilibrium
DMEFT approach to time-resolved Raman spectroscopy,
Phys. Rev. B 108, 245157 (2023).

[52] H. Aoki, N. Tsuji, M. Eckstein, M. Kollar, T. Oka, and P.
Werner, Nonequilibrium dynamical mean-field theory and
its applications, Rev. Mod. Phys. 86, 779 (2014).

[53] M. Eckstein, M. Kollar, and P. Werner, Thermalization
after an interaction quench in the Hubbard model, Phys.
Rev. Lett. 103, 056403 (2009).

[54] Y. Murakami, D. Golez, M. Eckstein, and P. Werner,
Photoinduced enhancement of excitonic order, Phys. Rev.
Lett. 119, 247601 (2017).

[55] M. Schiiler, D. Golez, Y. Murakami, N. Bittner, A.
Herrmann, H.U. Strand, P. Werner, and M. Eckstein,
NESSi: The non-equilibrium systems simulation package,
Comput. Phys. Commun. 257, 107484 (2020).

[56] Y. Meir and N.S. Wingreen, Landauer formula for the
current through an interacting electron region, Phys. Rev.
Lett. 68, 2512 (1992).

[57] A.-P.Jauho, N. S. Wingreen, and Y. Meir, Time-dependent
transport in interacting and noninteracting resonant-
tunneling systems, Phys. Rev. B 50, 5528 (1994).

[58] M. Galperin, M. A. Ratner, and A. Nitzan, Molecular
transport junctions: Vibrational effects, J. Phys. Condens.
Matter 19, 103201 (2007).

[59] P. Myohinen, A. Stan, G. Stefanucci, and R. van Leeuwen,
A many-body approach to quantum transport dynamics:
Initial correlations and memory effects, Europhys. Lett. 84,
67001 (2008).

[60] P. Myohinen, A. Stan, G. Stefanucci, and R. van Leeuwen,
Kadanoff-Baym approach to quantum transport through
interacting nanoscale systems: From the transient to the
steady-state regime, Phys. Rev. B 80, 115107 (2009).

[61] M. Puig von Friesen, C. Verdozzi, and C.-O. Almbladh,
Kadanoff-Baym dynamics of Hubbard clusters: Perfor-
mance of many-body schemes, correlation-induced damp-
ing and multiple steady and quasi-steady states, Phys. Rev.
B 82, 155108 (2010).

[62] F. Schwarz, M. Goldstein, A. Dorda, E. Arrigoni, A.
Weichselbaum, and J. von Delft, Lindblad-driven discre-
tized leads for nonequilibrium steady-state transport in
quantum impurity models: Recovering the continuum
limit, Phys. Rev. B 94, 155142 (2016).

[63] Consider  Q(fyna) = T{e_l%:mx +frr;.x>dz”<z’z*>}_ We
have Q(f) = 1 and dQ(fyay)/dtmax = 0. Therefore O =
limtmaxaooQ(tmax> = Q =1

[64] See Supplemental Material at http:/link.aps.org/
supplemental/10.1103/PhysRevLett.133.066901 for Mar-
tin-Schwinger hierarchy, Wick's theorem, self-energy on
the Keldysh contour.

[65] R. van Leeuwen and G. Stefanucci, Wick theorem for
general initial states, Phys. Rev. B 85, 115119 (2012).

[66] D.C. Langreth, in Linear and Nonlinear Electron Trans-
port in Solids, edited by J. T. Devreese and E. van Doren
(Plenum, New York, 1976), pp. 3-32.

[67] G. Stefanucci, Y. Pavlyukh, A.-M. Uimonen, and R. van
Leeuwen, Diagrammatic expansion for positive spectral
functions beyond GW: Application to vertex corrections in
the electron gas, Phys. Rev. B 90, 115134 (2014).

[68] L. Kantorovich, Nonadiabatic dynamics of electrons and
atoms under nonequilibrium conditions, Phys. Rev. B 98,
014307 (2018).

[69] L. Kantorovich, Generalized Langreth rules, Phys. Rev. B
101, 165408 (2020).

[70] For noninteracting (X = 0) bosonic particles Eq. (A2)
agrees with Eq. (69) in Ref. [71].

[71] F. Meirinhos, M. Kajan, J. Kroha, and T. Bode, Adaptive
numerical solution of Kadanoff-Baym equations, SciPost
Phys. Core 5, 030 (2022).

