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We demonstrate that gravitational particle production of a massive, Abelian, vector (Proca) field during
inflation in the presence of nonminimal coupling to gravity may suffer from an instability which leads to
runaway production of high-momentum modes. This is untenable unless there is some mechanism to
regulate the runaway. We discuss the parameter space of the particle mass and nonminimal couplings where
such a runaway occurs and possible ways to tame the runaway. We find that there is no obvious way to
resolve the runaway in a UV completion or with kinetic mixing to the standard model.
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Introduction—Dark matter is known to exist and yet the
identity of the dark matter particle(s) remains elusive. A
natural possibility, in light of the tremendously successful
theory of electroweak symmetry breaking, is that dark
matter includes a massive vector field, analogous to the W
and Z bosons of the standard model (SM),which interacts
weakly (or not at all) with SM particles. The case of a
massive U(1) gauge boson is colloquially referred to as a
“dark photon.”
The theory of a massive U(1) gauge boson (“massive

photon”) dates back to work of Proca [1]. In a modern
context, gauge boson masses are understood to arise
from either the Higgs mechanism or the Stueckelberg
mechanism. In string theory, where U(1) gauge bosons are
ubiquitous, both the Higgs and Stueckelberg mechanisms
are realized [2,3].
The Proca action for a dark photon is necessarily but

the first few terms in a low-energy effective field theory.
One expects higher-derivative terms like ðFμνFμνÞ2 and
ðFμνF̃μνÞ2 that appear in QED at energy scales below the
electron mass (the famous Euler-Heisenberg Lagrangian [4]),
but also terms containingAμ, such as a quartic self-interaction
ðAμÞ4, and derivative interactions such as Aμ□

2Aμ. The
Proca theory has a natural portal to the standard model,

namely kinetic mixing with the standard model photon

FðdarkÞ
μν FμνðvisÞ (see, e.g., [5–7]).
The dark photon effective field theory can also contain

nonminimal couplings to gravity, such as RgμνAμAν and
RμνAμAν (see, e.g., [8–17]). These are dimension-4 operators
consistent with the symmetries of the Proca theory, and thus
should be included in the effective field theory. Moreover,
even if neglected at tree level, analogous to the ξϕ2R
coupling of a scalar required for self-consistent quantization
of a self-interacting field in curved space [18–20], the
vector nonminimal couplings are expected as soon as self-
interactions of Aμ are included, such as quartic terms ðAμÞ4,
or from loop corrections to the interactionvertexwith gravity,
namely the mass term m2

Ag
μνAμAν of Proca.

In this Letter, we demonstrate that the nonminimal
couplings, despite being perfectly consistent with sym-
metries of the Proca effective field theory, when considered
in a cosmological context can induce a runaway production
of arbitrarily high momentum particles, thereby causing a
breakdown of the theory. We discuss the implication and
interpretations of this in the context of different UV
completions of the Proca theory.
The dark photon in curved spacetime—On a generic

spacetime background gμν, the Proca action can be written
as [14]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
FμνFμν þ

1

2
m2gμνAμAν

−
1

2
ξ1RgμνAμAν −

1

2
ξ2RμνAμAν

�
; ð1Þ

where Aμ is the dark photon, R the Ricci scalar, Rμν the
Ricci tensor, and ξ1 and ξ2 dimensionless constants which
couple the Proca field to gravity. The dark photon field
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strength Fμν is defined as Fμν ¼ ∇μAν −∇νAμ. Notice that
the interaction terms are the only dimension-four operators
which can appear with the vector field coupled to curvature.
We would like to focus on cosmological production, so we
now specialize to the spatially flat Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric, gμν ¼ a2ðηÞdiagð1;−1;
−1;−1Þ, where aðηÞ is the scale factor as a function of
conformal time. In terms of the components Ai and A0, the
action becomes

S ¼
Z

d4x

�
1

2
að∂0Ai − ∂iA0Þ2 −

1

4
a−1ð∂iAj − ∂jAiÞ2

þ 1

2
a3m2

t A2
0 −

1

2
am2

xA2
i

�
; ð2Þ

with (time-dependent) effective masses, m2
t and m2

x as

m2
t ¼ m2 − ξ1R −

1

2
ξ2R − 3ξ2H2; ð3aÞ

m2
x ¼ m2 − ξ1R −

1

6
ξ2Rþ ξ2H2; ð3bÞ

where H is the Hubble parameter and R ¼ −6ðä=aþH2Þ.
From Eq. (2), we see that A0 is not a dynamical variable and
can thus be integrated out. The next steps are standard [14]:
decompose the action in terms of mode functions, integrate
out A0, and introduce an orthonormal set of transverse and
longitudinal mode functions. The action then separates into
two pieces. Here, we focus on the longitudinal component
of the spin-1 field, with action [14,21,22]

