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Shadow tomography aims to build a classical description of a quantum state from a sequence of simple
random measurements. Physical observables are then reconstructed from the resulting classical shadow.
Shadow protocols which use single-body random measurements are simple to implement and capture few-
body observables efficiently, but do not apply to systems with fundamental number conservation laws, such
as ultracold atoms. We address this shortcoming by proposing and analyzing a new local shadow protocol
adapted to such systems. The All-Pairs protocol requires one layer of two-body gates and only polyðVÞ
samples to reconstruct arbitrary few body observables. Moreover, by exploiting the permutation symmetry
of the protocol, we derive a linear time postprocessing algorithm which applies to both hardcore bosons and
spinless fermions in any spatial dimension. We provide a proof-of-principle reference implementation and
demonstrate the reconstruction of two- and four-point functions in a paired Luttinger liquid of hardcore
bosons.
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Quantum state tomography aims to produce a complete
classical description of the state ρ of a quantum system: a
prohibitive task requiring exponentially many measure-
ments of independently prepared copies of ρ. Rather than
measure all possible matrix elements, recent works have
taken a statistical approach designed to capture classes of
observables of physical interest [1–16]. The shadow
tomography framework is illustrated in Fig. 1: for each
copy of ρ, sample a unitary circuit U from a bespoke
ensemble, apply it to ρ, and measure in the computational
basis. Physical observables can later be reconstructed by
classical postprocessing from the record of applied uni-
taries and measurement outcomes—the classical shadow.
Perhaps the most important shadow protocol is adapted

to the efficient reconstruction of few-body observables. The
product protocol is deceptively simple: each U is a product
of independently sampled random 1-body gates [see
Fig. 2(a)]. The protocol is efficient by several measures
(cf. row 1 of Table I): each measurement requires only a
few quantum gates (low gate complexity), while the number
of classical postprocessing steps scales at most linearly
with the number of qubits V (low classical complexity).
The number of samples required to estimate a few-body
observable scales exponentially with the support w of the
observable, but is independent of system size (low sample
complexity). Accordingly, the product protocol has devel-
oped into an important experimental tool for characterizing
many-qubit systems [17–21].
Many quantum systems, such as ultracold atoms

[24–26], are constrained by fundamental symmetries which
restrict the available unitary gates as well as the measure-
ment basis. Such restrictions render the simple product
protocol tomographically incomplete. As an example,

consider an atom living in two sites. The only single-site
gates which are consistent with the conservation of atom
number are phase operators. These do not affect the
statistics of measurements in the occupation basis.
Consequently, no product shadow protocol can distinguish
the two Bell states j01i � j10i.
Of course, two-body gates are sufficient to rotate the Bell

basis into the occupation basis and number-conserving
shadow protocols based on global random unitaries and/or

FIG. 1. The All-Pairs shadow protocol: for each copy of the
quantum state ρ, (1) randomly choose a pairing π of the V sites
and apply swaps to bring paired sites together. The figure shows a
swap circuit implementing the pairing π ¼ ½1 3�½2 5�½4 8�½6 7�.
(2) Apply random 2-body number-conserving unitary gates to
each pair ½ij� in π. (3) Measure in the occupation basis with result
b. (4) Record the chosen pairing, gates, and outcomes as a row in
the shadow table. Few-body observables can be efficiently
reconstructed from the shadow table.
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deep quantum circuits are generically tomographically
complete [3,23,27]. However, as such unitaries scramble
local information, these protocols lose any advantage for
reconstructing few-body observables: the sample complex-
ity scales exponentially in system size.
In this Letter, we propose a tomographically complete

shadow protocol adapted to reconstructing few-body
observables in number-conserving systems of fermionic
or bosonic hard-core atoms. The All-Pairs protocol is
straightforward (see Fig. 1): the random unitaries are
constructed by first choosing a random pairing between
all sites in the system and then choosing an independent
random two-body gate on each pair. It turns out that this
shallow but fluctuating circuit geometry permits access to
arbitrary few-body observables without scrambling local
information. More precisely, the sample complexity scales
polynomially with system size V.
Unlike global channels and deep circuits, the All-Pairs

