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We study Anderson localization in disordered tight-binding models on hyperbolic lattices. Such lattices
are geometries intermediate between ordinary two-dimensional crystalline lattices, which localize at
infinitesimal disorder, and Bethe lattices, which localize at strong disorder. Using state-of-the-art
computational group theory methods to create large systems, we approximate the thermodynamic
limit through appropriate periodic boundary conditions and numerically demonstrate the existence of
an Anderson localization transition on the {8,3} and {8,8} lattices. We find unusually large critical dis-
order strengths, determine critical exponents, and observe a strong finite-size effect in the level
statistics.
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Introduction—Two-dimensional (2D) hyperbolic lattices
with constant negative spatial curvature have recently been
realized experimentally in circuit quantum electrodynamics
(QED) [1], topolectrical circuits [2–5], topological
photonics [6], and scattering wave networks [7]. A hyper-
bolic fp; qg lattice is a regular tiling of 2D hyperbolic
space by p-sided polygonal faces and vertices of
coordination number q, such that ðp − 2Þðq − 2Þ > 4.
The scientific relevance of hyperbolic lattices ranges from
testing fundamental principles such as the anti–de Sitter/
conformal field theory correspondence in tabletop
experiments [8–15], to applications in quantum computa-
tion [16–20] and quantum error correction [21–26]. As a
new class of synthetic materials, they host a plethora of
exotic physical properties beyond those identified in con-
ventional Euclidean lattices, such as nontrivial crystalline
symmetries [27–29], generalized Bloch states [30–37],
modified role of interactions [38–40], unusual flat bands
[41,42], and novel topological phenomena [3,5,29,43–49].
Inevitable in real experiments, disorder in lattice systems

can be detrimental to the performance of quantum devices,
but also lead to novel physical phenomena such as
Anderson localization [50–52]. Prior investigations of
disorder-induced localization primarily focused on tight-
binding models on Euclidean lattices, where single-particle
states in 2D become localized upon the presence of
arbitrarily weak quenched disorder, an effect known as
weak localization [53]. Anderson localization has also been
studied for tight-binding models on treelike Bethe lattices
[54–56] and random regular graphs [57–63], the latter
being the finite-sized counterparts of the former with
periodic boundary conditions. These lattices can be viewed

as the p → ∞ limit of fp; qg hyperbolic lattices [64] and
exhibit a localization transition at finite disorder strength.
Other non-Euclidean graphs exhibiting the Anderson
localization transition include small-world networks
[65,66] and Erdős-Rényi graphs [67–69].
Hyperbolic fp; qg lattices with p finite are naturally

considered two dimensional since they correspond to
regular tilings of the 2D hyperbolic plane, as shown in
Fig. 1(a). At the same time, much like Bethe lattices, the
number of n walks starting from a given site grows
exponentially with n. Thus, hyperbolic lattices share
aspects of both conventional 2D lattices and treelike
lattices. However, their localization properties under dis-
order are mostly uncharted. The robustness of certain
topological features against disorder has been investigated
in Refs. [43,44]. For continuum models, it has recently
been argued that negative curvature prevents weak locali-
zation [70], hinting at the possibility of an Anderson
transition in hyperbolic lattices.
In this Letter, we explicitly demonstrate the existence of

an Anderson localization transition on hyperbolic lattices
and characterize its properties. We first present a heuristic
argument based on classical random walks that disordered
hyperbolic fp; qg lattices should exhibit a localization
transition at a finite critical disorder strength. We then
verify this hypothesis by numerical simulations of the
Anderson model [Eq. (3)] on finite {8,3} and {8,8} lattices
with up to Oð104Þ sites and periodic boundary conditions
(PBC). These so-called PBC clusters provide a reliable
approximation of the infinite lattice and prevent spurious
localization on the boundary, which, unlike a Euclidean
boundary, would contain a macroscopic number of sites.
We present our state-of-the-art technique for constructing
large PBC clusters using computational group theory and
benchmark it against the known thermodynamic-limit*Contact author: anffany@ualberta.ca
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density of states (DOS) in the disorder-free system. For the
disordered system, we compute the level statistics and
inverse participation ratio (IPR) averaged over many
disorder realizations. We conduct a finite-size scaling
analysis to determine, for the first time, the critical disorder
strengths Wc and scaling length exponents ν on the {8,3}
and {8,8} lattices. We find that Wc=t ≈ 15 and 100,
respectively, revealing that hyperbolic lattices are very
robust toward disorder, in contrast to 2D Euclidean lattices
that exhibit weak localization. Furthermore, we observe a
strong finite-size effect in the level statistics, which is a key
feature of localization in random regular graphs [57,58,61].
Random walks on hyperbolic lattices—We first argue