SL ¼
Z

dη
Z

d3k
ð2πÞ3

�
1

2

a2m2
t

k2 þ a2m2
t
j∂0AL

k j2 −
1

2
a2m2

xjAL
k j2

�
:

ð4Þ

To ensure that the kinetic term is canonically normalized,
we perform the field redefinition:

AL
k ðηÞ ¼ κkðηÞχkðηÞ with κ2kðηÞ ¼

k2 þ a2m2
t

a2m2
t

; ð5Þ

where we now suppress L superscripts on χ. Notice that
because m2

t is time dependent and not necessarily positive
definite, κ2k can potentially be negative, and a ghost can be
propagated. If we demand a healthy theory that does not
propagate ghosts, we must demand κ2ðηÞ > 0. Requiring
that this condition must be satisfied for arbitrarily large k
necessitates m2

t > 0.
The action for the longitudinal component is then

SL ¼
Z

dη
Z

d3k
ð2πÞ3

�
1

2
j∂ηχj2 −

1

2
ω2
kjχj2

�
; ð6Þ

where the longitudinal frequency is given by [17]

ω2
k ¼ k2

m2
x

m2
t
þ a2m2

x þ
3k2a4m2

t H2

ðk2 þ a2m2
t Þ2

þ k2a2R
6ðk2 þ a2m2

t Þ

þHak2m20
t

m2
t

ð−k2 þ 2a2m2
t Þ

ðk2 þ a2m2
t Þ2

−
k2m200

t

2m2
t ðk2 þ a2m2

t Þ

þ k2ðm20
t Þ2

4ðm2
t Þ2

ðk2 þ 4a2m2
t Þ

ðk2 þ a2m2
t Þ2

; ð7Þ

where prime denotes ∂η and the wave number k ¼ jkj. The
action for the transverse component is similar to Eq. (6) but
with ω2

k ¼ k2 þ a2m2
x. In each case the equation of motion

of the mode function χ is given by χ00k þ ω2
kχk ¼ 0.

In the high momentum (large-k) limit, the longitudinal
frequency, Eq. (7), is dominated by the first term,
ω2
k → k2m2

x=m2
t . The evolution of high-momentum modes

is therefore dictated by the evolution of the effective sound
speed m2

x=m2
t . Since we have established that m2

t > 0 for a
ghostless theory, it follows that if m2

x < 0, then ω2
k will be

negative, leading to an instability to particle production of
arbitrarily large k modes. This is similar but distinct from
the instability of spin-3=2 particles observed in [23,24].
In what follows, we refer to this phenomenon as runaway
production.
Representative cosmological model—For numerical

examples of runaway production we assume an inflationary
model with a quadratic potential. The salient features of this
model are common to a wide range of inflationary models,
namely, a quasi–de Sitter (qdS) phase followed by a matter-
dominated (MD) phase driven by the coherent oscillations
of the inflaton field. For an FLRW cosmology with fixed
equation of state w (i.e., ignoring any oscillations), we have
r≡ R=H2 ¼ −3þ 9w. In the qdS phase r ≃ −12 and in the
MD phase r oscillates between r ¼ −12 (when the inflaton
field is at the maximum of the potential and momentarily in
a de Sitter phase with w ¼ −1) and r ¼ 6 (when the
inflaton is at the minimum of the potential and momentarily
in a kination phase with w ¼ þ1). The average value of w
in the MD phase is zero.
Let us first examine the conditions for a ghostless theory,

m2
t ≥ 0, in the limit m=H → 0. (Dark photons of recent

phenomenological interest include ultralight, sub-eV [25],
andOð10Þ MeV [26–29], while H is as large as 1013 GeV,
making m ≪ H a well motivated assumption). In this case
the ghostless requirement is −rðξ1 þ 1

2
ξ2Þ − 3ξ2 ≥ 0.

