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We show how the stability conditions for a system of interacting fermions that conventionally involve
variations of thermodynamic potentials can be rewritten in terms of one- and two-particle correlators. We
illustrate the applicability of this alternative formulation in a multiorbital model of strongly correlated
electrons at finite temperatures, inspecting the lowest eigenvalues of the generalized local charge
susceptibility in proximity of the phase-separation region. Additionally to the conventional unstable
branches, we address unstable solutions possessing a positive, rather than negative, compressibility. Our
stability conditions require no derivative of free-energy functions with conceptual and practical advantages
for actual calculations and offer a clear-cut criterion for analyzing the thermodynamics of correlated
complex systems.
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Introduction—Thermodynamic stability is a crucial con-
cept for condensed matter systems. The conventional
formulation of stability criteria relies on derivatives of
thermodynamic potentials, i.e., on the Hessian matrix of the
grand potential Ω, taken with respect to the independent
variables considered, such as temperature, volume, and
chemical potential. In the textbook example of the liquid-
gas transition [1], the stability of the Van der Waals
isotherms in the pressure-versus-volume plane can be
directly inspected by calculating the isothermal compress-
ibility, which can be expressed with the second derivative
of the grand potential with respect to the volume. Similar
considerations extend also to many-electron systems in the
presence of a local Coulomb interaction. The latter induces
metal-to-Mott insulator transitions at finite doping, close to
which two derivatives are needed in order to set the stability
conditions at a fixed temperature: one with respect to the
strength of the Hubbard repulsion and one with respect to

the chemical potential [2–6]. The dimension of the Hessian
matrix would further increase as one keeps adding thermo-
dynamic variables, hence leading to a higher number of
independent derivatives to be considered. One can therefore
ask whether it is possible to encode the same information in
a single “local” state variable, whose very value diagnoses
the thermodynamic stability of a system. Extending this
concept to multidimensional abstract spaces, such a con-
dition would offer the additional advantage of not having to
explore derivatives in all different directions, when those
are hard to compute.
In this Letter, we show that this is indeed possible by

calculating eigenvalues of two-particle vertex functions.
Even though a direct connection with the thermodynamic
potentials is not obvious at first sight, here we demonstrate
that the conditions based on the Hessian can be rewritten
solely in terms of the single-particle propagator G and the
eigenspectrum of the generalized two-particle susceptibility
χ (see right-hand side of the sketch in Fig. 1). First, we
derive the relevant thermodynamic stability criteria in terms
of derivatives of the grand potential Ω for the single-band
Hubbard model. Second, we make the connection to two-
particle response functions χ, and show that the stability
conditions can be rewritten in terms of their eigenvalues
and eigenvectors, giving a clear-cut and compact criterion
for the thermodynamic stability of a strongly correlated
system. In doing so we also generalize our findings to
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generic two-body interactions as well as for the case of the
presence of a magnetic field [7]. Eventually, we exemplify
the validity of our criterion for a more general system, a
multiorbital Hubbard model: we numerically explore the
coexistence region in its phase diagram with chemical
potential μ, temperature T, and interaction strength U,
where the thermodynamic analysis is relevant to assess the
stability of the various competing phases (see Fig. 1).
Thermodynamic stability criteria for the Hubbard

model—We first focus on the single-band Hubbard model
[15–20],

H ¼
X

ijσ

tijc
†
iσcjσ þ U

X

i

ni↑ni↓ − μ
X

iσ

niσ; ð1Þ

where tij are hopping amplitudes, cð†Þiσ annihilates (creates)
an electron with spin σ on site i, niσ is the number operator,
U the purely local Coulomb interaction, and μ the chemical
potential. For this model, the grand potential (Landau free
energy) Ω ¼ −T lnZ (with the partition function Z) is a
function of the free parameters ðT; μ; UÞ and its exact
differential reads [21,22]

