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Bosonic loss estimation has an important role in quantum metrology. It was once believed that the
ultimate precision of this task is restricted to the standard quantum limit if no quantum probe is involved.
Nevertheless, a recent proposal showed that this limit can be surpassed by utilizing ring resonators with
coherent state probe. Here, we experimentally realize the resonator-based bosonic loss estimation and
verify the resonant enhancement effect. This Letter explores the advantages of resonator-based metrology
and sheds light on the development of high-precision miniature sensors.
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Introduction—Optical energy dissipation is one of the
most important phenomena in physics, which can be
essentially modeled by a bosonic loss channel [1].
Estimating the transmissivity of the bosonic loss channel
is of great interest for not only fundamental studies [2] but
also various applications, e.g., gas sensing [3], molecular
spectroscopy [4], and optical media characterization [5].
The pioneering studies of quantum bosonic loss

estimation [2,6] showed that the precision using coherent
state probes at fixed input energy is restricted by the
standard quantum limit, which has to be beaten by quantum
probes. As the optimal choice among the candidates, Fock
states can achieve precision that outperforms the standard
quantum limit by a factor of (1 − a) [7], where a2

represents the transmissivity of the bosonic loss channel.
However, Fock states, aswell as other quantumprobes, are

difficult to generate and fragile to noises, making it difficult
to achieve the promising precision in practice [8]. Moreover,
compared to classical light, the integration of quantum light
remains challenging [9]. Instead of using quantum probes, it
was shown that the standard quantum limit can also be
surpassed by increasing the number of interactions [10]. A
conventional strategy to achieve this goal is to make the
probe passing through identical channels for multiple
times [11–13], which is called the multipass strategy.
Alternatively, this goal can also be achieved by using cavity
or all-pass ring resonator [14,15], which had been

successfully applied in various kinds of ultrahigh precision
sensors [16]. Especially, Ref. [15] showed that coherent-state
probes in all-pass ring resonators can outperform any
quantumprobe single-pass strategy in absorption estimation.

(a) Single-pass strategy

(b) Multi-pass strategy

(c) Resonator-based

strategy

FIG. 1. The schematic diagram of bosonic loss estimation
obtained by different strategies. The yellow squares represent
the bosonic loss channel, which allows, the target parameter, the
portion a2 of input photons to pass.
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The logic diagrams for the resonator-based strategy
in comparison with two other bosonic loss estimation
strategies are, respectively, depicted in Fig. 1. In these
scenarios, the lossy channel attenuates an input bosonic
probe by transmitting a fraction a2 (≤1) of the photons and
discarding the rest. a is amplitude attenuation coefficient.
For the single-pass strategy [see Fig. 1(a)], the probe
interacts with the lossy channel only once. Alternatively
in the multipass strategy [see Fig. 1(b)], the probe sequen-
tially interacts with the lossy channel for N times, which
leads to an N-fold improvement on precision of estimating
a [17]. Obviously, multiple copies of the lossy channel must
be constructed identically to promise the performance. In
contrast to the above two conventional strategies, the
resonator-based strategy [see Fig. 1(c)] can provide
enhanced precision comparing to the single-pass strategy
without lossy channel copies. In this strategy, a ring
resonator working at its resonant condition is adapted to
make the coherent-state probe repeatedly interact with the
same lossy channel, so that the precision can be significantly
improved. Under critical coupling, it can even outperform
the single-pass strategy using quantum probes [15].
Principle—In theory, the precision of estimating ampli-

tude attenuation coefficient with ν times is given by the
quantum Cramér-Rao bound [18]:

Δ2a ≥
1

νQðaÞ ; ð1Þ

where QðaÞ is the quantum Fisher information (QFI).
Accordingly, the optimal precision of single-pass strategy
using coherent state probes can be calculated by [19]

ðΔ2aÞc ¼
1

4aN̄0

; ð2Þ

where N̄0 represents the mean photon number at the input.
This bound is usually referred to the standard quantum
limit. When quantum probes are allowed to be used, the
optimal precision can be improved to [20]