Using −12 < r < 6, this leads to −ξ2 > ξ1 > −ξ2=4.
This can only be satisfied if ξ2 < 0. Now, consider the
requirement m2

x > 0 to avoid runaway particle production:
−rðξ1 þ 1

6
ξ2Þ − ξ2 > 0. Runaway will be avoided if

0 > ξ1 > − 1
4
ξ2. This is impossible to satisfy for ξ2 < 0.

Thus, in the limit m ≪ H, the requirements of ghostless
and no runaway are incommensurate unless ξ1 ¼ ξ2 ¼ 0.
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For finitem=H it is possible to find values of ðξ2; ξ1Þ that
are both ghostless and runaway safe. Clearly from Eq. (3) for
sufficiently largem the right hand side of the equationswill be
positive. This is illustrated in Fig. 1 for two choices ofm=He,
where He is the Hubble parameter at the end of inflation.
The choice m=He ¼ 0.1 approximates the m=H → 0 case
and there is just a small shaded region where the theory is
ghostless and UV safe. As m is increased, the safe region
grows, bounded by jξ1;2j ∼Oðm2=H2

eÞ.
Runaway particle production—We numerically solve for

the evolution of the mode functions χk and from this
compute the comoving number density of particles nk ¼
k3jβkj2=2π2 with jβkj2 ¼ ωkjχkj2=2þ j∂ηχkj2=2ωk − 1=2
(see Ref. [30]). In Fig. 2 we show the result for the
longitudinal components of a vector field of mass
m ¼ 0.01He, where He is the expansion rate at the end
of inflation, for two values of ðξ1; ξ2Þ: (0,0)-minimal
gravitational coupling, and a model with nonminimal
couplings, ð0.004;−0.006Þ. The nonminimal parameters
were chosen such that the model is ghostless (m2

t > 0)

but has a high-k runaway (m2
x < 0). Here, the physical

momentum of a mode is k=a, so k=ae is the physical
momentum of the mode at the end of inflation. Modes with
k=aeHe > 1 were inside the Hubble radius at the end of
inflation. The total number density of particles due to
gravitational particle production (GPP) is na3 ¼ R

nkdlogk
(see Ref. [30] for details).
From Fig. 2 one may appreciate a dramatic amplification

of the nonminimally coupled model (blue) at high k.
Compared to the minimal coupling model (red), the non-
minimal model has nk=a3eH3

e 40 times larger at k=aeHe ¼ 1

and 1015 times larger at k=aeHe ¼ 10. This exemplifies
runaway production.
Clearly, there is an issue if nk does not turn over for large

k: the Proca theory is itself an EFT, and production of
modes at or above the cutoff would necessarily cause a
breakdown of the EFT description. The simplest way out is
therefore to posit a UV cutoff Λ above which production is
tamed. To this end, it is useful to relate a physical
momentum Λ to a comoving wave number k: Λ ¼ k=a.
For the example illustrated for m=He ¼ 0.1 in Fig. 2, the
angular frequency ω2

k first becomes negative for high-k
modes around a=ae ∼ 1. Simply taking a=ae ¼ Oð1Þ,
strictly positive ω2

kðkÞ would require a physical cutoff
Λ≲He. This is clearly untenable; it would invalidate
the whole analysis of quantum fluctuations during inflation.
Either something within the Proca EFT must regularize

the high-k behavior, or else there must be a value of k
beyond which our calculation is invalid.
We will now discuss three possibilities: (1) the UV

completion of the Proca theory could cure the high-k
runaway; (2) kinetic mixing with the standard model
photon may resolve the instability; (3) the Proca theory

FIG. 1. In the ξ2-ξ1 plane, the interior of the blue contour has
m2

t > 0, hence ghostless, and the interior of the red contour has
m2

x > 0, hence the intersection of the two regions has no runaway
GPP. The shaded region is ghostless and GPP is well behaved for
large k. The upper panel is for m=He ¼ 0.1, while the lower
figure is for m=He ¼ 1. The inset in the top panel is a blowup of
the region surrounding ðξ2; ξ1Þ ¼ ð0; 0Þ showing the small region
without ghost or runaway.