1

V
dΩ ¼ −sdT − ndμþDdU; ð2Þ

where ð1=VÞð∂Ω=∂UÞ ¼ D ¼ hn↑n↓i is the double
occupancy, −ð1=VÞð∂Ω=∂μÞ ¼ n the density, and
−ð1=VÞð∂Ω=∂TÞ ¼ s the entropy per lattice site at fixed
volume V. The stability of the solutions requires its Hessian
to be negative: d2Ω < 0 [7,21,23–26]. If we fix the
temperature T, this explicitly means that

d2Ω ¼
�
dμ dU

��
∂
2Ω
∂μ2

∂
2Ω

∂U∂μ
∂
2Ω

∂U∂μ
∂
2Ω
∂U2

��
dμ
dU

�
< 0: ð3Þ

The Hessian is negative definite (and, hence, the system is
stable) if its principle minors are alternating in sign,

beginning with a negative sign. This leads to the following
general stability criteria:

∂
2Ω
∂μ2

< 0; ð4Þ

∂
2Ω
∂μ2

∂
2Ω
∂U2

−
�
∂
2Ω

∂U∂μ

�
2

> 0: ð5Þ

Reexpressed in thermodynamic observables and parame-
ters, these conditions read:

∂n
∂μ

> 0; ð6Þ

−
∂n
∂μ

∂D
∂U

−
�
∂n
∂U

�
2

> 0 ð7Þ

(−ð∂n=∂UÞ ¼ ð∂D=∂μÞ holds as a Maxwell relation). Note
that the first condition Eq. (6) is equivalent to the well-
known criterion that in a thermodynamically stable system,
the electronic compressibility has to be positive; i.e.,
κ ¼ ð2=n2Þð∂n=∂μÞ > 0. However, Eq. (6) is not a suffi-
cient criterion, so that for a system to be thermodynami-
cally stable, also Eq. (7) has to hold [27].
Connection to two-particle response functions—After

deriving the above stability criteria, let us now relate
them to the structure of two-particle response functions.
In particular, the momentum-dependent static charge
susceptibility of the system is given by χðqÞ ¼
1
2

R β
0 dτhnðq; τÞnð−q; 0Þi − hni2, where β ¼ 1=ðkBTÞ and

nðqÞ ¼ ð1=VÞPkσ c
†
kþqσckσ . Then the corresponding

local susceptibility χloc can be obtained by summing
over all momenta q.
The latter response function can be either directly

measured by applying a local external field coupled to
the charge degrees of freedom or obtained by summing the
so-called (local) generalized susceptibility χνν

0
[7,29–34] at

zero bosonic transfer frequency Ω ¼ 0 over the two
fermionic Matsubara frequencies ν and ν0:

χloc ¼
1

β2
X

νν0
χνν

0 ðΩ ¼ 0Þ ¼
X

α

λαwα: ð8Þ

The last equality represents the decomposition in the
eigenbasis of χνν

0 ðΩ ¼ 0Þ with eigenvalues λα and eigen-
vectors Vα constituting the respective spectral weights
wα ¼ ½ð1=βÞPν V

−1
α ðνÞ�½ð1=βÞPν0 Vαðν0Þ� [30,35]. The

connection between the local susceptibility and the elec-
tronic compressibility becomes particularly transparent
within the dynamical mean-field theory (DMFT) [36–
40], which is the exact solution of Eq. (1) in the limit of
infinite lattice connectivity. In the case of the Bethe lattice
nonlocal correlation functions can be analytically
expressed [30,36,41,42] in terms of purely local functions

FIG. 1. Sketch of the phase diagram of the two-orbital Hubbard
model described in Eq. (12) as a function of temperature T,
interaction U, and chemical potential μ. The U axis is located at
half filling and T ¼ 0. At finite doping, the violet “moustache-
shaped” region describes a coexistence regime of a weakly
correlated and a strongly correlated (Hund’s) metal.
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[31,33,43,44]. In particular, the following expression for
the compressibility κ ¼ ð2=n2Þχðq ¼ 0Þ holds:

κ ¼ 2

n2β2
X

νν0

�
χ−1νν0 þ

t2

β
δνν0

�−1
¼ 2

n2
X

α

�
1

λα
þ t2

β

�−1
wα:

ð9Þ

Here one can immediately recognize that the first stability
criterion, Eq. (6), namely that κ should be positive, is
intimately related to the spectrum of the generalized local
charge susceptibility. This is quite remarkable, since κ is a
lattice quantity, whereas χνν

0
represents a purely local

impurity quantity. Actually, as we derive in detail in [7],
both stability criteria Eqs. (6) and (7) depend directly on the
eigenvalues λα and (via accompanying weights wα, vα, yα)
on the eigenvectors Vα of χνν

0
:

κ ¼ 2

n2
X

α

�
1

λα
þ t2

β

�−1
wα > 0; ð10Þ

−n2κ
�
−
D
U
þ
X
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1
1
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β
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�
−
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α

2
1
λα
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β
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�2

> 0; ð11Þ

where yα¼
�ð1=βÞPνVαðνÞ

��
−ð1=βÞPνV

−1
α ðνÞð∂Σ=∂UÞ��G

�

and vα¼
�ð1=βÞPνVαðνÞðχ̃ν0=χν0Þ

��
−ð1=βÞPνV

−1
α ðνÞð∂Σ=

∂UÞ��G
�
, with ð∂Σ=∂UÞ��G¼ð1=2UÞ�ð1=βÞPν00Γνν00

d Gν00 þΣν�
being the explicit derivative of the self-energy with respect
to the interaction fixing the Green’s function, the lattice
bubble χν0ðq ¼ 0Þ ¼ −ðβ=VÞPk G

2
k, and the expres-

sion χ̃ν0ðq ¼ 0Þ ¼ −ðβ=VUÞPk G
2
k½iνþ μ − ϵk�.

Thus, we have expressed all thermodynamic derivatives
given in Eqs. (6) and (7) by single- and two-particle
correlation functions evaluated for a given parameter set.
This result, which applies even to the exact solution of the
Hubbard model at finite lattice connectivity, is particularly
remarkable since one would have naively expected that
their determination had also required the knowledge of
higher order correlation functions [7]. This way we
managed to translate conditions on thermodynamic deriv-
atives into conditions on the eigenspectrum of χ. In
particular, if the value of the lowest eigenvalue λI falls
below the lower bound −β=t2 [45], κ in Eq. (10) turns
negative, hence signaling an instability of the system.
Violations of the second condition Eq. (11) are also dictated
by the eigenvalues and eigenvectors of χ. It is important to
note that such a connection between derivatives of thermo-
dynamic potentials and the eigenspectrum of the general-
ized susceptibility can be readily extended to the case with
more than one orbital, as well as to general two-body
interactions, finite dimensions, and the case of the presence
of a magnetic field [7].

Stability analysis close to a Mott transition—To show the
validity of our reformulated thermodynamic analysis, we
investigate a many-body Hamiltonian which possesses an
extended region of instability in the proximity to a Mott
transition. In general, the parameter ranges where such an
instability occurs are larger in multiorbital than single-band
models [49]. For this reason, we address a two-orbital
Hubbard model (see, e.g., [6,50]) and consider again the
Bethe lattice. We use DMFT to study the paramagnetic
phase and consider an interaction of density-density
Hubbard form:

H ¼
X

hi;ji;m;σ

tijc
†
imσcjmσ þ U

X

im

nim↑nim↓

þ ðU − 2JÞ
X

im;m0≠m

nim↑nim0↓

þ ðU − 3JÞ
X

i;m<m0;σ

nimσnim0σ − μ
X

imσ

nimσ; ð12Þ

with cð†Þimσ annihilating (creating) an electron on lattice site i
in orbital m∈ f1; 2g and with spin σ, density operators
nimσ ¼ c†imσcimσ, nearest-neighbor hopping matrix ele-
ments tij, and as interaction parameters the on-site same-
orbital repulsion U and Hund’s exchange coupling J which
we fix to J ¼ U=4.
As sketched in the phase diagram as a function of

