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Homo- and heterodyne detection are fundamental techniques for measuring propagating electromagnetic
fields. However, applying these techniques to stationary fields confined in cavities poses a challenge. As a
way to overcome this challenge, we propose to use repeated indirect measurements of a two-level system
interacting with the cavity. We demonstrate numerically that the proposed measurement scheme faithfully
reproduces measurement statistics of homo- or heterodyne detection. The scheme can be implemented in
various physical architectures, including circuit quantum electrodynamics. Our results pave the way for
implementation of quantum algorithms requiring linear detection of stationary modes, including quantum
verification protocols.
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Introduction—Continuous monitoring of quantum states
of light has a long history in quantum optics. Direct photon
detection [1,2] and homodyne detection [3,4] were used to
reveal nonclassical properties of the electromagnetic field
already in the 1980s. These methods, along with hetero-
dyne detection, are basic techniques for detecting optical
radiation [5,6]. Since the 2000s, with the advent of circuit
quantum electrodynamics [7] as a platform for quantum
information processing, there has been an increased interest
in detecting microwave radiation at the quantum level.
While photon number resolving detection of propagating
microwave photons is challenging due to their low energy
[8], homodyne and heterodyne detection of propagating
fields can be performed thanks to the availability of low-
noise linear amplifiers [9]. These types of measurements
are of interest since they suffice to implement any multi-
mode Gaussian operation in continuous-variable measure-
ment-based quantum computation [10,11], boson sampling
[12,13] as well as efficient verification of it [14], and
reliable verification of an untrusted state preparation
[15,16]. Unfortunately, these types of measurements are
not straightforward to perform on confined cavity fields
which are important for quantum computing with bosonic
modes [17–19].
Information about a cavity field can be obtained by

measuring leakage out of the cavity, but since photon loss is

an obstacle for bosonic quantum information processing,
cavities with a low loss rate are generally desired, which
makes monitoring the leaked output inefficient. One way to
overcome this problem is to swap the stationary mode with
a propagating mode [20], which requires added hardware
and tunable couplers which are difficult to engineer. An
alternative is to indirectly probe the cavity field. This type
of indirect measurement was first performed to measure the
photon number inside a cavity by letting Rydberg atoms
cross it and measuring the atoms afterward [21]. Similar
ideas have subsequently been used in superconducting
circuits, where a qubit has not only been used as a probe for
measurement of the photon number [22], but also the cavity
Wigner function [23–25]. However, to date, highly efficient
homo- or heterodyne detection measurements of cavity
modes are lacking.
In this Letter, we propose using a sequence of indirect

measurements, assisted by an ancillary qubit, to perform a
digital version of homodyne and heterodyne detection of a
stationary bosonic mode. For this reason, we refer to our
measurement protocol as qubitdyne detection. We demon-
strate by numerical calculations that the qubitdyne protocol
reproduces measurement statistics of homodyne and
heterodyne detection. The simple interaction Hamiltonian
needed to perform qubitdyne measurements can be imple-
mented in a variety of systems: trapped ions and atoms
[26,27], nanomechanical oscillators [28], NV centers [29],
and superconducting circuits [7].
Repeated indirect measurements setup—Our qubitdyne

setup can be described as a realization of a so-called
repeated quantum interactions model [30,31] or collision
model [32–34]. This type of model reproduces open
quantum system dynamics [30–35], and have been used
for investigating systems with complex environments [36–
38]. In the general model, a quantum system is in contact
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with an environment represented as a chain of independent
smaller systems called probes. The system time evolution is
obtained by consecutive interactions with each probe
during a short time interval Δt, and after each interaction
a measurement is performed on the corresponding probe
[39,40]. In our case, the primary system is a long-lived
cavity. If the interaction time is sufficiently short and the
coupling weak, the probability of transferring more than
one photon from the cavity to a probe is negligible,
meaning that each probe can be represented as a two-level
system, i.e., a qubit [41]. Our setup operates in this regime,
illustrated in Fig. 1(a). To simplify the realization of the
model, instead of a chain of qubits, we consider a single
qubit that is reset to its ground state after each measure-
ment. The quantum circuit realizing our scheme is drawn in
Fig. 1(b). The cavity and qubit modes are represented by
creation and annihilation operators a†, a and σþ, σ−,
respectively. With a Jaynes-Cummings coupling between
the systems, the unitary evolution for an interaction of time
Δt is

