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With the control of increasingly complex quantum systems, the relevant degrees of freedom we are
interested in may not be those traditionally addressed by statistical quantum mechanics. Here, we employ
quantum channels to define generalized subsystems, capturing the pertinent degrees of freedom, and obtain
their associated canonical state. We show that the generalized subsystem description from almost any
microscopic pure state of the whole system will behave similarly to its corresponding canonical state. Such
canonical typicality behavior depends on the entropy of the channel used to define the generalized
subsystem.
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Introduction—Ensembles are key ingredients in pillar
fields as thermodynamics and statistical mechanics. An
ensemble formalizes the idea that for complex systems one
cannot control all its degrees of freedom as to prepare it in a
well-defined state. In each run of the experiment only few
“macroscopic” quantities are fixed, and any “microscopic”
state that is consistent with the macroscopic quantities can
be prepared. The collection of such compatible microscopic
states forms the ensemble of a given experimental scenario.
Two of the most prevailing ensembles in physics are the

microcanonical and the canonical ensembles. For the first
the system is isolated and formed by a large number of
degrees of freedom, with some macroscopic properties
having well defined values. The second can be seen as the
description of a subsystem, with fixed number of degrees of
freedom, of the microcanonical ensemble. The canonical
ensemble thus characterizes the situation where macro-
scopic properties are allowed to vary within a given
subsystem, while such properties are fixed when consid-
ering the whole system.
While the use of ensembles has been very successful,

they introduce a probabilistic character to the microscopic
description, which can be argued deterministic. In a given
run of an experiment one might expect that all properties of
the probed system are fixed, and not just the few controlled
macroscopic quantities. Within this reasoning, the micro-
scopic state is well defined, albeit unknown. To reconcile
this deterministic perspective with the overwhelming suc-
cess of the probabilistic description is one of the main
discussions in the foundations of statistical mechanics since
Boltzmann. The most common justification, using the

microscopic laws of mechanics, invokes chaos theory
and the ergodic hypothesis [1]. Others consider an infor-
mation theory approach, exploiting the principle of maxi-
mum entropy [2,3].
Another possibility is the so-called typicality argument:

almost all microscopic states which are compatible with a
given preparation procedure will behave similarly to the
ensemble description for any macroscopic property [1].
Such a method had been already proposed by Boltzmann,
and found its way to the quantum domain via different
approaches to obtain coarse-grained statistics from quan-
tum systems [4–7]. The latter has remained forgotten until
the recent reanalysis of the typicality argument from the
quantum information perspective [8–10]—finding applica-
tions in areas ranging from entanglement theory [11,12],
quantum thermodynamics [13], passing through condensed
matter [14], and going all the way to black-hole theory
[15,16]. In this modern mindset, canonical typicality
asserts that any pure state from the whole system, that
abides by the fixed macroscopic quantities defining a
preparation scheme, will be locally, i.e., for the subsystem,
close to the canonical state. How close in this perspective
will depend on various ingredients and are somehow
a formalization of the “thermodynamical limit” (details
below).
Crucial in the above discussion is the concept of a

subsystem with a fixed number of degrees of freedom.
Traditionally, we equate this with the idea of a fixed
number of particles, which is a very natural attitude when
dealing, for instance, with a gas of weakly interacting
atoms. More recently, the idea of subsystems was extended
to cover collective degrees of freedom. An example of that
is a superconducting metal, with Cooper pairs forming
individual entities which are delocalized in space: here the*Contact author: pscorreia@uesc.br
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quasiparticle description is more pertinent [17]. With the
control of complex quantum systems new forms of sub-
systems are becoming relevant. Think, for instance, of an
optical lattice where individual atoms are loaded onto
potential wells [18,19], but their reading is done in blocks
that contains multiple wells: in this case, a coarse-grained
description is more convenient [20,21].
To deal with all possible definitions of subsystems, we

employ the theory of quantum channels, following [22], to
define generalized subsystems, and we put forward their
corresponding canonical ensemble. We also establish the
conditions for these generalized scenarios to admit a
canonical typicality reasoning, thus extending the typicality
interpretation to the foundations of statistical mechanics
over vast and meaningful situations. The “thermodynam-
ics” of a given experimental scenario thus depends on what
can be measured, i.e., on what can be called an effective
particle.
Canonical typicality—We briefly review the basics of