FIG. 2. The spectral density nk=a3eH3
e as a function of wave

number k=aeHe for the longitudinal mode for two choices of
ðξ1; ξ2Þ, with m=He ¼ 0.01 in both cases. The choice (0,0) is
minimal coupling; the nonminimal choice ð0.004;−0.006Þ, while
ghostless, has m2

x < 0. The minimal choice results in nk well
behaved at high k, while the nonminimal choice leads to runaway
production at large k.
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becomes strongly coupled at some momentum scale, and
beyond this scale our results cannot be trusted.
Dark photon effective field theory—The UV physics is

encoded into the EFT by nonrenormalizable operators
including derivative terms like Aμ□

2Aμ=Λ2 which would
contribute to ω2

k a term like k4=Λ2. One might hope this
might shut off the instability while maintaining validity of
the EFT, namely that the conditions (1) that k=Λ > jmx=mtj
(to make ω2

k positive at high k) and (2) k=Λ ≪ 1 to
maintain perturbative control, can be satisfied simultane-
ously. However, there is no hierarchy between mx and mt:
mx=mt oscillates to Oð1Þ negative values in the instability
region. Concretely, for m ≪ H, one can consider three
regimes: ξ1 ≫ jξ2j, which gives mx=mt → 1, ξ1 ≪ jξ2j
which gives jmx=mtj → 1=

ffiffiffi
3

p
, or ξ1 ∼ jξ2j which gives

jmx=mtj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij5=3þ 8=ð6 − rÞjp ¼ Oð1Þ. Thus, it is not

possible for higher-derivative terms in the EFT to shut
off the instability at high k while maintaining perturbative
control in the EFT. It follows that any hope of resolving the
runaway lies in abandoning the EFT in favor of an explicit
UV completion.
UV completion—To make more progress we can turn to

an explicit UV completion. As a simple UV example we
consider the Abelian Higgs model, with Lagrangian

L ¼ −
1

4
FμνFμν þ jDμϕj2 þ μ2jϕj2 − λjϕj4; ð8Þ

where ϕ is a complex scalar, and Dμ is the gauge covariant
derivativeDμ ¼ ð∂μ − igAμÞwhere g is the gauge coupling.
We expand ϕ about the minimum at ϕ ¼ μ=

ffiffiffi
λ

p ≡ ffiffiffi
2

p
v as

ϕ ¼ ðvþ hÞeiθ= ffiffiffi
2

p
, where h is a real scalar and fix the

U(1) gauge symmetry to unitary gauge where θ ¼ 0 and the
photon is massive. The Lagrangian is then simplified to
L¼ 1

4
FμνFμνþ 1

2
ð∂μhÞ2þ 1

2
m2

AAμAμ½1þðh=vÞ�2þ 1
2
m2

hh
2þ

4vλh3þλh4, corresponding to a Higgs massmh ¼
ffiffiffiffiffiffiffi
λ=2

p
v,

a photon mass of mA ¼ gv=2, and cubic and quartic
interactions between h and Aμ given by [31]

LAAh ¼
m2

A

v
AμAμh; LAAhh ¼

m2
A

v2
AμAμh2: ð9Þ

Meanwhile, the gravitational couplings of the gauge field
generate interactions with gravitons which at cubic order in
the fields (after performing a series expansion of

ffiffiffiffiffiffi−gp
Rgμν

and
ffiffiffiffiffiffi−gp

Rμν) are given by

LAAg ¼
ffiffiffiffiffiffi−gp

Mpl
ðm2

A þ ξ1Rþ ξ2DαDαÞδgμνAμAν;

where
ffiffiffiffiffiffi−gp

, R, and D are defined with respect to the
background geometry, δgμν denotes a canonically normal-
ized transverse traceless fluctuation to the metric of mass

dimension 1 (gμν ¼ gð0Þμν þ δgμν=Mpl). There are additional

interactions at quartic order, e.g., from the expansion offfiffiffiffiffiffi−gp
R, of the form LAAgg ∼ ðm2

A þ ξ1D2ÞδgμνδgμνAσAσ=
M2

pl þ � � �.
Let us consider the possibility that the nonminimal

gravitational coupling constants ξ1 and ξ2 vanish at tree
level, and are generated as effective interactions via loops in
the Abelian Higgs model. With the interactions between h
and A given by Eq. (9), loops of ϕ particles renormalize the
minimal cubic interaction of Aμ with gravity, which by
dimensional analysis generates a nonminimal coupling
with ξ2 ∝ ðmA=mhÞ6. Similarly, the 1-loop correction to
the minimal quartic interaction generates ξ1 ∼ ðmA=mhÞ6.
Depending on the relative size of the Higgs and gauge
couplings, λ and g respectively, the effective couplings ξ1;2
can be made small, but are not necessarily so. Meanwhile,
the instability depends on the ratio mA=H, with H the
Hubble parameter, whereas the expected size of ξ1;2 is
independent of H. Thus, even the ostensibly small loop-
generated couplings can lead to a runaway production: UV
completion into the Abelian-Higgs model does not in itself
regulate the instability.
The loop-induced couplings present a similar situation to