U ¼ exp
�
−iϕintðaσþ þ a†σ−Þ

�
; ð1Þ

where we define an effective interaction strength ϕint ¼ffiffiffiffiffiffiffiffi
γΔt

p
where

ffiffiffiffiffiffiffiffiffiffi
γ=Δt

p
is the coupling strength between the

qubit and cavity [42,43]. Since the qubit is always in the
ground state before interaction, photons are transferred out
of the cavity, corresponding to an effective loss rate
γ ¼ ϕ2

int=Δt. The parameter γ is the loss rate for the open
systems model in the continuous limit, while it corresponds
to a measurement rate in our protocol, representing decay

into the measurement apparatus instead of an uncontrolled
environment. Each interaction via the unitary (1) can also be
regarded as a partial SWAP for small ϕint, since the operation
corresponds to an iSWAP for ϕint ¼ ϕSWAP ¼ π=2.
During the interaction-measurement sequence, the cavity

state will evolve stochastically as a quantum trajectory
conditioned on the qubit measurement result. Measuring in
the σx or σy basis, or alternating between these, gives rise to
diffusive trajectories of the state corresponding to homo-
dyne or heterodyne detection, respectively [37,44], while
measuring in the z basis gives rise to quantum jumps
corresponding to photodetection. We utilize the model to
show that the measurement record, by choice of qubit
observable, provides the same statistics as quadrature
measurements of the cavity.
Qubitdyne: Digital homo- and heterodyne detection—

An ideal homodyne detector measures the generalized
quadrature

xθ ¼
1ffiffiffi
2

p ða†eiθ þ ae−iθÞ; ð2Þ

which reduces to the ordinary x and p quadratures for θ ¼
0 and θ ¼ π=2, respectively. Analogously to a regular
homodyne measurement where the quadrature is deter-
mined by the phase reference of a local oscillator, qubit-
dyne chooses a quadrature by selecting a measurement axis
in the xy plane of the qubit Bloch sphere, which is
controlled by the phase of the drive pulse that rotates
the qubit for measurement in the computational basis. An
example of the qubit-cavity correspondence is the direct
relation between their expectation values [45]

hσ−i ¼ −i
ffiffiffiffiffiffiffiffi
γΔt

p
hai: ð3Þ

We also show that the stochastic difference equation for the
qubitdyne signal takes the same form as the stochastic
differential equation for the homodyne current (see Sec. II
in [45]), establishing a correspondence at the level of
individual quantum trajectories. Below we show numeri-
cally that the qubitdyne protocol obtains measurement
results that are statistically equivalent to homodyne detec-
tion. To determine the full probability distribution of
measurement outcomes, we produce a large number of
trajectories. If Xn ¼ �1 is the random variable correspond-
ing to the qubit measurement outcome at step n, the result
of one trajectory with Nbit qubit measurements is given by
the random variable

Jhom ¼
XNbit

n

fðtnÞXn; ð4Þ

where the digital measurement result is weighted by the
function

(a)

(b)

FIG. 1. The system realizing digital homo- and heterodyne
detection of a stationary mode. (a) Interaction and subsequent
measurement of independent qubits interacting with a cavity, with
measurement outcome Xn ¼ �1 for the nth qubit. (b) Circuit
diagram representation of the procedure. The total system evolves
with a unitary operator UðΔtÞ during a time interval Δt,
corresponding to a partial SWAP. A projective measurement is
performed on the qubit, after which it is reset to its ground state.
The process is repeated and a sequence of measurement outcomes
fX1; X2;…; XNbit

g is obtained.
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fðtnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
γΔt=2

