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In this Letter we try to search for signals generated by ultraheavy dark matter at the Large High Altitude
Air Shower Observatory (LHAASO) data. We look for possible γ rays by dark matter annihilation or decay
from 16 dwarf spheroidal galaxies in the field of view of the LHAASO. Dwarf spheroidal galaxies are
among the most promising targets for indirect detection of dark matter that have low fluxes of astrophysical
γ-ray background while having large amount of dark matter. By analyzing more than 700 days of
observational data at LHAASO, no significant dark matter signal from 1 TeV to 1 EeV is detected.
Accordingly we derive the most stringent constraints on the ultraheavy dark matter annihilation cross
section up to EeV. The constraints on the lifetime of dark matter in decay mode are also derived.

DOI: 10.1103/PhysRevLett.133.061001

Introduction—Various kinds of astronomical evidence
suggest the existence of massive dark matter (DM) in the
Universe [1], which comprises approximately 85% of all
matter [2]. However, DM cannot be explained by the
standard model of particle physics [3,4]. Therefore, one of
the most important tasks in fundamental physics is to detect
and reveal the nature of DM particles. Most searches
primarily focus on weakly interacting massive particles or
ultralight DM. However, no conclusive DM signal has been
observed up to now [5–9]. On the other hand, ultraheavy dark
matter (UHDM; 10≲Mχ ≲mpl ≈ 1016 TeV) represents a
potential alternative DM candidate that could be gene-
rated through various mechanisms, including freeze-out,

freeze-in, out-of-equilibrium decay, phase transitions, gravi-
tational particle production, and primordial black holes (see
the review in Ref. [10] and references therein). Some models
for UHDM, like composite dark matter [11–13], have been
proposed to evade the unitarity limit, and very-high-energy
(VHE) γ-rays may be produced not only via the decay of
UHDM, but also via its self-annihilation [14].
Among different astronomical systems, dwarf spheroidal

galaxies (dSphs) are considered one of the most promising
targets for detecting DM signals due to their relatively short
distances, high mass-to-light ratios [15,16], and locations
far away from complicated emission regions like the
Galactic disk. These properties have instigated extensive
research on them utilizing various astronomical facilities
[17–26]. Importantly, given the relative proximity of these
systems, the angular dimensions of their signal regions,
particularly in scenarios involving decay, may be compa-
rable to or even surpass the point spread function (PSF)
of detection instruments. Thus, viewing these sources as
extended rather than pointlike sources may play a crucial
role in the indirect detection of DM [27,28].
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The Large High Altitude Air Shower Observatory
(LHAASO) is located in Sichuan Province, China, at an
altitude of 4410 m. It is a multipurpose and comprehensive
extensive air shower array, designed for the study of cosmic
rays and γ rays across wide energy ranges, from 10 TeV to
100 PeV for cosmic rays and from sub-TeV to beyond 1 PeV
for γ rays [29]. LHAASO is composed of three subarrays: the
kilometer-square array (KM2A), the water Cherenkov detec-
tor array (WCDA), and the wide field-of-view air Cherenkov
telescope array. Since its operation, several important results
have been achieved in cosmic- and γ-ray research [30–34].
The remarkable γ-ray sensitivity of LHAASO for energies
exceeding 100 TeV [35] presents an opportunity for the
exploration of UHDM. WCDA and KM2A also have good
PSFs for VHE γ rays [36,37], enabling them to potentially
discern the spatial extension of dSphs.
In this Letter, we search for VHE γ-ray signal from dSphs

with data recorded by WCDA and KM2A of LHAASO and
report the stringent constraints on the UHDM up to EeV.
γ-ray flux from dark matter—The expected differential

