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Giant artificial atoms are promising and flexible building blocks for the implementation of analog
quantum simulators. They are realized via a multilocal pattern of couplings of two-level systems to a
waveguide, or to a two-dimensional photonic bath. A hallmark of giant-atom physics is their non-
Markovian character in the form of self-coherent feedback, leading, e.g., to nonexponential atomic decay.
The timescale of their non-Markovianity is essentially given by the time delay proportional to the distance
between the various coupling points. In parallel, with the state-of-the-art experimental setups, it is possible
to engineer complex phases in the atom-light couplings. Such phases simulate an artificial magnetic field,
yielding a chiral behavior of the atom-light system. Here, we report a surprising connection between these
two seemingly unrelated features of giant atoms, showing that the chirality of a giant atom controls its
Markovianity. In particular, by adjusting the couplings’ phases, a giant atom can, counterintuitively, enter
an exact Markovian regime, irrespectively of any inherent time delay. We illustrate this mechanism as an
interference process and via a collision model picture. Our findings significantly advance the understanding
of giant atom physics, and open new avenues for the control of quantum nanophotonic networks.
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The growing demand to process quantum information
for computational purposes underscores the increasing
importance of developing scalable quantum networks.
These networks consist of spatially distributed nodes
interconnected by communication lines. Consequently,
investigating the realm where memory effects and quantum
feedback are not negligible becomes increasingly crucial in
addressing the challenge of quantum computation [1–7]. A
notable instance includes multilocal or giant atoms [8–12],
which are two-level emitters coupled to an environment
(such as a field flowing through a waveguide) at multiple
spatially separated points. As the light travels among these
distinct coupling points, it accumulates a phase (optical
length) φWG proportional to the distance between them.
When the coupling points are spaced at distances compa-
rable to the wavelength of the light they interact with, a
direct consequence of the phase accumulation is that self-
interference effects, absent with ordinary atoms, arise.
A remarkable feature of giant atoms is their non-

Markovian character. Indeed, a giant atom can reabsorb
its own emitted excitation after a time delay proportional
to the distance between the coupling points. This phe-
nomenon has been experimentally demonstrated with
superconducting qubits coupled to surface acoustic
waves [13], and spurred the interest in giant atoms
physics. Interestingly, as we detail below, a giant atom
coupled to a waveguide at two different coupling points
can be described in terms of a small atom (one coupling
point) in a semi-infinite waveguide, Figs. 1(a)–1(b1),

a typical setup to observe a non-Markovian behavior of
the atomic emission [14–16].
Another striking feature of giant atoms is the possibility

of engineering dispersive decoherence-free interactions
between them [17]. Remarkably, even if the latter effect
is inherently related to the phase differences associated
with the displacements of the coupling points, it becomes
prominent when the travel time of light between coupling
points is small compared to the characteristic timescales of
the emitters, i.e., in the Markovian limit [17,18].
In parallel to memory effects, another important aspect

concerns the potential to adjust the propagation direction of
light between the nodes. When scattered radiation displays
a preferred direction, the interaction between emitters and
light is defined as chiral [19]. Both theoretically [2] and
very recently experimentally [20] it has been shown that
introducing light-matter couplings with an additional com-
plex phase can induce a chiral behavior in the radiation
emitted by giant atoms. For a giant atom with two coupling
points, cf. Fig. 1(a), the atomic emission is chiral whenever
the phase difference between the couplings φc does not
vanish. In particular, when such a phase matches the optical
length φWG, the emission can become maximally chiral [2].
In this work, we bridge these two seemingly unrelated

features of giant atoms, namely, their chirality and their
(non-) Markovianity. We show how to make a giant atom
enter the Markovian regime, even for non-negligible time
delays, by tuning its chirality. Importantly, our result
depends solely on the complex nature of the atom-light
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couplings. This result definitely shows that the identifying
feature of giant atoms is the nonlocality of their couplings,
rather than their non-Markovianity.
Setup and Hamiltonian—We consider a single giant

atom weakly coupled to a one-dimensional (1D) bidirec-
tional waveguide. The full light-matter Hamiltonian is
Ĥ ¼ Ĥa þ Ĥw þ Ĥint. The free atomic Hamiltonian is
Ĥa ¼ ωaσ̂