protocol has low classical complexity (scaling linearly with
V), so that the reconstruction of observables is efficient.
This efficiency is a consequence of the permutation
symmetry of the protocol, which leads to significant
analytic reductions. Table I presents analytically obtained
complexity bounds for the All-Pairs protocol, and com-
pares it to other protocols discussed in the literature
[3,23,28–30].
We first review key concepts from the shadow tomog-

raphy formalism. Using this formalism, we express the All-
Pairs protocol as a quantum channel and analyze its

decomposition into symmetry sectors. The eigenvalues
and eigenoperators of the channel bound the classical
and sample complexity for the protocol. Finally, as a
proof-of-concept, we reconstruct two- and four-point
functions in a bosonic model with a paired Luttinger liquid
ground state.
Background and notation—We adopt the shadow tomog-

raphy formalism developed in Ref. [3]. The shadow
channel describes the action of the shadow measurement
protocol,

M½ρ� ¼
Z

dU
X
b

Tr½ρðU†jbihbjUÞ�ðU†jbihbjUÞ

≡ E
U;b

½U†jbihbjU�; ð1Þ

on a quantum state ρ. Here, U is the randomly sampled
unitary and jbi is the postmeasurement basis state. The
shadow protocol is tomographically complete if and only if
the channel is invertible, in which case

ρ ¼ E
U;b

½M−1½U†jbihbjU��: ð2Þ

The shadow table T is the set of independently sampled U
and obtained measurement outcomes b. An unbiased
estimator ρ̂ for ρ is constructed by replacing the E in
Eq. (2) with an empirical average over the entries in T. The
application ofM−1 is done classically, so that the difficulty
of the inversion determines the postprocessing complexity.
Given the inverse channel, estimating the expectation of

an operator hOi from a measurement record is straightfor-
ward,

dhOi ¼ Tr½ρ̂O� ¼ 1

jTj
X

ðU;bÞ∈T

Tr½ðU†jbihbjUÞM−1½O��: ð3Þ

Here, we have used the Hermiticity ofM−1 with respect to
the trace inner product. Clearly, the number of samples in T
and the variance of the underlying distribution deter-
mine the statistical error on the estimate of the expectation
value. The number of samples required to obtain a fixed
standard error is controlled by the shadow norm of the
operator O [31],

(a) (b)

FIG. 2. (a) A product protocol of single-body unitaries. (b) The
action of M½ij� defined in Eq. (6) on the operator basis. The
channel preserves the number of I, Z, a†, and a operators, but can
rescale or swap operators.

TABLE I. Resource complexity for estimating the expectation value of w-body operator strings allowing long range few-body
operators. The ergodic protocol has a sample complexity which depends on the native Hamiltonian and evolution time.

Classical complexity

Protocol U(1) Compatible Gate complexity One-time Per sample Sample complexity

Product [3] No V w 3w

Global random circuit [3] Yes V2 [22] V22V 2V

Ergodic evolution [23][23] Yes Hamiltonian ð22VÞ3 22V ≥ 2V

All-pairs Yes ðV=2Þ ðnzÞ3 V þ nz22nz ð3
2
Þnþþ2nz × ðVnþ=nþ!Þ
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kOk2s ¼ max
ρ∶ state

E
U;b

jTr½ðU†jbihbjUÞM−1½O��j2: ð4Þ

The rhs is maximized over density matrices ρ, and as noted
in [3], only the traceless components of O contribute to the
shadow norm. In practice, one employs median-of-means
estimation to reduce the probability of large errors [3].
Although the protocol applies to fermions as well, we

focus on a system of conserved hard-core bosons on V sites
and adopt a local operator basis adapted to number
conservation, S∈ fI; Z; a†; ag⊗V where a† ¼ 1