ðΔ2aÞf ¼
ð1 − aÞ
4aN̄0

: ð3Þ

In principle, this limit can be achieved by using Fock states
as input [7,20,21]. Note that the Fork states correspond to
only integer photon numbers, so that one needs to engineer
superpositions for arbitrary N̄0 [1]. The comparison
between optimal precisions of coherent states and Fock
states with the same input energy in single-pass strategy is
shown in Fig. 2. In practice, Fock states face formidable
challenges in application due to the low fidelity and low
success probability [19,22,23].
Now let us consider the resonator-based strategy using

coherent state probes, and analyze its performance
with comparison to the above two cases. As depicted in
Figs. 3(a) and 3(b), the bosonic loss channel refers to the
ring per round with transmissivity of a2. In this context, a is

also referred to as the attenuation coefficient to simplify in
the ring [15,24]. The light is input to a bus waveguide and
then coupled to the ring. For the add-drop type ring
depicted in Fig. 3(a), part of the light is coupled out from
the drop port. The transmissions corresponding to the
through and drop ports are, respectively, given:

ηr ¼
Ithrough
Iinput

¼ r22a
2 − 2r1r2a cosϕþ r21

1 − 2r1r2a cosϕþ ðr1r2aÞ2
;

ηd ¼
Idrop
Iinput

¼ ð1 − r21Þð1 − r22Þa
1 − 2r1r2a cosϕþ ðr1r2aÞ2

; ð4Þ

where r1 and r2 are the self-coupling coefficients between
the ring and bus waveguide up and down, respectively, and
ϕ is the round-trip phase. Moreover, the phase shift
imparted to the input waveguide θr is

θr ¼ π þ ϕþ arctan
r1 sinϕ

ar2 − r1 cosϕ

þ arctan
r1r2a sinϕ

1 − r1r2a cosϕ
: ð5Þ

The add-drop type ring can be simplified to the all-pass
type when r2 ¼ 1, as is depicted in Fig. 3(b). In other
words, this occurs when the straight waveguide corre-
sponding to the drop end is not coupled to the ring, which is
described in Belsley’s theoretical work [15].
In consequence, the value of a can be solved from

Eq. (4). The results corresponding to the add-drop and all-
pass types are, respectively, shown in Fig. 3(c). While the
all-pass type ring scheme suffers from value ambiguity, the
add-drop type ring scheme can overcome this problem by
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FIG. 2. The standard deviation Δa obtained by different
strategies. The yellow dashed line depicts the standard quantum
limits; the green line illustrates the precision limit of quantum
enhancement by quantum light, which can be achieved by the
Fock state in a single-pass (SP) strategy; the blue line demon-
strates the precision improvement achieved by the coherent state
in a resonator-based (RB) strategy. Parameters to the figure are as
follows: a ¼ 0.93, r2 ¼ 0.99.
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selecting appropriate r1 and r2. Therefore, the add-drop
type ring scheme will be adopted in the following studies.
The QðaÞ of any single-mode Gaussian state is given

by [6]

Q ¼ Tr½ðΣ−1Σ0Þ2�
2ð1þ P2Þ þ 2P02

1 − P4
þ ΔX0TΣ−1ΔX0: ð6Þ

The evolution of the purity is P ¼ detðΣÞ−1=2 and the
rate of displacement is ΔX0 ¼ dhXaþϵ −Xai=dϵjϵ¼0 in
phase space, where X ¼ ðx̂1; x̂2Þ and the matrix Σi;j ¼
1
2
hx̂ix̂j þ x̂jx̂ii − hx̂iihx̂ji of covariances of the quadrature

operators x̂1 ¼ ðâ† þ âÞ and x̂2 ¼ iðâ† − âÞ [25].
An arbitrary pure single-mode Gaussian state jψi can be

obtained from the vacuum state j0i by applying the

operators of rotation R̂, displacement dDðαÞ, and squeezingdSðsÞ, expressed as jψi ¼ R̂ D̂ Ŝ j0i [15,25]. For this
Gaussian probe with an add-drop ring resonator, the
maximum of QFI is at r1 ¼ ar2 and ϕ ¼ 2πm, m∈Z,
given by