[72] N. E. Dahlen and R. van Leeuwen, Solving the Kadanoff-
Baym equations for inhomogeneous systems: Application
to atoms and molecules, Phys. Rev. Lett. 98, 153004 (2007).

[73] A. Stan, N.E. Dahlen, and R. van Leeuwen, Time
propagation of the Kadanoff-Baym equations for inhomo-
geneous systems, J. Chem. Phys. 130, 224101 (2009).

[74] S. Lieu, M. McGinley, and N. R. Cooper, Tenfold way for
quadratic Lindbladians, Phys. Rev. Lett. 124, 040401 (2020).

[75] A. Altland, M. Fleischhauer, and S. Diehl, Symmetry
classes of open fermionic quantum matter, Phys. Rev. X
11, 021037 (2021).

[76] Y. He and C.-C. Chien, Topological classifications of
quadratic bosonic excitations in closed and open systems
with examples, J. Phys. Condens. Matter 34, 175403 (2022).

[77] C.C. Wojcik, K. Wang, A. Dutt, J. Zhong, and S. Fan,
Eigenvalue topology of non-Hermitian band structures in
two and three dimensions, Phys. Rev. B 106, L161401
(2022).

[78] H. Shen, B. Zhen, and L. Fu, Topological band theory for
non-Hermitian Hamiltonians, Phys. Rev. Lett. 120, 146402
(2018).

[79] S. Yao and Z. Wang, Edge states and topological invariants
of non-Hermitian systems, Phys. Rev. Lett. 121, 086803
(2018).

[80] K. Yokomizo and S. Murakami, Non-Bloch band theory of
non-Hermitian systems, Phys. Rev. Lett. 123, 066404
(2019).

[81] G. Stefanucci and E. Perfetto, Semiconductor electron-
phonon equations: A rung above Boltzmann in the many-
body ladder, SciPost Phys. 16, 073 (2024).

[82] O. V. Konstantinov and V.I. Perel’, Sov. Phys. JETP 12,
142 (1961).

[83] M. Wagner, Expansions of nonequilibrium Green’s func-
tions, Phys. Rev. B 44, 6104 (1991).

066901-7


https://doi.org/10.1103/PhysRevB.92.205304
https://doi.org/10.1103/PhysRevB.92.205304
https://doi.org/10.1103/PhysRevB.102.115157
https://doi.org/10.1103/PhysRevLett.102.136401
https://doi.org/10.1103/PhysRevB.94.245303
https://doi.org/10.1103/PhysRevB.94.245303
https://doi.org/10.1063/1.3109900
https://doi.org/10.1063/1.3109900
https://doi.org/10.1103/PhysRevB.108.245157
https://doi.org/10.1103/RevModPhys.86.779
https://doi.org/10.1103/PhysRevLett.103.056403
https://doi.org/10.1103/PhysRevLett.103.056403
https://doi.org/10.1103/PhysRevLett.119.247601
https://doi.org/10.1103/PhysRevLett.119.247601
https://doi.org/10.1016/j.cpc.2020.107484
https://doi.org/10.1103/PhysRevLett.68.2512
https://doi.org/10.1103/PhysRevLett.68.2512
https://doi.org/10.1103/PhysRevB.50.5528
https://doi.org/10.1088/0953-8984/19/10/103201
https://doi.org/10.1088/0953-8984/19/10/103201
https://doi.org/10.1209/0295-5075/84/67001
https://doi.org/10.1209/0295-5075/84/67001
https://doi.org/10.1103/PhysRevB.80.115107
https://doi.org/10.1103/PhysRevB.82.155108
https://doi.org/10.1103/PhysRevB.82.155108
https://doi.org/10.1103/PhysRevB.94.155142
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.066901
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.066901
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.066901
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.066901
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.066901
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.066901
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.066901
https://doi.org/10.1103/PhysRevB.85.115119
https://doi.org/10.1103/PhysRevB.90.115134
https://doi.org/10.1103/PhysRevB.98.014307
https://doi.org/10.1103/PhysRevB.98.014307
https://doi.org/10.1103/PhysRevB.101.165408
https://doi.org/10.1103/PhysRevB.101.165408
https://doi.org/10.21468/SciPostPhysCore.5.2.030
https://doi.org/10.21468/SciPostPhysCore.5.2.030
https://doi.org/10.1103/PhysRevLett.98.153004
https://doi.org/10.1063/1.3127247
https://doi.org/10.1103/PhysRevLett.124.040401
https://doi.org/10.1103/PhysRevX.11.021037
https://doi.org/10.1103/PhysRevX.11.021037
https://doi.org/10.1088/1361-648X/ac53da
https://doi.org/10.1103/PhysRevB.106.L161401
https://doi.org/10.1103/PhysRevB.106.L161401
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.21468/SciPostPhys.16.3.073
https://doi.org/10.1103/PhysRevB.44.6104