that disordered hyperbolic lattices should exhibit a locali-
zation transition at a finite critical disorder strength based
on the theory of random walks [72]. Starting at an arbitrary
site, a random walker has an equal probability to proceed to
each of its neighbors at each time step. By Pólya’s theorem
[73], the expected number of returns (to the starting point)
of a random walk in d-dimensional integer lattices Zd is
infinite for d ≤ 2 and finite for d > 2, implying that a
Euclidean 1D or 2D random walk contains an infinite
number of loops. These loops have crucial implications for
transport properties, because the leading quantum correc-
tion to the Drude formula of conductivity is attributed to the
quantum interference of clockwise and counterclockwise

electronic trajectories along each loop [74]. This so-called
weak localization correction is large in 1D and 2D
disordered Euclidean lattices, which greatly suppresses
conduction. In contrast, we show below that the expected
number of returns on a 2D hyperbolic fp; qg lattice is
finite, corresponding to only a small weak-localization
correction. This is more akin to the 3D Euclidean case,
which is known to display a localization transition [50].
Consider a random walk on an infinite fp; qg lattice,

starting at an arbitrary site i. The expected number of
returns is μ ¼ P∞

n¼0 Pn, where Pn is the probability that
an n-step walk (or n walk) starts and ends at site i (see
Supplemental Material [75] for derivation). Pn is also
the fraction of n cycles among all n walks. The total
number of n walks is qn. By graph theory, the number
of n cycles based at site i is ðAnÞii, with A the adjacency
matrix of the infinite lattice. Diagonalizing A such that
A ¼ P

a λajψaihψaj, we have ðAnÞii ¼
P

a λ
n
ajhijψaij2,

where jii is the localized state at site i in the position
basis. Denoting by λr ¼ maxajλaj the spectral radius of A,
we then find

ðAnÞii ≤
X

a

jλajnjhijψaij2 ≤ λnr
X

a

jhijψaij2 ¼ λnr : ð1Þ

The last equality follows from completeness of the jψai
basis. Therefore, the fraction of n cycles is bounded from
above according to Pn ¼ ðAnÞii=qn ≤ ðλr=qÞn. Unlike in
Euclidean lattices, the symmetry group of a hyperbolic
fp; qg lattice exhibits the mathematical property of non-
amenability [81,82] and, as a result, its spectral radius λr is
strictly less than q [64,83]. Hence, the expected number of
returns,

μ ¼
X∞

Pn ≤
X∞ �

λr
q

�
n
¼ 1

1 − λr=q
< ∞; ð2Þ

is finite. This suggests that localization on disordered
hyperbolic lattices occurs at a nonzero critical disorder
strength.
Hyperbolic Anderson model—We formulate the

Anderson model [50] on a hyperbolic fp; qg lattice by
the tight-binding Hamiltonian

H ¼ −t
X

hi;ji
ðc†i cj þ c†jciÞ þ

X

i

uic
†
i ci; ð3Þ

where c†i (ci) creates (annihilates) a particle on site i, t is the
nearest-neighbor hopping amplitude, and the on-site poten-
tials ui are randomly drawn from a uniform distribution
over the interval ½−ðW=2Þ; ðW=2Þ�. The Hamiltonian is
motivated in part by the circuit QED experiments of
Ref. [1], where t ∼ 100 MHz and the on-site potentials
have a mean value of 8 GHz with ∼10 MHz variations. The
realized system can thus be modeled by Eq. (3) with

FIG. 1. Approaching the thermodynamic-limit with finite-sized
hyperbolic lattices. (a) To study the localization phenomenon in
hyperbolic space, we implement the Anderson model (3) on
{8,3} and {8,8} hyperbolic lattices, here shown as embedded in
the Poincaré disk. (b) To avoid boundary localization, we
construct finite-sized hyperbolic lattices with periodic boundary
conditions, dubbed PBC clusters. As system size N increases, the
DOS of the disorder-free system (ui ¼ 0) on our PBC clusters
converges to the thermodynamic-limit DOS. The latter (red
curve) is captured accurately by the continued-fraction
method [71].
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W=t ∼ 0.1. Henceforth, we set t ¼ 1 and measure energies
and W in units of t.
To demonstrate the localization transition on an infinite