QGðaÞ ¼ ðjαj2 þ sin h2sÞ 4r22ηd
ð1 − ðr2aÞ2Þð1 − r22Þa

: ð7Þ

The termðjαj2 þ sin h2sÞ equals to the mean photon number
in this bright squeezed state.
Regarding the coherent state, which is a special case of

the single-mode Gaussian state, the maximum QFI is
achieved at r1 ¼ ar2 and ϕ ¼ 2πm, m∈Z. The maximum
QFI is given by

QcðaÞ ¼ jαj2 4r22ηd
ð1 − ðr2aÞ2Þð1 − r22Þa

: ð8Þ

Note that this condition is the critical coupling and resonant
condition, which is referred to the optimal operating point

in ring resonator-based strategy for achieving maximum
QFI by pure single-mode Gaussian probe. Under the
optimal operating point, the coherent state provides equiv-
alent performance to that of arbitrarily bright pure single-
mode squeezed probe with the same mean photon number.
Governed by Eqs. (4) and (5), the phase and loss

imparted on the input bus waveguide both depend on a.
The following upper bound on the QFI can be derived when
estimating a [26]:

QðaÞ ≤ N̄0

4η2rð∂aθrÞ2 þ ð∂aηrÞ2
ηrð1 − ηrÞ

≔ Qr: ð9Þ

Substituting ηr and θr into Eq. (9) yields

Qr ¼ N̄0

4r22ηd
ð1 − ðr2aÞ2Þð1 − r22Þa

; ð10Þ

which is identical to QcðaÞ. In other words, the upper
bound on the QFI is tight for the pure single-mode
Gaussian probe in resonator-based strategy.
Therefore, when employing resonator-based strategy, the

optimal precision is given by

ðΔ2aÞr ¼
ð1 − ðr2aÞ2Þð1 − r22Þa

4N̄0r22ηd
: ð11Þ

It can be achieved by using coherent state. From Fig. 2, it is
evident that the precision improvement based on resonator-
based strategy can surpass the limits of using optimal
quantum light sources in single-pass strategy.
To approach the optimal operating point, we can first

employ the single-frequency laser to lock the wavelength at
the resonant wavelength, satisfying the condition
ϕ ¼ 2πm, m∈Z, and then tune the coupling state to meet
critical coupling condition(a ¼ r1=r2). The corresponding
a can be deduced from the optical intensity measured at the
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FIG. 3. (a) Two types of ring resonators: add-drop ring and all-pass ring, where the analyte can change a of the ring. (b) The
relationship between the output ηr and a for various types of ring resonators. Parameters are as follows: for all pass, r ¼ 0.85; for add
drop, r1 ¼ r2 ¼ 0.85. (c) The variance of a in bosonic loss estimation normalized by the mean input photon number. Parameters for the
resonator-based strategy are as follows: r1 ¼ r2 ¼ 0.85.
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end of the through port. In an add-drop ring, the drop port
can also serve as the monitor.
The photon number variance hΔ2n̂i under this intensity

measurement can be expressed as [15]

hΔ2n̂i ¼ η2Δ2N0 þ ηð1 − ηÞN0: ð12Þ

The variance in estimating a at the optimal operating
point is

Δ2aIjr1¼ar2;ϕ¼2πm ¼ hΔ2n̂i
���� ∂hn̂i
∂a

����
−2

¼ ð1 − ðr2aÞ2Þð1 − r22Þa
4N̄0r22ηd

; ð13Þ

which can saturate the precision bound ðΔ2aÞr. As illus-
trated in Fig. 3(c), the coherent state can achieve the
quantum Cramer-Rao bound at the optimal operating point
with intensity measurement, being near optimal at other
conditions.
The signal-to-noise ratio (SNR) at optimal operating

point induced by the observable n̂ in the task of estimating
a is defined as [27]