γ-ray flux from DM annihilation can be written as

dFanni

dEdΩdt
ðE;ΩÞ ¼ hσAvi

8πM2
χ

dNγ

dE
e−τγγðEÞ ×

dJ
dΩ

: ð1Þ

Similarly, for DM decay, it can be defined as

dFdecay

dEdΩdt
ðE;ΩÞ ¼ 1

4πτχMχ

dNγ

dE
e−τγγðEÞ ×

dD
dΩ

; ð2Þ

where hσAvi is the velocity-weighted DM annihilation cross
section, τχ is the DM decay lifetime, and Mχ is the mass
of the DM particle. dNγ=dE is the γ-ray energy spectrum
resulting from DM annihilation (decay), as calculated using
HDMSpectra [38]. The term τγγðEÞ represents the total attenu-
ation depth resulting from the pair production process
(γγ → eþe−), taking into account background photons from
starlight, infrared radiation, and cosmic microwave back-
ground, as described in Ref. [39]. The last term is the
differential J (D) factor, which characterizes the strength of
the DM signal. In Eqs. (1) and (2), dJ=dΩ ¼ R

ρ2DMðrÞdl
and dD=dΩ ¼ R

ρDMðrÞdl, where ρDMðrÞ refers to the DM
density at distance r from the center of dSphs, and l
represents the distance from a point on the line of sight
to Earth. The J (D) factor is defined as the differential J (D)
factor integrated over the region of interest (ROI). In this
Letter, we take the DM density distribution in dSphs
following the Navarro-Frenk-White (NFW) profile [40].
With a large field of view (FOV) of approximately 2 sr,

LHAASO has the ability to observe about 60% of the sky
each day [35]. The 16 dSphs within the FOVof LHAASO
have been selected as our observation targets, and the
coordinates of these dSphs are shown in Table I of the
Supplemental Material [41]. To optimize the size of
the ROI for balancing the preference between a larger
area containing more signal and a smaller area with less
background (and nearby sources) contamination, we utilize

S=
ffiffiffiffi
B

p
as a metric, where S and B are the expected signal

and expected background in the ROI, respectively.
Considering the expected signal also depends on the
details of the NFW profile [46–48], we use the publicly
available Markov chain Monte Carlo chains provided by
Ref. [48] to determine the optimal ROI for our instrument
and compute the corresponding JðDÞ factor distribution
in our ROI. The details are discussed in Sec. II of the
Supplemental Material. The half-width of the chosen
ROI, the corresponding median J (D) factor, and its
uncertainty for each dSph are shown in Table I. For the
observation of WCDA, it is a conservative case that the
ROI selection is consistent with the above value because
WCDA has better angular resolution in the low-energy
range than KM2A. Meanwhile, the J (D) factor is
consistent throughout the analysis.
Observation and data analysis—The present Letter

utilizes LHAASO-WCDA data (E < 20 TeV) acquired
from March 5, 2021 to March 31, 2023. LHAASO-
KM2A data (E > 10 TeV) are utilized, including KM2A
1=2 array data from December 27, 2019 to November 30,
2020, KM2A 3=4 array data from December 1, 2020 to
July 19, 2021, and KM2A full array data from July 20,
2021 to February 28, 2022. We apply the detector simu-
lation, event reconstruction, and selection algorithms
detailed in the performance papers of LHAASO subarrays

]36,37 ] for the analysis of WCDA and KM2A data. The
total effective observation time for each target dSph from
WCDA and KM2A are shown in Table I of Supplemental
Material [41].
We divide the KM2A data from 10 to 103 TeV into

ten logarithmically evenly spaced bins according to recon-
structed energy. For the WCDA data, events are divided into
six groups according to the number of triggered photo-
multiplier tube units (Nhits), i.e., [60,100], [100,200],
[200,300], [300,500], [500,800], [800,2000]. Based on the
reconstructed direction, the selected events from each energy
bin in the KM2A dataset and each group of WCDA data are
mapped onto a 2D sky map with a pixel size of 0.1° × 0.1° in
the equatorial coordinate. We use the “direct integration”
method as described in Ref. [49] to estimate the number of
background events per pixel. To eliminate the contamination
of known γ-ray sources on background estimation, we mask
the Galactic disk region (jbj < 10°), known sources given
by TeVCat [50] and first LHAASO catalog [51] (see Fig. 1 of
Supplemental Material [41]).
The expected numbers of γ-ray events produced by DM

in the regions of interest are calculated by folding the γ-ray
flux produced by DM with the WCDA and KM2A detector
response function respectively. More details are discussed
in Sec. I of Supplemental Material [41].
To quantify the excess of γ-ray signals in the regions

of interest, we use a 3D binned likelihood ratio analysis
combining WCDA and KM2A data. This method accounts
for both the energy spectrum and the spatial characteristics
of the DM signals, which are different from the background
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in the regions of interest. In this analysis, we define the 3D
likelihood function for the kth dSph as follows:

Lk ¼
Y
i;j

PoissonðNobs
i;j;k;N

exp
i;j;k þ Nbkg

i;j;kÞ × GðBk;Bobs
k ; σkÞ;

ð3Þ
where

GðBk;Bobs
k ;σkÞ¼

1

lnð10ÞBobs
k

ffiffiffiffiffiffi
2π

p
σk

e−½log10ðBkÞ−log10ðBobs
k Þ�2=2σ2k :

ð4Þ

The Nexp
i;j;k is the expected number of γ rays from DM

annihilation or decay in the ith energy estimator bin and the
jth pixel on the 2D sky map of the kth dSph. Nbkg

i;j;k is the
estimated background events from the direct integration
method, and Nobs

i;j;k is the observed number of γ-ray photons.
The term GðBk;Bobs

k ; σkÞ is included for the statistical
uncertainties on the J (D) factor of the kth dSph, following
Refs. [17,18], where B equals J for the annihilation case
and B equals D for the decaying case. The larger uncer-
tainties listed in Table I are taken as σk considering the
asymmetric distribution of the J (D) factor conservatively.
To quantify how well the DM signal fits the observed

data, we define the test statistic of the kth dSph (TSk) as

TSk ¼ −2 ln
�
LkðS ¼ 0Þ
LkðSmaxÞ

�
; ð5Þ

where S represents the DM signal flux, and Smax is the best-
fit value of the DM signal flux that maximizes the like-
lihood. To avoid nonphysical values, we set hσAvi and τχ to
be positive during the fitting process. We obtained the
statistical significance of the signal over the null hypothesis
(no DM model) by

ffiffiffiffiffiffiffiffi
TSk

p
. Then one-sided 95% confidence

level (C.L.) limits on hσAvi or τχ are set by increasing the
DM signal normalization from its best-fit value until
−2 lnL increases by a value of 2.71 [52].
The combined likelihood analysis of all dSphs is

performed by Ltotal ¼
Q

k Lk, with the aim of improving
the overall statistical power and generating stronger con-
straints on the DM parameters.
Results—We utilize data from 756 days of LHAASO-

WCDA and 794 days of LHAASO-KM2A observations to
search for DM signals in 16 dSphs around the Milky Way.
No significant γ-ray excess was detected from these dSphs.
The statistical significance of DM signals in these dSphs is
shown in Sec. III of Supplemental Material [41]. Therefore,
95% C.L. limits are placed on the DM annihilation cross
section or the DM decay lifetime, as shown in Figs. 1 and 2,
respectively. In Fig. 8 of Supplemental Material [41],
the 95% C.L. upper limits for hσAvi from combined and
individual dSphs are presented, assuming a DMmass range
from 1 TeV to 1 EeV with a 100% branching ratio to
specific standard model particles. The combined upper
limits are dominated by sources with large J factor, small
uncertainties, and favorable locations inside the LHAASO
FOV, i.e., Ursa Major II, Ursa Minor, Draco, Willman I,
Segue 1, and Coma Berenices.

TABLE I. The ROI half-width and J (D) factor for 16 dSphs considered in this analysis.