PHYSICAL REVIEW LETTERS 133, 066901 (2024)

[84] G. Stefanucci and C.-O. Almbladh, Time-dependent par-
tition-free approach in resonant tunneling systems, Phys.
Rev. B 69, 195318 (2004).

[85] I. Carusotto and C. Ciuti, Quantum fluids of light, Rev.
Mod. Phys. 85, 299 (2013).

[86] M. Wouters and I. Carusotto, Excitations in a nonequili-
brium Bose-Einstein condensate of exciton polaritons,
Phys. Rev. Lett. 99, 140402 (2007).

[87] The same distinction arises in the field theory approach
since operators must be normally ordered for the con-
struction of the Keldysh action [88].

[88] L. M. Sieberer, S.D. Huber, E. Altman, and S. Diehl,
Nonequilibrium functional renormalization for driven-
dissipative Bose-Einstein condensation, Phys. Rev. B
89, 134310 (2014).

[89] D. Taj, R. C. Iotti, and F. Rossi, Microscopic modeling of
energy relaxation and decoherence in quantum optoelec-
tronic devices at the nanoscale, Eur. Phys. J. B 72, 305
(2009).

[90] R. Rosati, R. C. Iotti, F. Dolcini, and F. Rossi, Derivation
of nonlinear single-particle equations via many-body
Lindblad superoperators: A density-matrix approach,
Phys. Rev. B 90, 125140 (2014).

[91] The only precaution we need to take is in counting the
topologically equivalent diagrams, as v™(z, z’) is not sym-
metric under the exchange z <> z/. We can use standard
diagrammatic prefactors provided that we evaluate the dia-
grams with the symmetrized form 1 [vP"(z,2') + o™ (', 2)].

[92] M. Esposito and P. Gaspard, Emergence of diffusion in
finite quantum systems, Phys. Rev. B 71, 214302 (2005).

[93] T. Jin, M. Filippone, and T. Giamarchi, Generic transport
formula for a system driven by Markovian reservoirs,
Phys. Rev. B 102, 205131 (2020).

[94] X. Turkeshi and M. Schiré, Diffusion and thermalization in
a boundary-driven dephasing model, Phys. Rev. B 104,
144301 (2021).

[95] S. Latini, E. Ronca, U. De Giovannini, H. Hiibener, and A.
Rubio, Cavity control of excitons in two-dimensional
materials, Nano Lett. 19, 3473 (2019).

[96] V. Rokaj, M. Ruggenthaler, F. G. Eich, and A. Rubio, Free
electron gas in cavity quantum electrodynamics, Phys.
Rev. Res. 4, 013012 (2022).

[97] C.J. Eckhardt, G. Passetti, M. Othman, C. Karrasch,
F. Cavaliere, M. A. Sentef, and D. M. Kennes, Quan-
tum Floquet engineering with an exactly solvable
tight-binding chain in a cavity, Commun. Phys. 5, 122
(2022).

[98] F. Tabakin, Model dynamics for quantum computing, Ann.
Phys. (Amsterdam) 383, 33 (2017).

[99] J. Cui, J.1. Cirac, and M. C. Banuls, Variational matrix
product operators for the steady state of dissipative
quantum systems, Phys. Rev. Lett. 114, 220601
(2015).

[100] A. Nagy and V. Savona, Driven-dissipative quantum
Monte Carlo method for open quantum systems, Phys.
Rev. A 97, 052129 (2018).

[101] G.T. Landi, D. Poletti, and G. Schaller, Nonequi-
librium boundary-driven quantum systems: Models,
methods, and properties, Rev. Mod. Phys. 94, 045006
(2022).

[102] J. Kaye and D. Golez, Low rank compression in the
numerical solution of the nonequilibrium Dyson equation,
SciPost Phys. 10, 091 (2021).