2
ðX − iYÞ

and a ¼ 1
2
ðX þ iYÞ are the usual raising and lowering

operators for a two-level system, with the j↑i state
identified as the empty state. Number-conserving strings
are those in which a† and a appear in equal number. The
number of a† or a operators in a basis string is denoted by
nþ, and the number of Z operators by nz. It is straightfor-
ward to confirm these strings form an orthogonal basis for
all number-conserving operators on a V-site system
(Supplemental Material, Sec. Ia [32]).
The All-Pairs channel—We now apply the shadow

formalism to the All-Pairs protocol. The channel is an
average over pairings π from the set of all possible pairings
of sites PV ,

M ¼ 1

jPV j
X
π ∈PV

Mπ: ð5Þ

Each pairing π is a grouping of the V sites into V=2 pairs.
The number of such pairings is jPV j ¼ ðV − 1Þ!!. For odd
V a single site is left out of any given pairing and
jPV j ¼ VðV − 2Þ!!. Each pair of sites ½ij�∈ π is acted on
by two-body unitaries, resulting in a product channel

Mπ ¼
Y

½ij�∈ π

M½ij�;

M½ij�½ρ� ¼ E
U½ij�;bibj

h
U†

½ij�jbibjihbibjjU½ij�
i
: ð6Þ

Sampling U½ij� from an ensemble which forms a 2-design
over the number-conserving unitary group [22,33–35],
M½ij� can be evaluated block by block,

M½ij�

2
64
0
B@
ρ0

ρ1

ρ2

1
CA
3
75¼

0
B@
ρ0

1
3
ðρ1þI2×2Trρ1Þ

ρ2

1
CA: ð7Þ

Here, ρ0 and ρ2 are scalars representing the m ¼ 0 and
m ¼ 2 number sectors, whereas ρ1 is a 2 × 2 matrix
describing states j01i and j10i in the occupation basis.
Expanding Eq. (7) in the basis of operator strings yields the
table in Fig. 2(b).
Analysis of the channel—It is straightforward to show

that the All-Pairs channel is tomographically complete.

Consider an operator string S we wish to reconstruct using
the information in the shadow table T. Begin by filtering T
down to only those rows whose pairings match a† with a
and Z with another Z operator within S; call this filtered
channelMS. It is clear from Fig. 2(b) that the action of this
effective channel is diagonal on S and inversion is trivial
M−1

S ½S� ¼ 3nþS. The choice of S is arbitrary so all
operators can be reconstructed from the information con-
tained in T. However, the process described above is
inefficient and throws out most entries of the table. To
make the protocol more efficient and greatly reduce its
sample complexity we now diagonalize the channel with-
out prior filtering.
The All-Pairs channel can be efficiently diagonalized

and inverted due to strong symmetry constraints. First, M
is manifestly permutation symmetric. For any permutation
σ of the V sites,

M½σSσ†� ¼ σM½S�σ†: ð8Þ

Second, M conserves the number of I, Z, a, and a†

operators in an operator string S. Third, a† and a operators
are immobile under the action of M [cf. Fig. 2(b)].
Consider an operator string with nþ instances of a

and a† and nz instances of Z in a canonically ordered
form, S∘ ¼

�
a† ⊗ a

�⊗nþ ⊗ Z⊗nz ⊗ I⊗V−w. Since Mπ½S∘�
vanishes unless π pairs the a and a† operators, the channel
action factorizes

M½S∘� ¼
f
3nþ

ða† ⊗ aÞ⊗nþ ⊗ M½Z⊗nz ⊗ I⊗V−w�: ð9Þ

Here, f denotes the fraction of pairings which contribute,

f ¼ nþ!
jPðV−2nþÞj

jPV j
: ð10Þ

We now focus on the action ofM restricted to the space
of operators spanned by S∈ fI; Zg⊗V. Since M conserves
the number of Z’s, it defines a permutation-symmetric
hard-core random walk of the Z’s (formally, a symmetric
exclusion process). Accordingly, the channel decomposes
into Z sectors, labeled by nz, and irreducible representa-
tions of the permutation group, labeled by λ ¼ ðV − λ2; λ2Þ.
Each nz; λ irrep appears once and has a corresponding
eigenvalue cλ which is independent of nz.
We use combinatorial arguments to derive closed but

