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We give an elementary proof of the following property of unitary, interacting four-dimensional N ¼ 2

superconformal field theories: At large central charge c, there exist at least
ffiffiffi
c

p
single-trace, scalar

superconformal primary operators with dimensions Δ≲ ffiffiffi
c

p
(suppressing multiplicative logarithmic

corrections). This follows from a stronger, more refined bound on the spectral density in terms of the
asymptotic growth rate of the central charge. The proof employs known results on the structure of Coulomb
branch operators. Interpreted holographically, this bounds the possible degree of scale separation in
semiclassical AdS5 half-maximal supergravity. In particular, the bulk must contain an infinite tower of
charged scalar states of energies parametrically below the large black hole threshold EBH ∼ c. We address
the extreme case of AdS5 pure supergravity, ruling it out as the asymptotic limit of certain sequences in
theory space, though the general question remains open.

DOI: 10.1103/PhysRevLett.133.061601

The problem—The question of AdS scale separation is
whether a consistent theory of quantum gravity can, in the
semiclassical limit, admit an AdS vacuum without para-
metrically large extra dimensions.
Recent years have seen significant efforts to scrutinize

and extend earlier proposals for scale-separated solutions of
string theory [1–3]. This uptick was spurred in part by the
AdS distance conjecture [4] and other swampland consid-
erations and the pressing cosmological implications of this
question vis-à-vis possible de Sitter uplift.
A direct bulk approach to the problem is inherently

limited: To tuck the extra dimensions away at a parametri-
cally small scale, one must grapple with the full machinery
of string or M theory, not just its ten- or 11-dimensional
supergravity limit. For this reason, it seems fair to say that
gravity constructions are unlikely to definitively answer
this question beyond a reasonable doubt, unless and until
nonperturbative string and M theory are well understood.
Boundary CFT approaches, however, offer hope for

unambiguous resolution. There is a growing appetite for
the conformal bootstrap to solve this problem, using
axiomatic constraints to rigorous ends. In particular, one
might realistically hope to exclude, or bound the degree of,
AdS scale separation holographically using the large-N
bootstrap (as opposed to explicitly constructing a candidate
CFT). Some older [5,6] and newer [7–11] works explore

the holographic dictionary for putative scale-separated
string backgrounds, but fundamental constraints are miss-
ing. A collage of constructions, claims, counterclaims, and
conjectures is well-reviewed in [12].
For better or worse, the conformal bootstrap is not magic:

The CFT avatar of excluding AdS scale separation is still a
hard problem. As emphasized in [13,14], this question
differs fundamentally from the canonical bootstrap endeavor
of maximizing the spectral gap to the first primary operator:
Large (i.e., AdS-sized) extra dimensions in gravity are
manifest as infinite towers of operators in CFT. Their
characteristic energyΔ and asymptotic density ρðΔÞ encode
the size and number of bulk dimensions, respectively,
quantities which can be read off from a positive sum rule
for CFT correlators of light operators [14].
Even supersymmetric versions of this problem, as articu-

lated in [15], remain open, providing compelling targets for
the superconformal bootstrap. It is not known whether
continuous R symmetry of a superconformal field theory
(SCFT) is always geometrized in AdS, despite familiar
examples under the lamppost. Does quantum gravity admit,
say, a maximally supersymmetric “pure AdS5” background
without a large S5? There are arguments both for [16] and
against [17] this possibility in the literature. The analogous
questions on the CFT side concern the existence of “exotic”
SCFTs without infinite towers of Bogomol’nyi-Prasad-
Sommerfield (BPS) operators, which are a boundary hall-
mark of a large compact manifold in the bulk.
This Letter takes a step forward on the supersymmetric

version of this problem, proving a universal result for 4D
N ¼ 2 SCFTs at large central charges. Our proof uses
nothing more than established facts about Coulomb branch
geometry. The main result is in (21) and (22), a constraint
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on the spectrum of Coulomb branch primaries. Extremizing
over theory space gives the absolute bound (22), valid for
all N ¼ 2 SCFTs (subject to widely-held assumptions
detailed below), as sketched in the abstract.
The result is modest, and its proof elementary; but its

consequences for gravity are significant. By AdS=CFT,
these theories are dual to asymptotically AdS5 vacua of
semiclassical gravity with (at least) half-maximal super-
symmetry. The result establishes the necessity of an infinite
(Planckian) number of U(1)-charged, scalar bulk states
which are parametrically below the large AdS5 black hole
thresholdEBH ∼ c. For a ≈ c, this is a quantitative bound on
the degree of scale separation in AdS5 Einstein supergravity.
The ingredients—We consider unitary, local N ¼ 2