p
expð−γtn=2Þ; ð5Þ

at time step tn ¼ nΔt. As in ordinary homodyne measure-
ment, the function (5) corresponds to the mode shape used
for temporal mode matching of a field leaking into a
waveguide with rate γ [69,70].
The probability distribution for homodyne detection is

the marginal distribution of the Wigner function along the
measured quadrature [5], and we demonstrate that the
values Jhom of Eq. (4) are sampled from this distribution by
simulating Ntrajs realizations of the stochastic process. As
an example, we show simulated measurement statistics for
three different states, Fock j2i, cat ðjαi þ j − αiÞ= ffiffiffi

2
p

, and
coherent jαi states with α ¼ 2, whose Wigner functions are
displayed in Figs. 2(a)–2(c). Normalized histograms with
values calculated as Eq. (4) from Ntrajs ¼ 1000 simulated
measurement rounds with Nbit ¼ 200 qubit measurements
each are shown in Figs. 2(d)–2(f). As a quantitative
measure of how well our digitized homodyne measurement
corresponds to an ideal measurement, we use the
Kolmogorov-Smirnov (KS) statistic [71,72]. The KS sta-
tistic measures the largest vertical distance between the
empirical and reference cumulative distribution functions
FmeasðxÞ and PrefðxÞ:

KS ¼ max
x

jFmeasðxÞ − PrefðxÞj: ð6Þ

The empirically sampled distributions and the ideal dis-
tributions calculated from theWigner marginals, along with
the KS statistics, are displayed in Figs. 2(g)–2(h). We also
use the fidelity of a state reconstruction as a proxy for the
statistical accuracy of the data. Using the reconstruction
method from Ref. [73], a fidelity of 0.99 is obtained for all
three states with simulated measurements of 10 quadrature
angles.
There are two key criteria that need to be met to produce

accurate measurement statistics: (i) the qubit excitation
probability must be small, and (ii) the cavity must be almost
empty by the final measurement. The probability to excite
the qubit during an interaction is [45]

pe ¼ γΔtha†ai ¼ ϕ2
intha†ai; ð7Þ

depending not only on the interaction strength but also on
the average cavity photon number ha†ai. For any given
cavity state, the effective interaction strength must be
chosen such that the condition

pe ≪ 1; ð8Þ

is fulfilled. Additionally, the state must be sufficiently
extracted from the cavity to obtain complete information on
the initial mode. This requirement means that for a given
interaction strength, a minimum number of qubit measure-
ments Nbit are needed such that Nbitϕ

2
int ≫ 1. Using the

same cat state as before, again with interaction ϕint ¼
0.1ϕSWAP andNtrajs ¼ 1000, Fig. 3 shows the infidelity, KS
statistic, and final cavity population for different values of
Nbit. It can be seen that accurate statistics are only obtained
when most of the state has been extracted at the end of a
measurement round. In this example, a fidelity of 0.99 is
first obtained when the cavity field has reached around 94%
vacuum.
Next, we present heterodyne detection, which measures

two orthogonal quadratures simultaneously at the cost of
additional measurement noise due to Heisenberg’s uncer-
tainty principle. Heterodyne measurement statistics is
obtained by interleaving σy and σx measurements. The
result of one measurement round with a total of Nbit qubit
measurements is given by

Jhet ¼
XNbit−1

n¼1

2½fðtnÞYn þ ifðtnþ1ÞXnþ1�; ð9Þ

with the weight function (5), Xn being the outcome
of σx measurements, and Yn of σy measurements. Two-
dimensional histograms of Ntrajs ¼ 10 000 measurement
rounds with Nbit ¼ 300 qubit measurements are shown in
the bottom row of Fig. 4 for the state j2i, cat
ðjαi þ j − αiÞ= ffiffiffi

2
p

, and coherent state jαi. These histo-
grams can be compared to the top row of Fig. 4 showing
the Q functions corresponding to ideal heterodyne