[103] X. Dong, E. Gull, and H. U.R. Strand, Excitations and
spectra from equilibrium real-time Green’s functions,
Phys. Rev. B 106, 125153 (2022).

End Matter

Appendix: Dissipative KBE—The adjoint of Egs. (9)
and (10) follow from the interacting version of Egs. (8),
and read

[i% - ho(t)] G (1,1) +2it” (1)GA (1, 1)

=[2> . GA+3R. G7|(1.1), (A1)
G(10) [ 3= W) | £ 268 0e)
=[G=<-ZA+GR-z=9(1.1). (A2)

Acting with [i(d/dt) — h,(t)] on the retarded NEGF we
then find

{i% - ha(t)] GR(t,1)

=6(t.7)+6(t.7) [ d

i h(,(t)} (G~ (t,1') = G=(1,1)).

(A3)

To evaluate the rhs we use Egs. (Al) and (9). Taking into
account that 6(r,#)G*(t,/) =0 and that ¥~ — X< =
SR_3¥A as well as G- —G< =GR —-G* we obtain
Eq. (11). Similarly we can derive the EOM for GA:

L‘i - hzw] GA(1, 1) = 8(t.1) + [EA- GY(1.1).  (A4)

Subtracting Eq. (A2) from Eq. (9) we obtain
44 G=(t,1) = hy(t)G=(t,7) + G=(t, ) hi(¢')

d[ dt/ ’ 0 9 ’ o
+2i<(1)GA(t, 1) F 2iGR(¢, )¢~ (1)

— [G<-FA 4+ GR .25 —£<.GA —3R.G|(1,7),

(A5)

Taking into account that GR(¢",7) = —i [and hence
GA(t,1%) = i] we see that the left and right limits ¢ — ¢

of Eq. (A5) are identical. In both limits the second line
yields F 2¢<(¢), and Eq. (12) is recovered.
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For £ = 0 we can easily show that Eq. (13) is a solution
of the noninteracting dissipative KBE. Using Eqgs. (11) and
(A4) we find (omitting the dependence on 7 and 7')

d _

i GT= +(h,GR48)p= T i(=ih,p=+ip<h}y+2£<)G*
Fp<(hiG* +96).

|

H(z,z") ]

2p

2

which is identical to Eq. (15). It is interesting to compare
the dissipation-induced interaction with a physical, e.g.,
Coulomb, interaction

Coul
a(e) = [z D )31, (93,0)
(A7)

where 0504 (2,2') = 6(2, 2) v In Eq. (A6) the annihi-
lation operators are evaluated in 7/ whereas the creation
operators are evaluated in z. In Eq. (A7) we instead have a
particle-hole operator in 7' and another in z. Although
the topology of the diagrams is identical the position of the
contour times is different. For Coulomb interactions the
self-energy diagrams in Fig. 1 have the orbital index n at
time z and j at time Z7'.

Next we discuss the Feynman rules for the Green’s
function diagrams. To first order the expansion of
G (24, 25,) in powers of v?P yields four contributions,
whose diagrammatic representation is given in Fig. 2. The
relabeling i <» j and m < n is equivalent to a mirroring of

the interaction line and maps the right diagrams onto the
left diagrams since vlzfmn(t) = vﬂnm(t) For a kth order
diagram we have 2* mirrorings and k! permutations of the

v?P lines giving rise to topologically equivalent diagrams

a, Za

FIG. 2. First-order Green’s function diagrams for a dissipation-
induced interaction due to two-body losses.

H(z) ‘i/dz/w[S(Z)ﬁ(Z’,Z)+29+(Z)5(Z 2))d; ()} (2 )dy (2)d, (),

The terms containing /), and the & function cancel and we
recover Eq. (9). A similar proof holds for the greater
component.

Many-body theory for two-body losses For two-
particle losses we have L = amnd d and the operator
in Eq. (5) reads

= H(2) + df; (1)ahu (1) =is(2)d} (2)d} (2)d, (2)d, (2) = 216, ()] (2)d} (2)d, (")l ()]

(A6)

|
with the same numerical value. Therefore we only need to
consider diagrams with different topology and multiply by
2%k!, a procedure identical to that used for Coulomb
interactions [19].