Sa½n̂� ¼
½∂ahn̂i�2
hΔ2n̂i ¼ 4N̄0r22ηd

ð1 − ðr2aÞ2Þð1 − r22Þa
; ð14Þ

which is the reciprocal of Eq. (13). SNR is also maximum
at optimal operating point.
Experiment—To experimentally validate the resonator-

based strategy, we designed and implemented an exper-
imental setup as depicted in Fig. 4. The experiment begins
with the generation of a coherent state jαi using a single-
frequency laser. This state is then directed into a multi-
functional polarization controller (MPC), where we finely
tune a to approach a ¼ r1=r2. Subsequently, the light is
guided towards the on-chip symmetrical racetrack-type ring
resonator configured with an equal coupling coefficient,
i.e., r1 ¼ r2 for interaction. The output of the ring is
measured using a homodyne detector, and the data are
recorded by an oscilloscope. The through port intensity will
be zero at the optimal operating point, which indicates that
the probe is fully extracted by the resonator.
We alter a within the ring through the polarization

control. Upon the entry of the fiber into the silicon chip,
the polarization is reconfigured according to the waveguide
modes supported by the chip [28]. The transmissivity of a
associated with these modes exhibits different responses to
changes in input polarization. Besides, different modes
have different resonant wavelengths. In our experimental
setup, the ring exclusively supports the fundamental modes
of transverse-electric (TE) and transverse-magnetic (TM)
and the input wavelength matches the resonant wavelengths
of the TE mode. While maintaining the same optical

intensity and slightly varying proportions of TE and TM
inputs, the ring experiences changes in the overall attenu-
ation coefficient aeff due to the differential responses of TE
and TM modes:

η ¼ ð1 − bÞ · ηTE þ b · ηTM

¼ r22a
2
eff − 2r1r2aeff cosϕþ r21

1 − 2r1r2aeff cosϕþ ðr1r2aeffÞ2
; ð15Þ

where b → 0, r1 ¼ r1TE , r2 ¼ r2TE ,

aeff ¼
�
1 − bþ b

�
r2TMaTMþr1TM
1þaTMr1TM r2TM

�
2
�
aTE

1 − bþ b
�ðr2TMaTMþr1TM Þr2TE

1þaTMr1TM r2TM

�
2
a2TE

ð16Þ

(SupplementalMaterial, noteAprovides the derivation [29]).
We have also considered other effects of polarization

alteration [39]: self-coupling coefficient r and the effective
refractive index. On the one hand, from Eq. (15), self-
coupling coefficients remain consistent with subtle changes
in polarization. Additionally, the ring in our setup is a
symmetrical structure with identical coupling sections. At
the optimal operating point, where a ¼ r2=r1, simultane-
ous variations in r1 and r2 can also counteract the effects of
changes in the coupling coefficient. On the other hand, the
shift in resonance wavelength due to changes in polariza-
tion is less than 1 pm with negligible perturbation from the
optimal operating point (Supplemental Material, note E
provides more details [29]).
In this proof-of-principle experiment, it is important to

have precise control of the resonant wavelength.
Additionally, resonators exhibit notable sensitivity to ther-
mal fluctuations, increasing complexity to achieving
stability [40]. Hence, we use a single-frequency locked

FIG. 4. Experiment setup of resonator-based strategy. The
symmetrical (r1 ¼ r2) racetrack ring resonator with attenuation
coefficient a is employed to be measured. The MPC, multi-
function polarization controller, introduces the change of awithin
the ring. The homodyne detector is for measurement, while the
oscilloscope is employed for monitoring and recording data.
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laser with narrow linewidth and employ a customized
miniature cooling chamber to regulate the temperature of
the ring resonator, maintaining the resonant wavelength
stability.
The experimental results are shown in Fig. 5.We firstmake