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2. Simulated qubitdyne measurements corresponding to a
homodyne record. Each column corresponds to a unique state.
Top row: Ideal Wigner functions. Middle row: Histograms from
1000 measurement rounds, compared to the ideal Wigner margin-
als (dashed lines). Bottom row: Simulated cumulative distribution
functions Fmeas (solid lines) and ideal distributions Pref (dashed
lines). The distance between the two distributions is quantified by
the Kolmogorov-Smirnov (KS) statistic. Simulations used inter-
action strength ϕint ¼ 0.1ϕSWAP and Nbit ¼ 200 qubit measure-
ments.
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measurements. Fidelity of state reconstructions with the
sampled data reach at least 0.99.
Effect of finite cavity lifetime—In the optimal scenario

without dissipation, qubitdyne measurements approach
ideal statistics in the continuous measurement limit, which
is attained by reducing ϕint and increasingNbit. However, in
a realistic setting, the cavity dissipation rate κ sets a limit on
how many measurements can be made before the cavity
state has leaked into the environment. Hence, there will be
an optimal interaction strength, depending on the cavity
decay rate and initial state.
We determine that the qubitdyne scheme is expected to

workwith high fidelity formultiphoton stateswith an average
of up to six photons in a cavitywith a ratio 1∶500 between the
duration T of one measurement step and the cavity lifetime
T1. This ratio is accessible, for instance, in superconducting
circuits, assuming a lifetime T1 ¼ 1=κ ¼ 500 μs for a 3D

microwave cavity [74] and a total measurement time T ¼
1 μs to complete a single measurement in the sequence,
encompassing the duration of a Δt ¼ 300 ns qubit-cavity
interaction [75], qubitmeasurement [76], andqubit reset [77].
The interplay between cavity decay and measurement

strength is visualized in Fig. 5. Figures 5(a) and 5(b) show
the infidelity and KS statistic for coherent states with
different photon numbers as a function of interaction
strength. For each ϕint, the number of measurements was
set such that the cavity was 95% vacuum at the end of each
measurement round. Histograms of the simulated meas-
urement statistics at three different interaction strengths for
n ¼ 6 photons can be seen in Figs. 5(c)–5(d), illustrating
three different regimes. First, in panel (c), the interaction is
very weak and the field is mostly decaying into the
environment, leading to the distribution being mixed with
vacuum. In panel (d) an optimal interaction strength is
reached. For a stronger interaction in panel (e), the

FIG. 4. Qubitdyne measurements corresponding to heterodyne
detection. Top row: Ideal discretized Q functions for three
different states. Bottom: Heterodyne histograms obtained from
alternating σx and σy measurements, using an interaction strength
ϕint ¼ 0.1ϕSWAP andNbit ¼ 300 qubit measurements each round.
Tomographic fidelity F > 0.99 for all three states.

(a)

(c)

(f) (g) (h)

(d) (e)

(b)

FIG. 5. Homodyne measurement statistics with external cavity
dissipation κ ¼ 2 kHz for coherent states with average photon
numbers 2,4, and 6. Interaction time Δt ¼ 300 ns and meas-
urement time T ¼ 1 μs. (a) Tomographic infidelity as a function
of interaction strength ϕint. (b) KS statistic as a function of ϕint.
The markers on the n ¼ 6 line indicate interaction strengths for
which histograms are visualized in Figs. (c)–(e) Simulated
homodyne histograms and corresponding ideal distributions
(dashed lines). (c) This interaction strength is too weak and
the histogram is shifted towards vacuum. (d) The histogram
matches the expected distribution, this is the optimal interaction
strength. The corresponding efficiency at this point is η ¼ 0.925.
(e) The interaction is too strong, leading to a distorted
histogram. (f)–(h) Infidelities from (a) (solid lines) and noise-
compensated infidelities (dashed lines).