hyperbolic lattice and characterize its properties, we study
the Hamiltonian (3) on large but finite lattices with PBC.
Hyperbolic lattices with open boundary conditions, as
shown in Fig. 1(a), are discussed, for instance, in
Ref. [29]. Properly formulated PBC are essential in the
hyperbolic context to systematically approach the thermo-
dynamic limit, yet existing methods are limited either in the
system size [84] or the number of realizations [85]. In this
Letter, we propose a novel method which can produce
unlimited realizations of hyperbolic PBC clusters with
arbitrarily large system sizes. Moreover, the resulting
clusters are defect-free systems with translation symmetry.
To describe our method, we start by considering a finite
patch of the infinite lattice and compactify it by identifying
pairs of boundary edges, resulting in a tessellation of a
high-genus Riemann surface [28,31,86]. The compactifi-
cation is achieved through computing the quotient group
C ¼ Γ=G, where Γ is the translation symmetry group of the
hyperbolic lattice andG is a normal subgroup of Γ (denoted
G◃Γ). In other words, each element in Γ corresponds to a
site in the infinite lattice, and G contains the equivalence
relations which identify each site in the chosen patch with
its (infinitely many) equivalent sites outside the patch. The
normality constraint ensures that the cluster preserves a
notion of translation symmetry and that no dislocations are
introduced by the PBC. Each coset ½g�∈Γ=G represents a
site in the PBC cluster, and two sites ½g1�; ½g2� are neighbors
if ½g1� ¼ ½g2�½γi� with γi a generator of Γ [31]. The number
of cosets, i.e., the order of the group C, corresponds to the
number of Bravais unit cells in the cluster, denoted
by N ¼ jCj.
However, not all choices of normal subgroup G give rise

to PBC clusters that can correctly approximate the DOS in
the thermodynamic limit [85,87]. For this, we have to
construct a so-called coherent sequence of finite-index
normal subgroups, fG̃ig, such that G̃i◃Γ for all i and

Γ▹G̃1▹G̃2▹G̃3▹ � � � : ð4Þ

In addition, ∩∞
i¼1 G̃i ¼ feg, where feg is the trivial group.

Under these conditions, the PBC clusters Ci ¼ Γ=G̃i
approach the thermodynamic limit as i increases. We use
the computational algebra software GAP [88,89] for gen-
erating finite coherent sequences through subgroup inter-
sections of low-index normal subgroups [90,91] (see
Ref. [75] for methods). We construct four finite coherent
sequences of {8,8} clusters with up to N ∼ 40 000 sites. By
replacing each vertex of the {8,8} cluster with a 16-site unit
cell [28,75], this also yields coherent sequences of {8,3}
clusters with up to N ∼ 90 000 sites. The adjacency
matrices of the generated clusters are available at [92].
Figure 1(b) shows the DOS of the disorder-free systems

obtained from our first PBC cluster sequence, computed
with the kernel polynomial method [93] using the KWANT

PYTHON package [94]. As the cluster size increases,
the cluster DOS gradually approaches the thermodynamic
limit [71] and more exact values of low DOS moments are
reproduced (see Tables S2 and S3 of [75]), indicating
convergence.
Having demonstrated that our sequences of PBC clusters

accurately capture the thermodynamic limit in the clean
limit, we next diagonalize the Anderson model (3) on {8,8}
clusters with N ¼ 100 to 40 320 and {8,3} clusters with
N ¼ 160 to 92 160. The single-particle Hamiltonian is
given by the N × N adjacency matrix of the cluster
(multiplied by −1) plus a diagonal matrix with random
values in the range ½−ðW=2Þ; ðW=2Þ�. We consider 1000 to
100 000 disorder realizations, with more realizations for
smaller clusters. For each realization, we use the Jacobi-
Davidson algorithm through the software code of Ref. [95]
to obtain the 20 eigenenergies Eα and eigenstates ψα closest
to the center of the energy spectrum (E ¼ 0 for the lattices
considered here). We focus on such eigenstates because
localization generally occurs first at the outer edges of the
spectrum and gradually shifts toward the center as W
increases, resulting in the so-called “mobility edge” struc-
ture in observables such as the IPR. Therefore, localization
at E ∼ 0marks the localization phase transition. We verified
that hyperbolic Anderson models indeed exhibit a mobility
edge in the IPR.
Level statistics and inverse participation ratio—Level