resonator work at the critical operating point. In practical
experiment, a is at 0.96. Keeping the input optical power
constant at −25.82 dBm, with a sampling time τ ¼ 1 ns as
the integration time for a single pulse, the corresponding
number of photons per pulseNτ is 2.0415 × 104. The average
number of photons is N0 ¼ kNτ, directly proportional to
the number of optical pulses k. We increased the number of
input optical pulses at different strategies and calculated the
corresponding standard deviations. The result is illustrated in
Fig. 5(a). Even in the presence of significant electrical noise
and without fully reaching the optimal operating point, it can
still be observed that the resonator-based strategy can surpass
the standard quantum limit.
In Fig. 5(b), we are primarily focused on how the

variance fluctuations of the measured a change near the
optimal operating point. The input optical power of
the system is −14.50 dBm, with the wavelength locked
at 1550.0172 nm. Subsequently, a is gradually adjusted
from 0.870 to 0.931, and 10 003 data points are collected in
each iteration to calculate the variance. The red line
represents Δ2ar, signifying the precision limit of resona-
tor-based strategy. The blue line represents Δ2aI in esti-
mating a with intensity measurement, and the blue dots
depict the experimental results within this range. To be
clarified, both experimental and theoretical data are nor-
malized, respectively, at a0 ¼ 0.870. It becomes evident
that the variance aligns closely with the theoretical expect-
ations over this range. Furthermore, as we approach the
optimal operating point, a ¼ 1, the variance with intensity
measurement keeps decreasing and gradually approaches
the precision limit of the resonator-based strategy.

Remarkably, we also observe that when a → 1, the
output light intensity gradually diminishes to zero. There
is still an astonishing signal-to-noise ratio improvement as
illustrated in Fig. 5(c). In experiment, the SNR at a ¼
0.931 attains a threefold enhancement compared to that
at a0 ¼ 0.870.
Discussion—Here we assume resonators work in steady-

state during measurement. When the speed of change in
attenuation coefficient (namely, da=dt) is very slow com-
pared to the speed of establishing steady state in the
resonator, it can be considered as a slowly varying lossy
channel and our approach is fast enough to measure the
time-dependent losses. Typically, the response time to
establish a steady state is on the order of 10−9 sec, or
even less, which is sufficient for detecting most time-
varying scenarios. Although the experimental demonstra-
tion is done for measuring losses of the ring resonator itself,
the resonator-based strategy can be applied to more general
scenarios. Physically, it can be implemented in various
types of optical resonators, such as a Fabry-Perot cavity [30]
(Supplemental Material, note B provides more details [29]).
It can be employed across various physical media including
optical fibers [31,32] and free space [33]. When optical
resonators meet the conditions for critical coupling and
resonance, our approach can be readily extended beyond
integrated photonics and ring resonators.
Conclusion—In summary, we have demonstrated a proof-

of-principle experiment of resonator-based strategy in
bosonic loss estimation, which provides a practical way to
surpass the quantum limit with coherent state.We investigate
the measurement capability of the add-drop ring resonator,
which can avoid ambiguity encountered with the all-pass
ring. Moreover, the effect of mode perturbation and other
impacts of disturbance toward the resonator are theoretically
analyzed for practical purposes. Finally, the experimental
resonator-based strategy presented in this Letter sheds light

(a) The standard deviation (b) The variance of attenuation coefficient (c) SNR near optimal operating point

FIG. 5. The experimental results. (a) TheΔa obtained by different strategies. (b) The blue line represents theoreticalΔ2awith intensity
measurement, while the blue dots represent the corresponding experimental data within this range. The red line depicts Δ2ar, indicating
the precision bound determined by resonator-based strategy. The result normalized both experimental and theoretical data using variance
achieved at a ¼ 0.870 as reference. (c) The signal-to-noise ratio near the optimal operating point shows great improvement. As
reference, SNR0 refers to the SNR achieved at a0 ¼ 0.870.
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on the development of compact high-precision sensors
related to bosonic loss estimation [41–43].
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