†σ̂, with σ̂ ¼ jgihej, jgi and jei being the ground
and excited atomic states, respectively. We model the
waveguide with a translationally invariant tight-binding
array of coupled resonators with Hamiltonian

Ĥw ¼ −J
X

x

â†xþ1âx þ H:c:; ð1Þ

where âx are real space bosonic annihilation operators and
J > 0. We can Fourier transform âx ¼

P
k e

−ikxâk=
ffiffiffiffi
N

p
,

where N is the number of resonators, so that Eq. (1)

becomes Ĥw ¼ P
k ωkâ

†
kâk, with ωk ¼ −2J cos k (the

lattice constant is set to 1). The atom-waveguide interaction
Hamiltonian is

Ĥint ¼ gσ̂ðeiφ1 â†x1 þ eiφ2 â†x2Þ þ H:c:; ð2Þ

where we assume g to be real and x2 ¼ x1 þ d. We focus
here on a two-legged giant atom, though our result general-
izes to the case of multiple coupling points, as we detail
in [21]. In Fourier space the interaction Hamiltonian (2)
reads Ĥint ¼

P
k ĥintðkÞ, where ĥintðkÞ ¼ gkσ̂â

†
k þ H:c: and

gk ¼ g½eiðφ1þkx1Þ þ eiðφ2þkx2Þ�= ffiffiffiffi
N

p
. When all these phases

are zero, we refer to the giant atom as nonchiral. By
contrast, we will call the giant atom chiral whenever we
take into account nonzero phases. This is because, in the
latter case, time-reversal symmetry is broken [gk ≠ g−k,
or TĥintðkÞT−1 ≠ ĥintð−kÞ, T being the time-reversal sym-
metry operator]. The assumption of weak coupling makes
our system equivalent to a giant atom coupled to a
continuous waveguide with linear dispersion [22], see
Fig. 1(c). Therefore, from an experimental point of view,
our waveguide Hamiltonian can be implemented with a
continuous transmission line [20], as well as with an array
of coupled superconducting circuits [23–25].
Result—Our result can be condensed in the following

sentence: the chirality of a giant atom controls its
Markovianity. Remarkably, Markovianity can be achieved
irrespectively of any time delay. This implies that such a
chiral giant atom undergoes spontaneous emission even
when the coupling points are significantly far apart, when
reabsorption would occur in the nonchiral case. Despite
the atom being giant, in the sense that a non-Markovian
behavior is expected, it behaves as if it were small (i.e.,
single-legged). Thus, we argue in favor of the nonlocality of
the couplings as a defining feature of giant atoms.
We derive this result through the analytic calculation

of the atomic dynamics and further check it through the
Lindblad master equation. We then provide two mecha-
nisms for this phenomenon, based on an interference
argument and on a collision model picture [10,26,27].
Assume the initial state is jΨð0Þi ¼ jeij0i, j0i being the

vacuum state of the field. Then at time t the full atom-
waveguide state is jΨðtÞi ¼ εðtÞjeij0i þP

k ckðtÞâ†kjgij0i.
Imposing the Schrödinger equation, the dynamics of an
initially excited chiral giant atom follows the delay differ-
ential equation [21]

ε̇ðtÞ ¼ −
Γ
2
εðtÞ− Γ

2
cosðφcÞeiφWGΘðt− tdÞεðt− tdÞ: ð3Þ

Here,ΘðtÞ is the Heaviside step function, φWG is the optical
length between the coupling points, td is the corresponding
time delay, and Γ is the decay rate. More specifically,
the optical length is given by φWG ¼ kad, where d is the
distance between the coupling points, ka is the momentum

(a)

(b1)

(c)

(b2)