rather long expressions for the eigenvalues cλ in
Supplemental Material, Sec. IIc [32]. This decomposition
underlies the computationally efficient inversion scheme
and the rigorous bounds on the sample complexity.
Inverting the channel—To compute the estimator Eq. (3)

from the shadow table, we need an efficient algorithm to
apply the inverse channel M−1 to string operators within
the trace. The description of the reconstruction algorithm is
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presented in Supplemental Material, Sec. II [32]. Here, we
sketch the key steps which reduce the problem to inverting
an ðnz þ 1Þ × ðnz þ 1Þ matrix.
With reference to Eq. (9), the nontrivial part of inverting

M comes from its action on strings S∈ fI; Zg⊗V .
Permutation symmetry and nz conservation impose that

M½S∘� ¼
Xnz
d¼0

αd
X
Sd at

distance d

Sd; ð11Þ

where the strings Sd are at swap distance d from the
reference string S∘. Using (5), it is possible to obtain the
amplitudes αd in closed form (Supplemental Material,
Sec. IIb [32]).
The two decompositions, into cλ and into αd, linearly

parametrize the channelM in a given nz sector. Thus, there
is a linear relationship,

cλ ¼
Xnz
d¼0

Gλdαd; ð12Þ

where G is an ðnz þ 1Þ × ðnz þ 1Þ integer matrix deter-
mined entirely by the symmetry of the channel. We use
combinatorial arguments to obtain G in closed form in
Supplemental Material, Sec. IIc [32].
The inverse channel is simple in terms of its irrep

decomposition, its eigenvalues are simply ð1=cλÞ. In order
to efficiently apply M−1 to a string S, we need the
amplitudes βd which govern how it delocalizes S to other
strings with swap distance d. These can be obtained using
the inverse of Eq. (12). Schematically, we perform the
following steps,

M → αd⟶
G

cλ⟶
invert 1

cλ
⟶
G−1

βd → M−1:

Equation (3) thus becomes

Tr½ρ̂S∘� ¼
1

jTj
X

ðU;bÞ∈T

Xnz
d

βdTr

2
64U†jbihbjU

X
S at

distanced

S

3
75: ð13Þ

Naively, there are ðVnzÞ terms in this decomposition, each of

which takes OðnzÞ time to evaluate. However, the expect-
ation values of uniformly delocalized fI; Zg strings depend
only on the measurement string b and not the particular
choice of two-body gates U½ij�. To compute (13), we only
need to read the measurement result in OðVÞ time, then
perform a sum over Oð4nzÞ strings, calculating the trace
for each. The details of this algorithm are provided in
Supplemental Material, Sec. IIe, and pseudocode for
implementing the fast expectation value calculation are
provided in Supplemental Material, Sec. IIf [32].

Sample complexity—The shadow-norm (4) bounds the
sample complexity of the All-Pairs channel. For the same
reasons which lead to the factorization in (9), the shadow
norm can be separately evaluated for operator strings of a†

and a, and strings of I and Z. The latter is bounded using
the eigenvalues cλ. For V ≫ nz ≥ λ2, which is the relevant
limit for reconstruction of low weight operators in large
systems, the eigenvalues of M−1 scale as c−1λ ≃ ð3=2Þλ2−
OðV−1Þ. Accounting for the a, a† pairs (Supplemental
Material, Sec. III [32]) one obtains

kSk2s ≤
�
3

2

�
nþþ2nz

�
Vnþ

nþ!