SCFTs in four dimensions; this is a vast subject (see,
e.g., [18,19]), but we will keep our presentation to the
point. We are interested in the BPS spectra of these theories
at large central charge. An N ¼ 2 SCFT is partially
characterized by its Coulomb branch, of rank r∈N. The
Coulomb branch may be parametrized by the vacuum
expectation values of r superconformal primaries, the
generators of the chiral ring, which are the bottom
components of protected Erð0;0Þ-type superconformal mul-
tiplets in the notation of [20] (LB1½0; 0�ð0;rÞ multiplets in the
notation of [21]). These operators, call them fOig, have
vanishing SUð2ÞR charge and Uð1Þr charge equal to their
conformal dimensions, ri ¼ Δi. In all known examples, the
fOig are Lorentz scalars, which we have assumed here.
Let us state up front that we are making the oft-used

assumption that the Coulomb branch is freely generated,
i.e., that the generators satisfy no nontrivial relations [22].
This allows for an unambiguous assignment of dimensions
Δi to operators Oi. There is a whole story here, with
possible violations of this property if discrete gaugings are
allowed, leading to complex singularities of the Coulomb
branch geometry [23–26]. Having emphasized this, we
henceforth take the Coulomb branch to be freely generated
while keeping in mind the limitations of this assumption at
the most abstract level of N ¼ 2 SCFT.
We will need two ingredients for our proof.
(i) Central charge sum rule.—Recent work on the

intricacies of Coulomb branch geometry has established
the following central charge formulas inN ¼ 2SCFTs [27]:

2a ¼ −
r
12

þ SðrÞ
2

þ f ðother Coulomb branch dataÞ;

c ¼ r
6
þ f ðother Coulomb branch dataÞ; ð1Þ

where

SðrÞ ≔
Xr

i¼1

Δi: ð2Þ

Happily, we will not need the unspecified function of other
Coulomb branch data in order to prove the desired result at

large central charge. Instead, we take a simpler approach.
First, these results imply the following formula, previously
established in a more limited context by Shapere and
Tachikawa [28]:

2a − c ¼ SðrÞ
2

−
r
4
; where SðrÞ ≔

Xr
i¼1

Δi: ð3Þ

Noting the unitarity boundΔi ≥ 1, saturated by a free vector
multiplet, an interacting unitary N ¼ 2 SCFT obeys
SðrÞ > r and, hence, 2a − c > ðr=4Þ. Besides finding the
independent formulas (1), one achievement of thework since
[28] is that it establishes the Shapere-Tachikawa formula (3)
in fuller generality, without the assumptions of [28] (e.g., that
there is a Lagrangian point on the SCFT moduli space) [29].
We will use this formula in conjunction with the Hofman-
Maldacena bound [31] for local N ¼ 2 SCFTs,

1

2
≤
a
c
≤
5

4
: ð4Þ

The lower and upper bounds are realized by free hyper-
multiplets and free vector multiplets, respectively.
(ii) Coulomb branch operator dimensions.—Our second

ingredient is a fascinating feature of N ¼ 2 SCFT operator
spectra: At a given rank r, the Coulomb branch dimensions
fΔig are drawn from a finite, r-dependent set of rationals.
As proven in [32,33], this set admits a remarkably concise
characterization:

Δi ∈
�
n
m

���φðnÞ ≤ 2r; 0 < m ≤ n ðm; nÞ ¼ 1

�
; ð5Þ

where φðnÞ is Euler’s totient function. Most of the number-
theoretic structure of this result will not be used here. All
we need is the existence of Δmax, the largest possible
dimension at rank r:

Δmax ≔ maxfnjφðnÞ ≤ 2rg: ð6Þ

For finite r, Δmax is finite. In what follows, we order the
dimensions in a given r-tuple as

1 ≤ Δ1 ≤ Δ2 ≤ � � � ≤ Δr ≤ Δmax: ð7Þ
Large r, a, c limits: Consider the large rank limit r → ∞.