FIG. 1. Setup. (a) Chiral giant atom coupled at the points
x1;2 to a 1D bidirectional waveguide. The couplings are
generally complex with phases φ1;2, cf. Eq. (2). When
φc ¼ π=2 [φc ¼ 0], as in (b2) [(b1)], the system is equivalent
to a small atom (local coupling) in a [semi-]infinite wave-
guide and the dynamics is [non-]Markovian. (c) Dispersion
law of the waveguide (solid blue), which in weak coupling
(gray stripe) can be linearized (dashed blue). The atomic
frequency ωa is resonant with the middle of the band,
corresponding to the momentum ka ¼ π=2. In yellow we
show an instance of a chiral (indeed, jgka j > jg−ka j) atom-
waveguide coupling with x2 − x1 ¼ 3 and φc ¼ π=6.
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corresponding to the atomic transition frequency ωa
(ka ¼ π=2 in our case), v ¼ 2J sinðkaÞ is the speed of
light in the waveguide, and Γ ¼ 4g2=v.
For φc ¼ 0, Eq. (3) is well known [14], and indeed

shows the analogy between a nonchiral giant atom and a
small atom in front of a mirror, cf. Figs. 1(a)–1(b1). The
only difference with Ref. [14] is the minus sign in front of
the second term in the right-hand side of Eq. (3). Such π
phase difference is due to the fact that for an atom in front
of a mirror the optical length is proportional to twice the
distance between the atom and the mirror.
Interestingly, we observe that the atomic decay is exactly

exponential at φc ¼ π=2, regardless of the time delay td,
matching the behavior of a small atom coupled to a
waveguide. By contrast, the non-Markovianity of a
chiral giant atom is prominent when φWG ¼ mπ and
φc ¼ ðmþ 1Þπ with integer m ≥ 0. At these values, part
of the emitted light is trapped between the coupling points
forming a bound state in the continuum (BIC) [28,29].
In Fig. 2, we show the dynamics of an initially excited
chiral giant atom, which indeed decays exponentially,
regardless of the distance between the coupling points,
for φc ¼ π=2.
This behavior can be captured as well through the atomic

master equation [30] for small distances between the
coupling points. In this case the Markov approximation,
which makes the evolution of the density matrix time local,
is still valid. Notwithstanding, the interaction Hamiltonian
still keeps track of the spatial nonlocality of the atom-
light interaction. The atomic master equation reads
ρ̇ ¼ −i½Ĥa; ρ� þ γðσ̂ρσ̂† − fσ̂†σ̂; ρg=2Þ, where [21]

γ ¼ Γ½1þ cosðφcÞ cosðkadÞ�: ð4Þ

This matches the analytical result, predicting an exponen-
tial decay with rate Γ for φc ¼ π=2. The same rate is
obtained for kad ¼ π=2, which, for our discretized wave-
guide, corresponds to odd distances d. Indeed, Fig. 2 shows
that for odd d’s the atomic deexcitation slightly deviates
from the exponential decay one would get from the
Lindblad master equation for any complex phase φc. We
notice though that this discrepancy increases with d as the
Markov approximation breaks down.
Mechanism—First, the exponential atomic decay at

φc ¼ π=2 can be explained as an interference effect,
Fig. 3(a). The key observation is that the phases φ1;2

and φWG have to be considered with and without their
signs, respectively. Indeed, φWG is always positive regard-
less of the interference path, while φc is positive (negative)
when going from the atom (field) to the field (atom).
At the left and right coupling points, ðx1; x2Þ, we can

write the emitted field amplitude at time t as c1;2ðtÞ [21].
We can further divide these terms into backward
(to the left) and forward (right) emitted field amplitude

c1ðtÞ ¼ c1;bðtÞ þ c1;fðtÞ, analogously for c2ðtÞ. The back-
ward emitted field at coupling point x1 has (i) a con-
tribution coming directly from the atomic exponential
decay, and (ii) a contribution coming from the backward
emitted field at coupling point x2. Thus, we can further
divide c1;bðtÞ into its exponential (exp) and delay (del)
contributions as c1;bðtÞ ¼ cdel1;bðtÞ þ cexp1;b ðtÞ and c2;fðtÞ ¼
cexp2;f ðtÞ þ cdel2;f ðtÞ (the same goes for the forward emitted
field at coupling point x2). Note that cdel1;bðtÞ ¼ cdel2;f ðtÞ ¼ 0

for t < td.
The only way to increase the atomic amplitude ε is via

the field contribution coming from the delay, which is (we
drop the time dependence to lighten notation)

cdel1;be
−iφ1 þ cdel2;fe

−iφ2 : ð5Þ

(a)

(c)