Let us show that THF in Eq. (16) gives rise to non-
interacting dissipative EOM with £~ (¢) renormalized by

the quantity 21~ (1) = ZUl]mn( )Prm;(t). We have

/ dz3¥(2,2)G,,(2.2))
C

=—it;, (1 )/CdZ[S(Z)(S(iZ) +20.(2)6(2,27)1Gp (2.2')

=it (1)[s(2)Gnp(2,2) +20_(z")G,, (2. 2),

where in the last equality we use 6, (z) = 6_(z*). Thus, the
HF approximation is equivalent to add —is(z)Z""> (1) to
h(z), and 0_(z*)/"F> (1) to #(z*) in Eq. (8a). This is
equivalent to renormalize £~ — ¢~ + ¢HF>,

Many-body theory for particle-hole losses  For particle-
hole losses we have L = amnd d and the operator in
Eq. (5) reads

_ I_AI( ) + aﬁ(f)ailnn(t)

x [—is(z)d] (2)d;(z)d},(2)d,(2)
+2i60_(2)d! (22) ()}, (2)d, (2))-

H(z,7%)

In the first line all operators are evaluated at the same
contour time and therefore d;(z)d},(2)d,(z) = &;,d,(z)+

a;(z)a,,(z)aj(z). By definition, z and z* cannot coincide
and the operators in the second line are reordered according

to d;(z*)d},(2)d,(z) = d},(2)d,(z)d;(z*). After the reor-
dering H(z, z*) becomes identical to Eq. (17). Comparing
the dissipation-induced interaction with a physical, e.g.,
Coulomb, interaction, see Eq. (A7), we see that they have

the same mathematical structure. Thus, the diagrams and
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the corresponding Feynman rules are the same in both
cases.

Taking into account that the Hartree term vanishes the
interacting version of the EOM at the HF level is given by
Egs. (8) with

h(z) = h(z) = is(z)VP"(¢)
B { h(t) — it (t) + it=(t) — iVP(¢)
L r() + i () - it<(1) +iVPN1) z=1,

z=1_

’

and with a rhs modified by the addition of
Je dzZF(2,2)G(z, 2/) for Eq. (8a) and [ dzG(z,2)2F(z, 7))
for Eq. (8b).

Using the explicit form of =¥ in Eq. (18) we find

/ 4755 (2,2)Gny (2. 7) = is (@)™ (195 (1)
C | ———
2W;,(0)
X [an(z’ ZI) - (;nj(z*7 ZI)]'
(A8)

Setting z = ¢_ and 7z’ = ¢ the square bracket in Eq. (A8)

becomes G< — GT = GA. Therefore, the KBE for G=< reads
(omitting the dependence on ¢ and ¢')

d
i = (h=if” 4 if= V") |G= + 2i6<(G* ~ G*)

=2iW=<GA. (A9)
Comparing this result with Eq. (9) we infer that the HF
approximation yields a noninteracting dissipative KBE with
renormalized £<—7¢<+W=< and ¢~ —¢> + VP —W=<=
£”+W>. We could alternatively derive this result

through a direct comparison between Egqs. (A8)-(A9)
and Eq. (8a).

The greater component of the adjoint EOM confirms the
well-designed nature of the formalism. Using again the
explicit form of XF in Eq. (18) we find

[ a6z 2)
C

h
= G2 2)5(2) o8, (£)Gp (2. 2)

+ Gj,(z, z’*)s(z’*)UE};,.iq(t’)qu(z’*, 7). (A10)

Setting z = ¢, and 7/ = r_ Eq. (A10) becomes

[GEF5 (1, 1) = 2iG5, (1. £ )Wii(¢') + 2iGT, (1. )W,(1)
9> ph ;R >
= 2iG;, (1, 1)V, (t') = 2iG}, (1,1 )W .(1'),

m

where we use that G, (', 1'%) = G, (¢, 1) = i(p;, — &
and hence

CIP)

h . ..,ph .
Upja(F)Gop (1 1) = 2iW5,(1) = 2iVyi(1) = =2iW; (7).
We conclude that the KBE for G~ reads (omitting the
dependence on ¢ and ')

1d
G~ i (h—it” + it~ — iV | = 2i(G> - GR)¢>

= 2iG”VPh - 2iGRW>.
Comparing this result with Eq. (10) we again find a

noninteracting dissipative KBE with the same renormaliza-
tion of #5 as for G~.
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