that with nonminimally coupled scalars: while the coupling
may be set to zero at one energy scale, renormalization
group (RG) flow will generate nonzero value of the
coupling at all other energy scales. This justifies the
Wilsonian intuition that all terms allowed by symmetries
should be allowed in the low-energy effective field theory,
and absent any measurement to anchor the RG flow, the
coupling constants should be taken to be free parameters.
With this in mind, we can include the vector nonminimal

couplings directly in the Abelian-Higgs model, where
they manifest as nonminimal derivative couplings, L1 ¼
½ξ1=ðgvÞ2�RDμϕDμϕ� and L2 ¼ ½ξ2=ðgvÞ2�DμϕDνϕ

�Rμν.
This provides a gauge-invariant UV completion of Eq. (1).
Couplings of this form have been extensively studied for a
neutral scalar field such as [32]. The vector nonminimal
couplings now modify the kinetic action of the Higgs scalar
field. One may easily appreciate that ξ1;2 ≠ 0 can lead to
ghost and/or tachyonic instabilities, just as in the dark
photon model that emerges at low energies. Thus, again one
sees that the UV completion is not the cure.
Kinetic mixing with the standard model—Another pos-

sibility for curing the runway, within the dark photon EFT, is
dark-photon interaction with the standard model (SM),
namely the kinetic mixing Lint ¼ ϵFðdarkÞ

μν FμνðSMÞ. In the
case that the dark photon is massive (as we study here),
the kinetic terms can be diagonalized via the field redefini-
tions [7] ASM

μ → ASM0
μ ≡ ASM

μ − ϵAdark
μ and Adark

μ → Adark
μ .

The resulting actionhas canonical kinetic terms.This endows
SM fields with dark-photon charge, i.e., interactions of the
form Adark

μ f̄γμf. The nonminimal gravitational terms are
unaffected. Thus, in the diagonal basis, the only change
generated by the kinetic mixing is the addition of charged
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fields in the Proca theory. At tree level, the charged fermions
do not alter the kinetic sector of the dark photon, and thus
have no impact on the k2 culprit of the runaway production.
On the other hand, loops of charged fields can generate
higher-derivative terms in the Proca EFT, such as k4 terms,
but these fail to cure the runaway, as described above. Thus
kinetic mixing does not prevent or preclude the runaway
production.
Strong coupling—The Proca theory nonminally coupled

to gravity should become strongly coupled at some scale.
Lacking a first principles derivation of the strong-coupling
scalewe can still consider the implications of the existence of
such a scale. Similar but distinct from a breakdown of the
EFT, strong coupling would render the evolution of high-k
modes impervious to calculation. In practice, the conse-
quences for dark photon phenomenology remain unchanged
from the weakly coupled runaway, namely conventional
tools of dark matter phenomenology (such as perturbative
quantum field theory) no longer apply.
Conclusions—In this Letter we have pointed out the

possibility of runaway cosmological production of dark
photons with nonminimal couplings to gravity. We studied
this phenomenon in the context of inflation with a quadratic
potential and late reheating, however, we emphasize that
the discussion above is largely generic and independent of
both the inflation model and reheating. This is discussed in
further detail in [17], in which we show that the particle
production remains qualitatively similar in scenarios with
rapid-turn multifield inflation (see also Ref. [33]) and/or
early reheating. Also, in [17] we point out that even if
high-k runaway is stopped at some moderate value of
k=aeHe, values of ðξ1; ξ2Þ where m2

x < 0 have very much
enhanced GPP compared to the minimal model. For in-
stance, from Fig. 2 we see that for k=aeHe ¼ 10 GPP in the
nonminimal model is enhanced by about a factor of 1015

compared to the minimal model, even for small values of
ðξ1; ξ2Þ. If the runaway production can be tamed, while
leaving an overall enhanced production, this effect could
widen the range of parameters to result in dark photons as
dark matter. Finally, it will also be interesting to examine
whether the runaway production persists for non-Abelian
gauge fields, and for nonminimally coupled pseudovector
fields, as realized by the Kalb-Ramond theory of an antisym-
metric tensor field, see Ref. [34] for Kalb-Ramond GPP.
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