(e) (f)

(d)

(b)

FIG. 2. Markovianity for any time delay. Dynamics of the
atomic excitation, jεðtÞj2, of an initially excited chiral giant
atom for various distances d between the coupling points,
corresponding to various optical lengths φWG ¼ kad and phase
differences φc between the couplings to the waveguide.
Specifically, d ¼ 1, 2, 3, 4, 5, 6 in (a)–(f), respectively. In
all panels (a)–(f) φc ¼ 0; π=2; π correspond to blue, red, and
dashed yellow, respectively. The black dotted lines represent
the exponential decay e−Γt, while the other curves are obtained
numerically. Regardless of the time delay td ¼ d=v, vertical
dashed gray line, increasing from (a) to (f), at φc ¼ π=2 the
decay is exactly exponential. When the optical length is an
integer multiple of π, the atom never fully decays and
correspondingly a BIC occur. On top of the BICs occurring
at odd multiples of π for a nonchiral giant atom, (b) and (f), as
in Ref. [14], complex couplings allow the appearance of BICs
at even multiples of π as well [21]. Other parameter values:
ka ¼ π=2, g ¼ 0.2J, v ¼ 2J, N ¼ 90 (number of resonators),
the first (second) coupling point is at N=2 (N=2þ d).
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On the other hand, the atomic population contribution to
these field components is

cdel1;b ¼ eiφ2eiφWGε; cdel2;f ¼ eiφ1eiφWGε: ð6Þ

By plugging Eqs. (6) into Eq. (5), the delay contribution to
the atomic amplitude turns out to be proportional to
cosðφcÞ. Therefore, for φc ¼ π=2 there is no delay con-
tribution, and the atomic excitation decays exactly expo-
nentially irrespectively of any distance between coupling
points.
Second, in the framework of collision models [26], the

time evolution of the atom and the waveguide is described
as a sequence of discrete interactions (collisions) involving
the system (the atom) and discretized field modes (the
ancillae or time bin modes). In the case of a giant atom, the
interaction involves two separated ancillae, see Fig. 3(b).
A non-Markovian behavior typically arises due to the
double interaction between the system and the same ancilla
after a finite time. For a two-legged giant atom, the
coupling Hamiltonian (2) in interaction picture with respect
to the waveguide and the atom reads

ĤintðtÞ ¼ gσ̂†
�
e−ikax1 ât−τ1 þ eikax1 â0tþτ1

þ eiφc
�
e−ikax2 ât−τ2 þ eikax2 â0tþτ2

��þH:c: ð7Þ

Without loss of generality we have set φ1 ¼ 0 and
thus φ2 ¼ φc. In Eq. (7), ât−τ1;2ðâ0tþτ1;2Þ are the right-
(left-) going time bin operators corresponding to coupling
points x1;2 [18], and τ1;2 ¼ x1;2=v are the time-domain
coordinates corresponding to the coupling points’

positions. The left-going operators have a prime to stress
the distinction with the right-going ones. For an
infinitesimal evolution time Δt, the related propagator is

approximated as Ûn≃1− iðĤð0Þ
n þĤð1Þ

n ÞΔt−ðĤð0Þ
n Þ2Δt2=2,

where Ĥð0Þ
n ¼ ð1=ΔtÞ R tn

tn−1 dsĤintðsÞ and Ĥð1Þ
n ¼

ði=2ΔtÞ R tn
tn−1 ds

R
s
tn−1

ds0½Ĥintðs0Þ; ĤintðsÞ� are the 0th and
the 1st order terms of the Magnus expansion of the
generator [31]. The operators of both the emitter and the
waveguide modes are present only in the 0th-order term,

i.e., only Ĥð0Þ
n describes the interaction while Ĥð1Þ

n is a
Lamb-shift term. We thus write the former as

Ĥð0Þ
n ¼ gσ̂†

�
ân þ eiφce−iφWG ân−l

þ â0n þ eiφceiφWG â0nþl

�þ H:c:; ð8Þ

where we introduced the right-going time-bin operators
ân ¼ ð1= ffiffiffiffiffiffi