statistics, i.e., the distribution of consecutive gaps in an
energy spectrum, offers critical insights into wave function
localization [51,96,97]. Two delocalized wave functions
are coupled due to their spatial overlaps, making degen-
eracy in their energy eigenvalues unfavorable due to level
repulsion. As a result, the level statistics in the delocalized
phase follows that of the Wigner-Dyson Gaussian orthogo-
nal ensemble (GOE). In the localized phase, wave functions
exhibit minimal overlap. Their energies are independent
and resemble random values along a line, with level
statistics described by the Poisson distribution.
For each cluster considered, we compute the level

statistics of the Anderson model using the near-zero
eigenvalues obtained above. Since the gaps between
consecutive eigenvalues are strongly affected by the pres-
ence of finite-size-induced gaps, we circumvent this issue
by considering the ratio of gaps in the sorted spectrum [98],

0 ≤ rα ¼
minfEαþ1 − Eα; Eα − Eα−1g
maxfEαþ1 − Eα; Eα − Eα−1g

≤ 1: ð5Þ

When binned into a histogram, rα (compiled from different
disorder realizations) follows a distribution that transitions
from the Wigner surmise of GOE at smallW to the Poisson
distribution at large W [75]. This is most easily seen in the
disorder-averaged expectation value hri, which changes
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from the GOE value hriGOE ¼ 4 − 2
ffiffiffi
3

p ¼ 0.536 [99] to the
Poisson value hriP ¼ 2 ln 2 − 1 ¼ 0.386 upon increasing
W (see Fig. 2 and Fig. S2 of [75]), signaling a localization
transition.
The value hri at the critical disorder Wc is typically

independent of N for Euclidean systems, albeit dependent
on the boundary condition [51], so the intersection of hri
curves can be used to locate the critical point. However,
here we observe a strong finite-size effect such that the
intersection of hri curves drifts toward strongerW and hriP
as N increases, as shown in Fig. 2. Such crossing drift has
also been observed in the Anderson model on the f∞; 3g
lattices [57,58,61]. We extrapolate the disorder strength at
the intersection, denoted W�, to the infinite-N limit using
the model W� ¼ Wc − β= lnðNÞ for some fitting parameter
β and determineWc ∼ 15 and 100 for {8,3} and {8,8} [75].
The IPR of a normalized wave function ψðzÞ is given by

IðψÞ ¼
XN

i¼1

jψðziÞj4; ð6Þ

where zi denote the site coordinates. If ψ is highly delo-
calized with finite support on all sites, then jψðziÞj2 → 0
asN → ∞, leading toIðψdelocÞ → 0. At the other extreme, if
ψ is localized on a single site j such that jψðziÞj2 ∼ δij, then
Iðψ locÞ ∼ 1. We compute I for all E ≈ 0 eigenstates

obtained above, which are then averaged over disorder
realizations. We find that the disorder-averaged hIi for the
Anderson model on various PBC clusters increase from
small values to∼1 at large disorder, suggesting a localization
transition for both {8,3} and {8,8} lattices. Figure 3(a)
shows the hIi data used to conduct the following finite-size
scaling analysis.
Finite-size scaling and critical properties—Having

established the localization transition on hyperbolic latti-
ces, we now use finite-size scaling to extract its critical
properties, including the critical disorder strength and
critical exponents. We follow Ref. [66] to conduct the
finite-size scaling analysis of the observables ηðW;NÞ≡
ðhri − hriPÞ=ðhriGOE − hriPÞ and IðW;NÞ≡ hIi (see
Ref. [75] for methods). The exponential growth of system
size N of hyperbolic and Bethe lattices with graph diameter
L, i.e., N ∼ ecL for some lattice-dependent constant c,
suggests two potential scaling laws for a given observable
O. Either we have

OðW;NÞ ¼ OðWc;NÞFlin(L=ξðWÞ); ð7Þ

FIG. 2. Finite-size effect in the average gap ratio. The average
gap ratio hri, averaged over disorder realizations and 20 eigen-
states closest to energy E ¼ 0, transitions from the GOE
ensemble value hriGOE ¼ 0.536 to the Poissonian value
hriP ¼ 0.386, which signals a localization transition. We observe
a strong finite-size effect such that the pairwise crossing of the hri
curves drifts toward stronger W and hriP as system size N
increases.