ðT; μ; UÞ of Fig. 1, the system undergoes a first-order
transition from a (weakly) correlated metal to a Mott
insulator at Uc2 at T ¼ 0 and half filling, upon increasing
U [6]. Starting from the opposite strong coupling limit, the
metallic solution sets in only at Uc1 < Uc2 and, hence, a
hysteresis region appears for Uc1 < U < Uc2. In this
region, the equation of state of the system is multivalued
and the insulating coexists with the metallic solution. At
finite doping both solutions become metallic; however,
they evolve differently when changing the chemical poten-
tial μ: the former Mott insulator turns into a strongly
correlated Hund’s metal [51], separated from the weakly
correlated metal by a coexistence zone (violet-shaded
“moustache” shape). This coexistence regime shows phase
separation and is therefore thermodynamically unstable.
At finite temperatures, the phase-separation region
shrinks, terminating at a line of second-order critical end
points ðTc; μc; UcÞ.
After these general considerations, let us now illustrate

our results, focusing on two specific temperatures: T1 ¼
1=35 (Fig. 2) and T2 ¼ 1=50 (Fig. 3). The overall behavior
at different temperatures looks quite similar. However, we
will show that for the dataset we consider at the lowest
temperature T2 the system becomes thermodynamically
unstable by violating the stability criteria in a qualitatively
different way than for the dataset at T1. We start with the
higher value T1. In Fig. 2(a) we show the total electron
filling n ¼ P

imσhnimσi as a function of the chemical
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potential (measured from the chemical potential at half
filling) for several values of U. On the metallic branch the
filling depends approximately linearly on the chemical
potential, which is the case for the line of U ¼ 1.42 [52].
Here, the electronic compressibility κ ¼ 1=n2∂n=∂μ
assumes moderate values (κ ≈ 0.15).
Approaching the region of phase separation from larger

interaction values, we observe a dramatic sharpening of this
crossover: at U ¼ 1.46 we clearly see the onset of a
stretched S-shaped curve, which assumes its maximum
value of κ ≈ 0.5 at point B in Fig. 2(a). A small decrease of
the interaction to U ¼ 1.453 results in an even larger
compressibility of κ ≈ 1.25 before it eventually diverges,
giving rise to the “distorted” S-shaped curve of U ¼ 1.44.
Tracing the ðn; μÞ curve at this particular value of the
interaction reveals three distinct regimes [of which we mark
three representative points in Fig. 2(a)]: a strongly corre-
lated metallic regime I and a weakly correlated metallic
regime III, connected by an unstable solution II. At the
boundaries of the stable branches, the compressibility
diverges. The (discontinuous) jump from one stable sol-
ution to the other would correspond to a Maxwell con-
struction [6].
We now more closely inspect the electronic compress-

ibility and its connection to the eigenvalue structure of χνν
0
.

Figure 2(b) shows the maximum values of κ (red triangles)
as well as the value of the smallest (leading) eigenvalue of
χνν

0
, λI (blue squares), for several values of the interaction.

With λI we can understand the increase of κ when
decreasing U, since the leading eigenvalue becomes more
negative. Eventually, λI approaches −β=t2 ¼ −140, at
which value Eq. (6) indicates that κ → ∞ [30].
Immediately after the divergence, κ assumes a negative

value, thus violating the first stability condition Eq. (6). To
emphasize this violation, in the inset of Fig. 2(b) we show
λI and κ as a function of the total filling for the points I–III
at fixed U ¼ 1.44 and μ ¼ 1.3338 [corresponding to the
gray vertical line in Fig. 2(a)]. One can see that, in this case,
for the two stable branches, κ > 0 and λI > −β=t2, whereas
for the unstable branch, κ < 0 and λI ≈ −142 < −β=t2.
Calculations at the lower temperature T2 ¼ 1=50 dem-