�
kSk2∞: ð14Þ

Notably, the shadow norm acquires a polynomial volume
dependence compared to the single-unitary product channel
without conserved charges, and retains a similar exponen-
tial dependence on the weight.
Experimental considerations—The essential experimen-

tal requirements to implement the All-Pairs protocol are
(1) the ability to shuttle sites to bring paired sites into
adjacency; (2) application of two-body gates to selected
neighboring pairs; and (3) single-site occupation measure-
ment. Although our analysis above has assumed that the
two-body gates are Haar random, it turns out that much
simpler gate sets suffice. For example, a uniform ensemble
on the three gates

G ¼ fI;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
× ðS ⊗ IÞg ð15Þ

suffices. Here, S is the phase gate and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
corre-

sponds to a 50-50 beam splitter.
Demonstration with paired Luttinger liquid—To dem-

onstrate the utility of the All-Pairs channel, we illustrate its
application to a system of hard-core bosons on a two-leg
ladder which can be tuned to be a paired or unpaired
Luttinger liquid. This example shows that the All-Pairs
channel can be used to estimate arbitrary number-conserv-
ing correlation functions; it is not limited to two-point
functions.
We label the bosons a and b on the top and bottom rails

of a ladder with Hamiltonian H ¼ Hhop þHint, where

Hhop ¼ −t
X
i

h
a†i aiþ1 þ b†i biþ1 þ a†i bi

i
þ H:c:;

Hint ¼ −U
X
i

a†i aib
†
i bi: ð16Þ

The interaction term Hint is an attractive density-density
interaction across rungs of the ladder.
In the limit t ≫ U, the bosons form a Luttinger liquid in

which correlations of a single boson species decay as a
power law, ha†i aji ∼ ji − jj−α. When the interaction domi-
nates, t ≪ U, the bosons form “molecules” across rungs,
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which then condense into a paired liquid. Here, the single-
species correlators vanish exponentially, while pair corre-
lations of the form ha†i b†i ajbji exhibit power laws.
We use the All-Pairs protocol to estimate single-boson

and pair correlation functions in the ground state of H
obtained through exact diagonalization. We consider a
ladder with 12 rungs (V ¼ 24 sites) at 1=4 filling with
periodic boundary conditions. Following Eq. (14), we use
N ∼ 2 × 104 samples to get a bound on ε ∼ 1=5 standard
error on four-body operators, although in practice the
realized error is significantly smaller [36]. We construct
50 independent shadow tables to demonstrate that the
empirical average estimator is unbiased and has small
variance (cf. Fig 3). We note that the primary computational
bottleneck in this exercise comes from acquiring the data,
not the reconstruction itself; that is, most resources are
consumed by exact diagonalization and sampling of the
ground state.
Outlook—We have demonstrated that the All-Pairs pro-

tocol provides efficient local shadow tomography in
systems with fundamental number conservation. Thus,
our protocol enables the tomographic investigation of
strongly correlated many-body states in quantum simula-
tors. While we restricted to hard-core bosons in the main
text, our results apply mutatis mutandis to fermions
(Supplemental Material, Sec. IIf [32]).
Our algorithm for channel inversion allows for the

estimation of w-body number-conserving correlation func-
tions with resource requirements that scale favorably in
comparison with alternative protocols (see Table I).
Previous work has focused on Hamiltonian evolution
[5,23,30], which may be more practical to implement on
some devices but requires an extremely accurate model of

the underlying Hamiltonian in addition to significant
classical postprocessing resources.
Compared to systems without fundamental number

conservation, the sample complexity has gained a volume
dependence OðVnþÞ. We believe this volume scaling is
optimal for estimating local observables. In certain regimes
shallow circuits can improve sample complexity in systems
without number conservation [38–40], but it is unclear
whether these improvements translate to systems with
conservation laws.
There are two natural generalizations. Allowing internal

states, the All-Pairs protocol generalizes by taking the two-
body gates to be Haar on the local space. Allowing multiple
occupancy (M > 1 particles per site), one must extend to
the “All-Tuples” protocol, in which the random pairings are
replaced by random (2M − 1)-tuples. In both of these cases,
it is clear the channel remains tomographically complete
and permutation symmetric. We leave the analysis of the
reconstruction algorithm and sample complexity to
future work.
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