FIG. 3. Finite-size scaling analysis of IPR. (a) hIi data used for
the finite-size scaling analysis. (b) Assuming linear scaling
behavior as in Eq. (7) yields the optimal data collapse on both
the delocalized and localized sides of the transition. This is
indicated by the minimal χ2 values, where we denote LL: linear-
linear, LV: linear-volumetric, etc., according to the scaling law
used on either side of the transition. The best data collapse occurs
at Wc ≈ 15 for {8,3} and Wc ≈ 100 for {8,8}. (c) The collapsed
IPR data of the {8,3} model (see Fig. S5 of [75] for other
collapses). The associated scaling length follows ξðWÞ ∝ jW −
Wcj−ν with critical exponent ν as indicated.
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with an unknown scaling function Flin(L=ξðWÞ) and
scaling length ξðWÞ, or

OðW;NÞ ¼ OðWc;NÞFvol(N=ΛðWÞ); ð8Þ

with scaling function Fvol(N=ΛðWÞ) and scaling
volume ΛðWÞ. We refer to the two cases as linear and
volumetric scaling, respectively. For d-dimensional
Euclidean lattices, the two scaling behaviors are equivalent
due to N=Λ ¼ ðL=ξÞd. In contrast, in hyperbolic and Bethe
lattices, the ratio N=Λ ¼ ecðL−ξÞ is a function of L − ξ
instead of L=ξ. Therefore, we must examine both scaling
laws separately and identify which one applies to the data.
In the following we omit the lattice-dependent constant c
and let L ¼ logðNÞ.
We prepare curves of ηðW;NÞ and IðW;NÞ as functions

of N, each curve at a fixed W. We then make assumptions
on the critical disorderWc and the scaling behaviors (either
linear or volumetric) on the delocalized and localized sides
of the transition. According to the scaling laws in Eqs. (7)
and (8), all curves rescaled by the critical curve, i.e.,
OðW;NÞ=OðWc;NÞ, should collapse into a single scaling
function. The quality of the collapse is measured by the
least χ2, indicating an optimal assumption aboutWc and the
scaling behaviors.
As shown in Fig. 3(b), the χ2 obtained from collapsing

IðW;NÞ reveals a clear local minimum atWc ∼ 15ð100Þ for
{8,3} ({8,8}), consistent with the crossing-drift analysis.
We find that the χ2 obtained from collapsing ηðW;NÞ is less
informative due to noise in the level statistics data [75].
Linear scaling of IðW;NÞ in the vicinity of the transition
gives the best data collapse on both the delocalized and
localized sides. However, since we only consider system
sizes up to ∼100 000, our result does not exclude the
possibility of volumetric scaling for larger systems. Such
finite-size crossover has been observed in the Anderson
model on random regular graphs [57], such that the
delocalized phase is characterized by a correlation volume
NcðWÞ, separating smaller systems N < NcðWÞwith linear
scaling and larger systems N > NcðWÞ with volumetric
scaling.
The critical points of f∞; 3g and f∞; 8g Anderson

models have been estimated at Wc ≈ 18 [54,59,60,63]
and Wc ∼ 110 [62], respectively. Comparing the four
lattices {8,3}, f∞; 3g, {8,8}, and f∞; 8g, we find that
the critical disorderWc increases with the magnitude of the
lattice curvature in units of the lattice constant, which is
0.73, 1.10, 3.06, and 3.23, respectively [29]. This can be
attributed to negative curvature acting as an infrared
regulator that suppresses the usual logarithmic divergence
in the weak-localization correction in 2D [70,100]. This
suppression is more effective for stronger curvature, yield-
ing a higher threshold to observe localization.
Assuming the linear-linear scaling law andWc ∼ 15ð100Þ

for {8,3} ({8,8}), we plot the collapsed η and I data

[Fig. 3(c) and Fig. S5 of [75] ] and determine the
scaling length exponent ν by fitting ξ ∝ jW −Wcj−ν to find