Name log10ðJθ=GeV2 cm−5Þ θanni (deg) log10ðDθ=GeV cm−2Þ θdecay (deg)

Draco 18.96þ0.16
−0.15 1.0 19.38þ0.24

−0.32 2.3

Ursa Minor 18.79þ0.12
−0.11 1.0 18.68þ0.33

−0.15 2.1

Ursa Major I 18.40þ0.28
−0.27 0.9 18.64þ0.50

−0.48 1.8

Ursa Major II 19.70þ0.43
−0.43 1.0 19.41þ0.43

−0.57 2.0

Bootes 1 18.39þ0.36
−0.37 0.9 18.77þ0.40

−0.54 1.8

Canes Venatici I 17.43þ0.16
−0.15 0.8 18.19þ0.40

−0.39 1.3

Coma Berenices 19.26þ0.35
−0.43 0.9 19.12þ0.46

−0.73 1.8

Leo I 17.58þ0.10
−0.10 0.8 18.44þ0.33

−0.42 1.4

Segue 1 19.25þ0.60
−0.69 0.8 18.33þ0.69

−0.63 0.8

Sextans 17.80þ0.10
−0.10 1.0 18.49þ0.28

−0.21 1.8

Canes Venatici II 17.82þ0.38
−0.37 0.8 18.45þ0.50

−0.74 1.4

Hercules 17.60þ0.53
−0.69 0.8 17.79þ0.62

−0.61 1.0

Leo II 17.72þ0.18
−0.17 0.8 17.85þ0.62

−0.40 1.0

Willman I 19.80þ0.50
−0.52 0.9 19.00þ0.71

−0.93 1.5

Aquarius 2 18.57þ0.50
−0.57 1.1 18.53þ0.61

−0.68 1.3

Leo T 17.66þ0.55
−0.52 0.8 17.88þ0.65

−0.69 1.0
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To assess the consistency between the constraints derived
from the observed data and the expected limits from pure
background, we repeat 1000 mock observations under the
null hypothesis, considering the Poisson fluctuation with the
measured background. The expected combined limits and
the two-sided 68% and 95% containment bands for bb̄
and τþτ− are shown in Fig. 1. See also Fig. 10 of the
Supplemental Material [41] for other channels. The fact that
observed limits are between the expected limit bands
indicates that the observational data are consistent with
Poisson fluctuation with the background. The constraints on
high-mass DM consistently approach the 68% boundary
of the anticipated limit bands, suggesting a slight

overestimation of the background in this study and thereby
a deficit in the number of putative signal events inferred in
the regions of interest. This overestimation is likely due to
the contribution of faint sources which are below our
sensitivity threshold and thus not removed by the mask
used in our background estimation; this issue may be more
important for highmasses due to the lower event rates at high
energies. Figure 1 also shows the “thermal relic” cross
section [54] and the limits from other experiments such as
Fermi-LAT [18], HAWC [20], H.E.S.S. [21], MAGIC [22],
VERITAS [23], and IceCube [53]. The observations of
dSphs by LHAASO could provide better constraints for DM
with a mass heavier than a few hundred TeV.

FIG. 2. The 95% C.L. lower limits on the DM decay lifetime for bb̄, τþτ− channels. The solid black line represents the LHAASO
observed combined limit, and the dashed black line, green band, and yellow band represent the expected combined limits, 1σ and 2σ
uncertainty based on the mock observation. The limits obtained from Fermi-LAT [55], MAGIC [56], IceCube [57], LHAASO-KM2A
Galactic halo [32], and HAWC [58] with dashed colored lines are also shown for comparison.

FIG. 1. The 95% C.L. upper limits on the DM annihilation cross section for bb̄, τþτ− channels and comparing to other experiments
(Fermi-LAT [18], HAWC [20], H.E.S.S. [21], MAGIC [22], VERITAS [23], IceCube [53]). The solid black line represents the observed
combined limit of this Letter. The dashed black line, green band, and yellow band represent the expected limits and their 1σ and 2σ
uncertainties. The dashed gray line is the thermal relic cross section [54], and the other dashed colored lines show the results of other
experiments.
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In Fig. 9 of Supplemental Material [41], the 95% C.L.
lower limits for τχ are presented for combined and
individual dSphs analysis. Similar to the DM annihilation
results, the limits are mainly driven by Ursa Major II, Ursa
Minor, Draco, and Coma Berenices. The expected limits
from the same analysis for mock data are shown in Fig. 2,
for bb̄ and τþτ− final states, with the limits from Fermi-
LAT [55], MAGIC [56], IceCube [57], LHAASO-KM2A
Galactic halo [32], and HAWC [58]. We also show
constraints for τχ from combined dSphs observation and
mock data in Fig. 10 of Supplemental Material [41] for
other channels.
In our analysis, we incorporate the J (D) factor like-