We first establish the followingwarmup result [34]:SðrÞ ∼ r
is inconsistent with the existence of the SCFT at large rank.
More precisely, SðrÞ ∼ r is incompatible with a finite
partition function on the spatial sphere. The proof is simply
that a unitary theory can achieve linear scaling ofSðrÞ only if
OðrÞ of the r Coulomb branch primaries have dimensions
bounded above byΔ� ∼Oð1Þ; but this violates finiteness of
ZS1β×S

3 ¼ trHðe−βHÞ, which requires that

Z
finite

0

dΔρðΔÞ < ∞; ð8Þ
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where ρðΔÞ is the spectral density of local operators on S3.
Therefore, the large r limit does not exist [35]. One can
rephrase this conclusion as the absence of “large c N ¼ 2
vector models”; we suggest that this may also be true of
N ¼ 1 SCFTs, for a suitable replacement of the Coulomb
branch rank [36].
So, at r → ∞ we have SðrÞ ≫ r, and, hence,

2a − c ≈
SðrÞ
2

: ð9Þ

Therefore, r → ∞ implies 2a − c → ∞. Combining this
with (4) implies that a and c both grow large independently:

r → ∞ ⇒ a; c → ∞: ð10Þ

That is, large rank implies large central charges.
The implication runs in reverse as well, modulo two

small caveats. The first is if 2a − c is finite to leading order:
In particular, r can remain finite at large central charge if
and only if

a
c
≈
1

2
þO

�
1

c

�
ð11Þ

as c → ∞ (with a strictly positive correction term). The case
a=c ¼ 1

2
is only known to be realized by free hypers;

adopting this perspective, the possibility (11) can be phrased
as the theory “becoming free” at large central charge. In
addition, one must note the logical possibility that the SCFT
at large central charge could, in principle, have no Coulomb
branch, i.e., r ¼ 0; but it is widely believed that there are no
interacting N ¼ 2 SCFTs with r ¼ 0.
All told, we can summarize as follows: Assuming the

existence of a Coulomb branch,

a; c → ∞ ⇔ r → ∞; ð12Þ

with the only possible exception to the ⇒ direction being
the edge case ða=cÞ ≈ 1

2
. This case is, at any rate, maximally

far from the Einstein regime in which a ≈ c, to which we
soon turn.
As for the Coulomb branch dimensions at r → ∞, the

upper bound Δmax scales asymptotically as [32]

Δmax ≈ 2eγEr log log r; ð13Þ

where γE ≈ 0.577 is Euler’s constant.
The proof—The key observation is that the upper-

boundedness of Coulomb branch dimensions, which, in
turn, determine the central charges, implies a spectral
bound of the former when expressed in terms of the latter.
In particular, bounding spectra at large central charge

becomes an extremization problem to be solved in the
asymptotic limit r → ∞: Given an ordered r-tuple
fΔ1;…;Δrg, maximize this set as a function of central

charges, where the latter are determined by SðrÞ via (3)
and (4).We are using “maximize this set” as a placeholder for
different choices of extremization, depending on the problem
of interest. For instance, to extremize the spectral gap à la
bootstrap, one solves a maximin problem, choosing to
maximize Δ1 among allowed r-tuples.
The main result now follows quickly. We established

earlier that SðrÞ ≫ r, but we now note the obvious upper
bound as well:

SðrÞ ≤ rΔmax ≈ 2eγEr2 log log r: ð14Þ

In fact, strictly maximizing all r operator dimensions is dis-
allowed bymore subtle number-theoretic aspects ofCoulomb
branch geometry—whenΔi ¼ Δ̄ for some Δ̄, the latter must
actually be drawn from the allowed set at r ¼ 1 [32]—so, in
the r → ∞ limit, one ought to interpret the upper bound as