ðνf8;3gη;deloc; ν
f8;3g
η;loc Þ ≈ ð0.5; 0.4Þ, ðνf8;8gη;deloc; ν

f8;8g
η;loc Þ ≈ ð0.9; 0.9Þ,

ðνf8;3gI;deloc; ν
f8;3g
I;loc Þ ≈ ð1.1; 1.1Þ, ðνf8;8gI;deloc; ν

f8;8g
I;loc Þ ≈ ð1.1; 0.9Þ on

the delocalized and localized sides, respectively. For com-
parison, the corresponding critical exponents on random
regular graphs and small-world networks with average

coordination number of 3 are known to be ðνf∞;3g
η;deloc; ν

f∞;3g
η;loc Þ ≈

ð0.5; 0.5Þ and ðκf∞;3g
I;deloc; ν

f∞;3g
I;loc Þ ≈ ð0.5; 1Þ, where κf∞;3g

I;deloc is the
critical exponent of the scaling volume [59,65–67]. We also
found that the IPRat criticality follows themultifractal scaling

IðWcÞ ∝ L−τ2 with fractal dimension τf8;3g2 ∼ 0.3 and

τf8;8g2 ∼ 0.2 [75].
Conclusion—In this Letter, we have studied, for the first

time, the Anderson localization transition on hyperbolic
fp; qg lattices. To eliminate boundary influence while
preserving hyperbolic translation symmetry in the clean
limit, we developed an efficient method to create large PBC
clusters. We benchmarked the disorder-free system against
the known thermodynamic limit and found very good
agreement for large systems with Oð104Þ sites and
adequate agreement even with Oð102Þ sites. Through
analyzing the level statistics and IPR of the Anderson
models, we determined the critical disorder strengths on the
{8,3} and {8,8} lattices to be Wc ≈ 15t and 100t, respec-
tively, implying high resilience against disorder on hyper-
bolic lattices. This understanding is instrumental in circuit
QED applications, where small variations in on-site poten-
tials lead to disorders withW comparable to t. We revealed
that hyperbolic lattices are genuinely distinct from 2D
Euclidean lattices, which exhibit the localization of all
eigenstates at infinitesimal disorder strength. Furthermore,
they suffer from a strong finite-size effect near the
localization transition. In particular, the pairwise intersec-
tion of hri curves drifts toward strong disorder and the
Poisson distribution, as also seen in the Anderson models
on Bethe lattices and random regular graphs. Our results
pave the way for future studies of hyperbolic localization.
The localization of wave functions can be realized

experimentally in (otherwise clean) topolectrical circuits
through creating artificial variation in local resistance.
Besides localization, our PBC clusters, accessible at
Ref. [92], are a powerful tool for various numerical studies
of hyperbolic lattices. On the one hand, they are crucial for
investigating bulk physics by emulating the thermody-
namic limit while eliminating boundary effects. On the
other hand, by introducing suitable vacancies, one can
design a controlled study of the hyperbolic boundary, or
defects in general, to test the bulk-boundary correspon-
dence and emergent boundary phenomena.
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Ann. Henri Poincaré 25, 1713 (2024).

[37] E. Petermann and H. Hinrichsen, Eigenmodes of the
laplacian on hyperbolic lattices, Phys. Rev. D 109,
106019 (2024).

[38] P. Bienias, I. Boettcher, R. Belyansky, A. J. Kollár, and
A. V. Gorshkov, Circuit quantum electrodynamics in hy-
perbolic space: From photon bound states to frustrated spin
models, Phys. Rev. Lett. 128, 013601 (2022).

[39] N. Gluscevich, A. Samanta, S. Manna, and B. Roy,
Dynamic mass generation on two-dimensional electronic
hyperbolic lattices, arXiv:2302.04864.

[40] N. Gluscevich and B. Roy, Magnetic catalysis in weakly
interacting hyperbolic Dirac materials, arXiv:2305.11174.

[41] T. Bzdušek and J. Maciejko, Flat bands and band-touching
from real-space topology in hyperbolic lattices, Phys. Rev.
B 106, 155146 (2022).

[42] R. Mosseri, R. Vogeler, and J. Vidal, Aharonov-Bohm
cages, flat bands, and gap labeling in hyperbolic tilings,
Phys. Rev. B 106, 155120 (2022).

[43] S. Yu, X. Piao, and N. Park, Topological hyperbolic
lattices, Phys. Rev. Lett. 125, 053901 (2020).

[44] D.M. Urwyler, P. M. Lenggenhager, I. Boettcher, R.
Thomale, T. Neupert, and T. Bzdušek, Hyperbolic topologi-
cal band insulators, Phys. Rev. Lett. 129, 246402 (2022).

[45] Z.-R. Liu, C.-B. Hua, T. Peng, and B. Zhou, Chern
insulator in a hyperbolic lattice, Phys. Rev. B 105,
245301 (2022).