lihood into our likelihood analysis, leading to a reduction
in the constraints on DM parameters by a factor of 2–6
(see Fig. 6 of Supplemental Material [41]). Additionally,
we factor in the effects of VHE γ-ray absorption by the
interstellar radiation field, resulting in a relaxation of
constraints on DM particles with masses exceeding
1000 TeV by approximately five- to tenfold. Moreover,
we consider the expected morphology of the DM signal,
moving beyond a pointlike source approximation. The
constraints derived from the extended source analysis
based on the DM density profile are consequently dimin-
ished by a factor of 1.5–12, particularly in the context of
DM decay scenarios, conforming a strong effect of the
spatial extension of dSphs on the DM search results [28]. It
is important to acknowledge that the J (D) factor correc-
tion exclusively accounts for the statistical uncertainties in
the J (D) factors and does not address the systematic
uncertainties stemming from the choice of DM profiles and
uncertainties with some presumptions about the Jeans
equations. While factors such as departures from spherical
symmetry, velocity anisotropy of the DM halo, the
influence of contaminating foreground stars, and varia-
tions in the DM profile are considered, the predicted J (D)
factors and constraints may undergo alterations by a
fewfold [18,59–65].
Our results extend for the first time the mass range of

the limits on the hσAvi to 1 EeV with the best constraints
above a few hundred TeV. Fermi-LAT [18], H.E.S.S. [21],
MAGIC [22], and VERITAS [23] exhibit more stringent
limits at lower DM masses, since the effective area of
LHAASO would decay rapidly at low energy. We have
comparable limits to HAWC [20] for masses up to several
hundred TeV and consistently have better constraints than
those from IceCube [53] across all mass ranges. For the
DM decay lifetime, our constraints are weaker than those
based on galactic halo data by KM2A [32], since the D
factor in the selected dSphs is smaller, and the effects of
attenuation by pair production are more significant con-
sidering the large distances of dSphs from Earth compared
to the Galactic halo. In general, our constraints on the DM
decay lifetime are also less stringent compared to those
determined by HAWC [58], MAGIC [56], Fermi-LAT [55],

and IceCube [57] through the observation of Virgo cluster,
Perseus cluster, and the Galactic halo with larger D factors
and subdominant effects of attenuation. However, the
combined limits from dSphs, considering the uncertainties
of the DM distribution and the spatial extension of the
expected signal, could also provide a complementary set of
reliable limits.
Conclusion and outlook—We investigate DM annihila-

tion and decay signals from 16 dSphs within the LHAASO
FOV using data collected by WCDA and KM2A. No
significant γ-ray excess is observed from these sources.
Consequently, we establish individual and combined
constraints on hσAvi and τχ across five channels
ðbb̄; tt̄; μþμ−; τþτ−;WþW−Þ.
In this analysis, we treat the selected dSphs as extended

sources in the 3D likelihood analysis framework to con-
sider the spatial distribution of the DM density within
the dSphs. We optimize the size of regions of interest and
recalculate the J (D) factor and their uncertainties corre-
sponding to the regions of interest. To make the analysis
more comprehensive and reliable, the absorption effect of
ISRF on VHE γ ray is considered, and the statistical
uncertainty of the J (D) factor is incorporated as a nuisance
parameter in the likelihood analysis.
Our results represent the first-ever constraint on hσAvi,

extending the mass of DM to 1 EeV. The combined limits
are the most stringent constraints for hσAvi above a few
hundred TeV. Meanwhile, we stress that the impact of
spatial extension from dSphs is a necessary condition when
deriving DM limits from dSphs with future instruments.
As more WCDA and KM2A data will be collected, the
development of algorithms to enhance energy and angular
resolution for LHAASO, and improvements in kinematics
measurements to reduce the uncertainty of the DM density
distribution, LHAASO is expected to become more sensi-
tive and to improve its limits in the future.
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