(a) (b) (c)

FIG. 3. Measures of statistical accuracy and the final cavity
population as a function of the number of qubitmeasurementsNbit,
for a cat state of amplitude α ¼ 2. (a) Infidelity between the ideal
state and the state reconstruction from sampled data. The shaded
region indicates the standard deviation of 10 different tomography
rounds. (b) Kolmogorov-Smirnov statistic of the sampled data.
(c) Cavity population at the end of a measurement round.
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distribution is distorted because condition (8) is violated.
This condition is necessary for the protocol to be valid, but
the effect of a finite cavity lifetime as shown in Fig. 5(c)
simply corresponds to a nonideal collection efficiency.
With a measurement rate γ and radiative decay rate κ, the
photon collection efficiency is

η ¼ γ

γ þ T
Δt κ

: ð10Þ

The ratio T=Δt appears since intrinsic loss with rate κ
occurs throughout the entire protocol, while the measure-
ment rate γ is only activated during the interaction timesΔt.
Generally, a reduced efficiency η < 1 degrades the mea-
sured distributions. However, for the purpose of tomo-
graphic measurements, it can be compensated for [78] to
obtain a reliable state reconstruction. The effect of this
compensation is shown in Figs. 5(f)–5(h), where infidelity
is reduced in the regime of small ϕint.
For a coherent state with average photon number n ¼ 6,

we obtain a maximal collection efficiency η ¼ 0.925.
Assuming an efficiency ηq ¼ 0.98 from qubit readout
error, the total detection efficiency is ηdet ¼ ηqη ¼ 0.91.
This is more than twice the detection efficiency when
releasing a multiphoton state of similar size [20].
Enhanced readout speed—As shown in Fig. 3, most

photons must be removed from the cavity via the qubit to
obtain correct information about the state. The constant
coupling ϕint gives rise to an exponential cavity decay, but
the number of measurements needed to empty the cavity is
larger for states with higher photon numbers. As seen in
Fig. 5, these longer measurement rounds lead to reduced
measurement fidelity in the presence of loss. A way to
alleviate this problem is to reduce the number of needed
measurement by successively increasing the qubit-cavity
coupling rate, which allows the cavity to be emptied faster
while still keeping the qubit excitation probability low. To
obtain accurate measurement statistics for a time-dependent
coupling ϕintðtÞ, we find that the appropriate weight
function fðtÞ has the shape corresponding to the temporal
envelope of a single-photon wave packet emitted via such
modulation [79–81]. The expression can be obtained by
solving the quantum Langevin equation along with the
input-output relation, and the resulting expression is
given by

fðtÞ ¼ ϕintðtÞffiffiffi
2

p exp

�
−

1

2Δt

Z
t

0

ϕintðtÞ2dt0
�
: ð11Þ

As we show in the Supplemental Material [45], the use of a
time-dependent coupling strength can reduce the number of
measurements by a factor 2, while preserving the meas-
urement fidelity. The analytical relation Eq. (11) enables
accurate statistics to be obtained for any ϕintðtÞ, opening the

possibility for future optimization of the time-dependent
coupling.
Discussion—The measurement scheme presented in this

Letter opens the door for quantum information processing
protocols that require homo- or heterodyne detection of
confined cavity modes. The scheme only requires a beam
splitter or SWAP interaction between a two-level system
and the bosonic mode of interest, and the ability to
repeatedly measure the qubit. This simplicity makes it
applicable on a large variety of platforms.
We expect the qubitdyne scheme to perform better than

the release of a microwave mode into a transmission line,
because the latter measurement is limited by the finite
efficiency of the amplification chain used to measure the
field quadratures [20], while highly accurate qubit readout
is possible even without a quantum-limited amplifier [82].
An alternative version of qubitdyne can be implemented

by a phase estimation protocol [83] of the displacement
operator, which amounts to a modular quadrature meas-
urement [84] (see Supplemental Material [45]). However,
we expect the phase estimation approach to be more
sensitive to loss channels than regular qubitdyne because
the amount of energy present in the cavity increases with
each phase-estimation round, while the cavity is emptied in
the presented qubitdyne protocol.
Among possible applications of qubitdyne, we envisage

efficient boson sampling verification [14] and quantum
state certification [85].
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