[46] Z.-R. Liu, C.-B. Hua, T. Peng, R. Chen, and B. Zhou,
Higher-order topological insulators in hyperbolic lattices,
Phys. Rev. B 107, 125302 (2023).

[47] Q. Pei, H. Yuan, W. Zhang, and X. Zhang, Engineering
boundary-dominated topological states in defective hyper-
bolic lattices, Phys. Rev. B 107, 165145 (2023).

[48] Y.-L. Tao and Y. Xu, Higher-order topological hyperbolic
lattices, Phys. Rev. B 107, 184201 (2023).

[49] T. Tummuru, A. Chen, P. M. Lenggenhager, T. Neupert, J.
Maciejko, and T. Bzdušek, Hyperbolic non-Abelian semi-
metal, Phys. Rev. Lett. 132, 206601 (2024).

[50] P. W. Anderson, Absence of diffusion in certain random
lattices, Phys. Rev. 109, 1492 (1958).

[51] F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod.
Phys. 80, 1355 (2008).

[52] A. Lagendijk, B. Tiggelen, and D. Wiersma, Fifty years
of Anderson localization, Phys. Today 62, No. 8, 24
(2009).

[53] G. Bergmann, Weak localization in thin films: A time-of-
flight experiment with conduction electrons, Phys. Rep.
107, 1 (1984).

[54] R. Abou-Chacra, D. J. Thouless, and P.W. Anderson, A
selfconsistent theory of localization, J. Phys. C 6, 1734
(1973).

[55] R. Abou-Chacra and D. J. Thouless, Self-consistent theory
of localization. II. Localization near the band edges, J.
Phys. C 7, 65 (1974).

[56] A. D. Mirlin and Y. V. Fyodorov, Localization transition in
the Anderson model on the Bethe lattice: Spontaneous
symmetry breaking and correlation functions, Nucl. Phys.
B366, 507 (1991).

[57] K. S. Tikhonov, A. D. Mirlin, and M. A. Skvortsov, An-
derson localization and ergodicity on random regular
graphs, Phys. Rev. B 94, 220203(R) (2016).

[58] G. Biroli and M. Tarzia, Delocalization and ergodicity of
the Anderson model on Bethe lattices, arXiv:1810.07545.

[59] K. S. Tikhonov and A. D. Mirlin, Critical behavior at the
localization transition on random regular graphs, Phys.
Rev. B 99, 214202 (2019).

[60] G. Parisi, S. Pascazio, F. Pietracaprina, V. Ros, and A.
Scardicchio, Anderson transition on the bethe lattice:
An approach with real energies, J. Phys. A 53, 014003
(2019).

[61] K. Tikhonov and A. Mirlin, From Anderson localization on
random regular graphs to many-body localization, Ann.
Phys. (Amsterdam) 435, 168525 (2021).

[62] J.-N. Herre, J. F. Karcher, K. S. Tikhonov, and A. D.
Mirlin, Ergodicity-to-localization transition on random
regular graphs with large connectivity and in many-body
quantum dots, Phys. Rev. B 108, 014203 (2023).

[63] P. Sierant, M. Lewenstein, and A. Scardicchio, Universal-
ity in Anderson localization on random graphs with
varying connectivity, SciPost Phys. 15, 045 (2023).

[64] A. J. Kollár, M. Fitzpatrick, P. Sarnak, and A. A. Houck,
Line-graph lattices: Euclidean and non-Euclidean flat
bands, and implementations in circuit quantum electrody-
namics, Commun. Math. Phys. 376, 1909 (2020).

[65] I. Garcia-Mata, O. Giraud, B. Georgeot, J. Martin, R.
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Dubertrand, and G. Lemarié, Critical properties of the
Anderson transition on random graphs: Two-parameter
scaling theory, Kosterlitz-Thouless type flow, and many-
body localization, Phys. Rev. B 106, 214202 (2022).

[67] M. Sade, T. Kalisky, S. Havlin, and R. Berkovits, Locali-
zation transition on complex networks via spectral statis-
tics, Phys. Rev. E 72, 066123 (2005).

[68] H. J.Mard, J. A. Hoyos, E.Miranda, andV.Dobrosavljević,
Strong-disorder approach for the Anderson localization
transition, Phys. Rev. B 96, 045143 (2017).

[69] J. Alt, R. Ducatez, and A. Knowles, Delocalization
transition for critical Erdős-Rényi graphs, Commun. Math.
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