SðrÞ ≈ rΔmax ð15Þ

with negative splittings that are subleading in r. For simplic-
ity, andour ultimate interest in theEinstein gravity regime,we
specialize to a ≈ c. Then, plugging (13) and (15) into (9)
gives

c ≈ eγEr2 log log r: ð16Þ

In terms of central charge,

Δmax ≈ 2eγE=2
ffiffiffi
c

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log c

p
: ð17Þ

Therefore, there are r ≈ e−γE=2
ffiffiffi
c

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log c

p
operators

with dimensionsΔi ≤ Δmax. Simplifying this exact statement
by dropping the logs and prefactors gives the result quoted in
the abstract. This clearly generalizes away from a ≈ c to any
asymptotic ratio of a=c at large rank: Thanks to Hofman-
Maldacena, a and cwill have identical r scaling but different
numerical prefactors determined by their Oð1Þ ratio.
More generally, we can classify theories by the growth of

central charge with the rank:

SðrÞ ∼ rz; 1 ≤ z ≤ 2: ð18Þ

Multiplicative logarithmic enhancements—required at
z ¼ 1 [cf. (8)] and possible at z > 1 [e.g., cf. (16)]—are
left implicit to avoid clutter. Then, for any finite
2a − c > 0, whereupon a ∼ c ∼ rz, the extremal spectrum
consistent with this scaling, i.e., the sparsest possible low-
lying spectrum, is obtained by taking the lowest ≈r
operator dimensions to all approach:

Δ�ðzÞ ∼ rz−1: ð19Þ

This corresponds to parametric solution of a constrained
optimization problem: Maximize Δr, then maximize Δr−1,
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and so on until maximization of Δ1, all subject to the
scaling (18). In other words, defining a spectral function
NðΔ−;ΔþÞ counting primaries in an interval,

NðΔ−;ΔþÞ≔
Z

Δþ

Δ−

dΔρðΔÞ; N�ðzÞ≔N½1;Δ�ðzÞ�; ð20Þ

where ρðΔÞ is the spectral density of Coulomb branch
generators, the scaling (18) requires that N�ðzÞ ≈ r, and the
extremal spectrumhas these states “piled up” nearΔ�ðzÞ [39].
Therefore, and restating in terms of central charge c → ∞,

c ∼ rz ⇒ ∃ N�ðzÞ ∼ c1=z operatorsfOig
with Δi ≲ Δ�ðzÞ ∼ c1−1=z: ð21Þ

This is the general result. Scanning over possible SCFTs by
varying z, the spectral gap as a function of c is maximized at
z ¼ 2 dressed with doubly logarithmic corrections (16),
giving the absolute bound derived earlier, valid for all
N ¼ 2 SCFTs:

∃ N� ≈ e−γE=2
ffiffiffi
c

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log c

p operators fOig

with Δi ≲ Δmax ≈ 2eγE=2
ffiffiffi
c

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log c

p
: ð22Þ

The bulk—In summary, unitary interactingN ¼ 2 SCFTs
at large central charge contain an infinite tower of Uð1Þr-
charged, scalar, single-trace, superconformal primary local
operators fOig with dimensions Δi < Δ�, where

Δ� ∼ c1−1=z ≪ c; 1 ≤ z ≤ 2; ð23Þ

with z defined by the asymptotic scaling c ∼ rz at large rank r
of the Coulomb branch. The number of these operators scales
as∼c1=z. The absolute bound for allN ¼ 2 SCFTs (obeying
the assumptions of [32,33]) is in (22). These are special
(protected) operators, namely, the generators of the Coulomb
branch chiral ring, of vanishing SUð2ÞR charge and Uð1Þr
charge ri ¼ Δi. We have emphasized in (23) the sublinear
growth of Δ� in the central charge.
Translating to the semiclassical bulk and taking

a ≈ c ∼ 1=GN , the inverse five-dimensional Newton’s con-
stant, (23) is a bound on the degree of scale separation
possible in AdS5 supergravity with at least half-maximal
supersymmetry: There must exist an infinite tower of U(1)-
charged scalar states fϕig with energies parametrically
below the large black hole threshold. The latter is set by the
mass of large AdS5-Schwarzschild black holes:

EBH ∼Oð1=GNÞ: ð24Þ

In particular, all ϕi obey Ei < E�, where

E� ∼ ðEBHÞ1−1=z ≪ EBH: ð25Þ

It is perhaps clearer to discuss the absolute bound (22) for
all such theories, which is (up to a doubly-logarithmic
prefactor) the z ¼ 2 specialization of the above: There must
exist ∼

ffiffiffiffiffiffiffiffiffi
EBH

p
U(1)-charged scalar states fϕig with ener-

gies Ei < E� ∼
ffiffiffiffiffiffiffiffiffi
EBH

p
.