onstrate that the system can become thermodynamically
unstable even if the compressibility is positive. This is
shown in Fig. 3. In Fig. 3(a) we can see that the overall
behavior of hni as a function of μ is very similar to the
behavior at elevated temperatures (linear behavior away
from the coexistence region, S shape coming close to it).
Additionally, branches connecting the two different met-
allic regimes are again appearing. In the case of U ¼ 1.46
we can see that this clearly unstable branch contains a
regime (e.g., point II) with positive compressibility.
Repeating our analysis of the leading eigenvalues λI in
Fig. 3(b), we see that, also for T2, when λI is approaching
the limit −β=t2 ¼ −200, the compressibility diverges
κ → ∞. The inset again shows that, for U ¼ 1.46, the
leading eigenvalue is λI ≈ −216 < −β=t2 for the point on
the unstable branch II. However, since the eigenvalue is
farther away from the respective limit than in the case of T1

in Fig. 2, κ remains positive.
Single criterion for thermodynamic (in)stability—The

above numerical findings indeed demonstrate the signifi-
cance of the eigenvalues of the generalized charge suscep-
tibility for the thermodynamic stability of a strongly
correlated system: if one of the eigenvalues falls
below the limit −β=t2, the relations Eqs. (6) and (7) are
not fulfilled at the same time, rendering the system

(a) (b)

I

II

III

I

II III

A

B

A

B

FIG. 2. DMFT calculations of the two-orbital Hubbard model on the Bethe lattice at T1 ¼ 1=35. (a) n versus μ − μhf for several values
of the interaction U. A and B indicate the respective maxima in κ for two different interaction values. The vertical gray line indicates the
cut at constant chemical potential μ ¼ 1.3338 corresponding to the inset in (b), I–III indicate the respective points for U ¼ 1.44.
(b) Lowest eigenvalue λI of the generalized static local charge susceptibility χνν

0
(blue squares) and the corresponding values of the

charge susceptibility κ (red triangles). Here, the values of the respective maxima of κ are shown. The dashed gray lines are fits of the
values of κ [Eq. (9)] and λI (linear), respectively, and serve as guide to the eye. Inset: cut at constant interaction U ¼ 1.44 and chemical
potential [corresponding to the solid gray line in (a)].
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thermodynamically unstable. The main player here can be
identified with the lowest eigenvalue λI [7]. Inspecting the
structure of the condition based on the eigenspectrum of χ
more closely, one could argue that Eq. (7) is always
violated close enough to the Mott metal-insulator transition
at half filling. Indeed, κ ∝ ∂n=∂μ is strongly suppressed
there and the first term in Eq. (7) could potentially become
smaller than the second one. However, analyzing Eq. (11)
tells us that in this situation both terms of the equation
vanish with the same power law, and our numerical
calculations show that the first term remains larger. The
expression of the thermodynamic derivatives in terms of
eigenvalues and eigenweights also explains why neither
ð∂n=∂μÞ nor ð∂n=∂UÞ diverge at the critical end point at
half filling, at odds with ð∂D=∂UÞ [4,26,30]. Thereby, we
have also demonstrated a direct connection between λI →
−β=t2 and ∂D=∂U → ∞ at the critical end point at half
filling [2].
Conclusions—We have derived stability conditions for

correlated fermionic matter at the one- and two-particle
diagrammatic level by relating the conventional criteria
involving derivatives of the grand potential to the eigen-
value structure of the generalized susceptibility [29,35,44].
We illustrated the applicability of our reformulation with
the example of the coexistence region emerging in the
proximity of the Hund’s Mott metal-insulator transition in a
two-band Hubbard model. There, in addition to the
unstable solution with negative compressibility, we were
able to identify an unstable branch with positive compress-
ibility. In this context we demonstrated that the eigenspec-
trum of the generalized susceptibility represents a clear-cut
indicator for thermodynamic stability, conceptually chang-
ing the conventional viewpoint based on the evaluation of
thermodynamic derivatives.
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