Δt
p Þ R tn

tn−1 dtât (the same holding for the left-
going ones â0n). Without loss of generality, we set
x1 ¼ 0, x2 ¼ d and lΔt ¼ τ2 (which is nothing but the
time delay td). The relation (8) captures all the relevant
physics of the atom-waveguide crosstalk in all regimes
and makes clear the (general) non-Markovian nature of
the dynamics.
Consider now a separate (Markovian) collision model

of an emitter coupled to a bidirectional waveguide, whose
nth collision is described by the Hamiltonian

ĥð0Þn ¼
ffiffiffi
2

p
gσ̂†ðÂn þ Â0

nÞ þ H:c:; ð9Þ

(a) (b)

FIG. 3. Mechanism of Markovianity for any time delay. (a) Interference picture. At each coupling point (x1, x2) the emitted field can be
divided into forward and backward components (right- and left-pointing blue and red arrows, respectively) c1;fðtÞ and c1;bðtÞ (same for
x2). For t ≥ td ¼ d=v, d ¼ x2 − x1, the forward [backward] component at the coupling point x2 [x1] acquires a delay contribution cdel2;f ðtÞ
[cdel1;bðtÞ] (light blue arrows), as the atomic excitation (small fuchsia circle) is transferred by hopping to the x1 [x2] coupling point and
traveling along the waveguide for a distance d. A non-Markovian behavior takes place only if the atom gets reexcited. The amplitude for
this process to occur is the sum of the two possible ways for the reexcitation to happen, as illustrated at the bottom part. Considering the
phases acquired along these two paths, the final amplitude is proportional to cosðφcÞ. (b) Collision model picture. Left- and right-going
field modes (top and bottom, respectively) are mapped into trains of time-bin ancillae moving in opposite directions. At each time step
the system interacts with two separated ancillae from each bath and the chains are shifted by one position. After the first collision, each
ancilla will interact again with the system in l steps. When the complex phase φc ¼ π=2 (and odd multiples) this picture is unitarily
equivalent to a Markovian collision model where the system interacts locally with the two left- and right-going time bins of a
bidirectional waveguide.
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where Ân and Â0
n are the right- and left-going time-

bin operators, respectively. Setting Ân ¼ ðân þ
eiðφc−φWGÞân−lÞ=

ffiffiffi
2

p
and Â0

n ¼ ðâ0n þ eiðφcþφWGÞâ0nþlÞ=
ffiffiffi
2

p
,

these transformations define a unitary transformation of the
field time bins if and only if φc ¼ π=2 [21,32].
Therefore, for φc ¼ π=2, there exists an exact mapping

between Eq. (8) (generally non-Markovian) and Eq. (9)
(Markovian). Under this condition, the transformation does
not alter the reduced dynamics of the system. Thus, the
collision model describing a chiral giant atom with an
arbitrary delay line between its legs becomes equivalent
to a collision model where the atom interacts with the
field at a single point with a rescaled coupling strength.
Significantly, this implies that the reduced dynamics of
the system is exactly Markovian, even in the presence of
any time delay.
Conclusion—An artificial atom coupled at multiple

points to a waveguide is a paradigmatic setup to observe
memory effects due to self-interference. We have found that
this paradigm can break down when the atom-light cou-
plings are allowed to be complex. By properly adjusting the
coupling phases, the artificial atom has an exact Markovian
behavior, regardless of any inherent time delay involved
in the dynamics. This unexpected effect enriches the
already exotic physics of giant atoms, opening new
theoretical and experimental avenues. Despite that most
efforts are devoted to the engineering of decoherence-free
Hamiltonians [11,33], our results show how unexpected
phenomena can occur in the opposite regime, that is far
from protecting the atom from decoherence. Also, the
effect we find is relevant from the theoretical standpoint
on its own. Indeed, many works righteously point out
that time delays need to be neglected to derive a master
equation for giant atoms in a waveguide [8,10,17,18]. Our
result shows that, at least for a single giant atom, there is
no need to make such approximation. We note that the
effect we described could be tested, in principle, by
coupling a transmon qubit either to a microwave photonic
waveguide [8,20], or to an array of superconducting LC
circuits [24,25]. Finally, the connection we find between
chirality and Markovianity could be generalized to more
structured photonic environments [16,34,35], which is a
promising direction for future work.
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