We emphasize once again that this furnishes a bound on
AdS scale separation, because it implies the existence of an
infinity of such excitations, a total number that scales with
the Planck scale, in the semiclassical limit of weak
gravitational coupling. Note that a Planckian number of
states in an Oð1Þ window around Planckian energies is
compatible with the existence of the large c limit, because
the states are not fixed-energy states [40].
What are these Uð1Þr-charged bulk states? In canonical

AdS-CFT dual pairs, of course, Coulomb branch generators
are dual to Kaluza-Klein (KK) modes on a large internal
space, with energies of order one in AdS units; should the
states fϕig be realized geometrically, the characteristic
scale of extra dimensions is bounded below as

LKK ≳ l3=2
p ; ð26Þ

where lp is the five-dimensional Planck scale. But, remaining
steadfastly agnostic in thebootstrap spirit, there aremanyother
possibilities, particularly if the states fϕig have Planckian
energies. In known AdS5 compactifications of string and M
theory, the spectrum also contains small black holes, with
horizon radii obeying lp ≲ rh ≪ LAdS; but nonsingular,
nonhairy BPS black holes in AdS5 [41] must carry large
angular momenta, in contrast to the scalar states we are
considering. Small black holes are far from the only possibil-
ity. In string and M theory, there is a rich spectrum of semi-
classical bulk configurations with energies Mp≲E≲EBH,
including D-branes, giant gravitons [42], small black holes
(possibly with hair [43–46]), microstate geometries [47],
topological stars [48], grey galaxies [49], and perhaps yet-
undiscovered configurations of matter and black holes in
thermal equilibrium.Dependingon the energiesfEig, someof
these may be candidate bulk descriptions of fϕig.
We emphasize the conceptual point that BPS states are

effective tracers of extra dimensions in AdS=CFT. For one,
the Heemskerk-Penedones-Polchinski-Sully higher-spin
gap condition [50] for emergence of AdSdþ1 Einstein
gravity from CFT is blind to the number of large dimen-
sions D ≥ dþ 1 of the bulk; but BPS sectors can be
sensitive to D, because towers of R-charged light states
may (and, perhaps, must) be geometrized. More generally,
in aD-dimensional bulk gravitational effective field theory,
the Planckian states are dual to CFTd operators with
conformal dimensions

Δ ∼Mp;D ∼ c1=ðD−2Þ: ð27Þ

These operators are generically unprotected. For example,
we recall the short string states in AdS5 × S5 at fixed gs,
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dual to Konishi-type operators in N ¼ 4 super Yang-Mills
with Δ ∼ λ1=4 ∼ c1=8. So, although the c scaling of these
unprotected operator dimensions encodes the macroscopic
dimensionality of the bulk, it is generally easier to access
protected states than unprotected states in CFT.
Note that (25) is broadly applicable to semiclassical

gravity: It is not specific to Einstein gravity, instead relying
only on asymptotic scalings valid for any SCFT with
ða=cÞ > 1

2
. In particular, semiclassical string effects cannot

push the compactification scale below (26). In addition, the
result applies to SCFTs irrespective of whether they have
an independent higher-spin gap scale Δgap (i.e., it applies to
both string and M-theory duals). This generality follows
from a mutual compatibility of the known moduli-inde-
pendence of both the central charges [51] and the Coulomb
branch operator dimensions, built into the N ¼ 2 central
charge formulas.
It is interesting from the gravity point of view that the

Coulomb branch dimensions completely fix the strength of
the gravitational interaction and the R2 correction (and,
hence, the species scale). This suggests a deeper relation
between the Coulomb branch data and BPS black hole
sectors that would be nice to understand.

Pure supergravity: Our result also addresses the question
of whether AdS5 pure supergravity exists.
It is important to examine what “pure (super)gravity” in

more than three bulk dimensions ought to even mean. We
give an extended discussion of this topic in an
Appendix [52]. Low-energy effective field theory provides
a natural and agnostic parametric definition of semiclassical
AdSdþ1 pure gravity: namely, the absence of nongraviton
states below Planckian energies E� ∼Mp, where Mp is the
(dþ 1)-dimensional Planck scale. Although Planckian
degrees of freedom lack a universal abstract characteriza-
tion, the validity of gravitational effective field theory
suggests this threshold. Unlike AdS3 gravity, this threshold
cannot be made sharp with an Oð1Þ coefficient.
Taking the effective field theory view and applying the

holographic relation c ∼Md−1
p to the d ¼ 4 case, a putative

CFT dual to AdS5 pure (super)gravity has a (super)
conformal primary spectrum comprised solely of (super)
stress tensor composites up to Δ� ∼ c1=3. Ruling out AdS5
(super)gravity thus amounts to proving that a dual CFT
must have a non-stress tensor single-trace primary para-
metrically below this threshold. We return now to our result
(25). For the range z < 3

2
, we have ruled out AdS5 pure

supergravity as the asymptotic limit, violating the gap
condition by an infinite tower of sub-Planckian states.
Stated conversely, a putative CFT dual to AdS5 pure
supergravity must have central charge scaling faster than
c ∼ r3=2 as r → ∞ [57].
There is a sensible analogy to be drawn here with the

modular bootstrap in 2DCFTs at large central charge [59]. In
unitary 2D CFTs, the state-of-the-art upper bound on the first
nonvacuum Virasoro primary dimension at c → ∞ is [60]

Δ� ≲ c
9.1

: ð28Þ

This sits between the classical threshold at Δ ≈ c=12 for
small Bañados-Teitelboim-Zanelli (BTZ) black holes and the
onset of universal Cardy thermodynamics at Δ ≈ c=6 [61].
Similarly, our bound (22) for 4DN ¼ 2 SCFTs sits between
the Planck scale threshold at Δ ∼ c1=3 for small black holes
and the onset of universal AdS5-Schwarzschild thermo-
dynamics at Δ ∼ c. This comparison (meant only to guide
the mind) cannot be made apples-to-apples because of
the aforementioned differences in dimensional analysis.
Relatedly, we have chosen to phrase the CFT2 result more
optimistically, in terms of thermodynamics instead of
horizon size, because the continuum of geometrically large
BTZ black holes, which have horizon radius rh ≳Oð1Þ in
AdS units, has Δ ≈ ðc=12Þð1þ r2hÞ, which is well
below (28). But the bounds are similarly situated with
respect to bulk AdS black hole spectra. We expect both
bounds (22) and (28) to be suboptimal.
Indeed, there are early indications of much stronger

bounds on Coulomb branch data of N ¼ 2 SCFTs at
c → ∞ that could rule out pure supergravity uncondition-
ally [62]. As noted earlier, r-tuples are subject to a host of
intricate number-theoretic constraints implied by Coulomb
branch geometry. Their systematic exploration at r → ∞ is
an intriguing and well-defined open problem in N ¼ 2
SCFT. As a first step in that direction, one can use these
constraints to rule out pure supergravity for a specific
sequence of large rank SCFTs. In particular, consider a
sequence of SCFTs of rank

r ¼ 1

2

YN
i¼1

ðpi − 1Þ ð29Þ

withN ∈N, where pi is the ith prime number. These are the
ranks for which Δmax is an available Coulomb branch
generator dimension. Then one can show that, if such an
r-tuple contains Δr ¼ Δmax, it must also contain a dimen-
sion which grows slower than any power of c at c → ∞:
Specifically, Δr¼Δmax⇒Δ1≪cε ∀ ε>0. This excludes
a pure supergravity limit for this sequence of SCFTs by a
wide margin. How representative this is of generic paths out
to c → ∞ in the space ofN ¼ 2 SCFTs touches on a subtle
question in general abstract CFT. Regardless, this indicates
the potential for a host of hidden Coulomb branch con-
straints in the generic case, perhaps strong enough to rule
out pure supergravity or even any degree of Planckian scale
separation [63].
Ultimately, we would like to understand more deeply the

physical mechanism underlying our result, in hopes of
extending beyond 4D N ¼ 2 SCFTs [65]. Analytic boot-
strap bounds with a bearing on the AdS scale-separation
question may be more accessible than previously
thought.
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