canonical typicality for the case in which the subsystem is
just a subset of the total system [8,23]. Consider a total
system to which we assign a Hilbert space HT—for
instance, a tensor product of N individual particles’ spaces.
To define a subsystem we split the total space in two parts,
HT ¼ HS ⊗ HE; with HS associated with the subsystem,
andHE associated with the rest of the system and it is seen
as an environment for the first. We then define a restricted
subspace HR ⊆ HS ⊗ HE in which all the states abide by
the macroscopic constraints.
The total system’s description, which represents igno-

rance of any other constraint than the already contemplated
by the restriction, is the microcanonical state ER ¼ 1R=dR,
with 1R the projector into HR and dR ¼ dimðHRÞ. The
system’s canonical stateΩtrE is then obtained by tracing out
the environmental degrees of freedom: ΩtrE ¼ trEðERÞ.
The canonical typicality approach is based in showing

that for almost all states jψi∈HR, taken uniformly at
random (from the unitarily invariant measure), the local
state of the subsystem, ϱψtrE ¼ trEðjψihψ jÞ, is close to the
canonical state ΩtrE when the effective dimension of
the environment, deffE ¼ 1=trðΩ2

trSÞ [with ΩtrS ¼ trSðERÞ],
is much bigger than the subsystem dimension
dS ¼ dimðHSÞ. It was shown that the average distance is
bounded as follows:

DðϱψtrE ;ΩtrEÞψ ≤
1

2

ffiffiffiffiffiffiffi
dS
deffE

s
: ð1Þ

Hereafter, the overbar means the average taken over the
uniform measure, andDðϱ; σÞ ¼ kϱ − σk1=2 with the trace
norm defined as kAk1 ¼ tr

ffiffiffiffiffiffiffiffiffi
A†A

p
. Moreover, employing

Levy’s lemma [24,25] (see Sec. I in Supplemental Material
[26]), they showed that the probability for ϱψtrE being further
away from ΩtrE decays exponentially with dR. The

canonical state is then recovered from any pure state in
the restricted subspace when dR ≫ 1 and dS ≪ deffE , which
are then the formal requirements for equilibration.
Generalized subsystems—In the above scenario, the

subsystem is a simple partition of the preestablished total
Hilbert space. Within statistical mechanics it is common-
sensical to split the total system into a system of interest,
the intended subsystem, and its environment, for which no
control is assumed. Such a split is often possible due to the
weak interaction between the two parts. By partial tracing
the environmental degrees of freedom, we obtain the
subsystem description.
However, to find a physically motivated partition some

reshape the total Hilbert space might be necessary. A text-
book example of this is the Hydrogen atom case. A initial
description in terms of an electron and a proton is
rearranged into the degrees of freedom of center-of-mass
and relative-particle. In this new split, both effective
particles are decoupled and we can solve Schrödinger’s
equation. The idea of quasiparticles, ubiquitous in con-
densed matter physics, is a somewhat more recent example
of this reshuffling of Hilbert’ space in order to find
meaningful effective descriptions. Once the more compel-
ling degrees of freedom are found, the remaining ones can
be seen, and treated, as an effective environment.
In the aforementioned cases, the Hilbert space rearrange-

ment was done by a unitary transformation (like
Bogoliubov transformations [27]), and the focus on a
subsystem was done by tracing out the weakly interacting
degrees of freedom of the effective environment. In the
quantum information lingo, this definition of subsystem is
specified by the quantum channel ΛtrE∘U∶ LðHTÞ ↦
LðHSÞ which acts as ΛU

trEðϱÞ ¼ trEðUϱU†Þ. The canonical
typicality remains accurate for this unitary reshuffle.
While very useful and successful, this is not the only way

to obtain effective subsystems of quantum systems. As
established in [22], and further developed in [20,21,28–34],
generalized subsystems can be achieved by exploiting the
most general form of a quantum channel Λ∶ LðHTÞ ↦
LðHSÞ [35]:

ΛðϱÞ ¼ trNðVϱV†Þ: ð2Þ

In the above expression V∶ HT ↦ HS ⊗ HN is an isom-
etry. Like unitary transformations, isometries also preserve
the scalar product as V†V ¼ 1T . However, as isometries
might change the space dimension, VV† ¼ 1SN is a
projector onto HS ⊗ HN . It is this very change of dimen-
sions, empowered by the isometry, which can be exploited
to obtain generalized subsystems. HT is reshuffled to
HS ⊗ HN , with HN being associated with an effective
(possibly mathematically abstract) environment for
the generalized subsystem acting on HS. Like before,
the now general effective environment is discarded by
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the partial trace. An explicit example of a generalized
subsystem will be given in what follows.
Canonical typicality for generalized subsystems—Here,

we present the main result of this work. Consider a system
to which we assign a total spaceHT , and suppose that such
a system obeys some arbitrary restriction R, and thus act on
HR ⊆ HT . Like before, the description of the system is
given by its microcanonical state ER ¼ 1R=dR. Our gen-
eralized canonical state, i.e., the description of the gener-
alized subsystem, will be given by the action of a general
quantum channel Λ∶ LðHRÞ ↦ LðHSÞ on the microca-
nonical state: ΩΛ ≔ ΛðERÞ.
For the generalized canonical typicality principle we are

then interested in showing that for almost any jψi∈HR,
taken uniformly at random, we will have ϱψΛ ≔ Λðjψihψ jÞ∼
ΩΛ. Following Ref. [8], this is done in two parts.
The first part is to bound the average distance between

ϱψΛ and ΩΛ. In Sec. II of [26] we show that

DðϱψΛ;ΩΛÞψ ≤
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dStrðJ2ΛÞ

q
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dS(1 − SLðΛÞ)

p
: ð3Þ

Here, JΛ ≔ Λ ⊗ 1ðjϕþihϕþjÞ is the Choi state of the
channel Λ, with jϕþi ¼ P

i jiii=
ffiffiffiffiffiffi
dR

p
∈HR ⊗ HR. The

Choi state JΛ is isomorphic to Λ. Using this relationship,
in [36,37] trðJ2ΛÞ was defined as the channel purity, and
SLðΛÞ ¼ 1 − trðJ2ΛÞ as the channel linear entropy.
As expected, the bound in (3) achieves its maximum

value, 1
2

ffiffiffiffiffi
dS

p
when the effective environment’s dimension is

one, dimHN ¼ 1. In this case, no information about the
microscopic description is discarded; the subsystem is the
full system. The most common example is that of a unitary
channel, as in a closed dynamics, and thus with zero entropy.
Considering the general dR-depolarizing channel Λλ

dR
ðψÞ ¼

λð1R=dRÞ þ ð1 − λÞψ , with 0 ≤ λ ≤ 1þ 1=ðd2R − 1Þ2, the
bound in (3) is 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½λð2 − λÞ=dR� þ dRð1 − λÞ2

p
(proof in

Sec. Vof [26]). As λ increases to 1, the channel approaches
the maximum entropy channel, thus leading to the smallest
value for the bound, 1

2

ffiffiffiffiffiffiffiffiffiffi
1=dR

p
. Equation (3) reduces to

Eq. (1) in the special case where Λ ¼ trE (proof in Sec. III
of [26]).
Broadly speaking, the average distance between a state

ϱψΛ ¼ Λðjψihψ jÞ, for jψi sampled uniformly from S2dR−1,
to the canonical state ΩΛ ¼ Λð1R=dRÞ will be smaller the
more information about jψihψ j is thrown away by Λ, i.e.,
the higher is the channel entropy.
Another way to understand the result in Eq. (3), is by

explicitly using the expression for Λ, Eq. (2):

SLðΛÞ ¼ 1 − tr
�½trNðV ⊗ 1jϕþihϕþjV† ⊗ 1Þ�2�;

which can be interpreted in terms of the entanglement in
V ⊗ 1jϕþi∈ ðHS ⊗ HNÞ ⊗ HR with respect to the parti-
tion that splits the effective environment against the rest. If

the effective environment is separable from the effective
system and the copy in HR, then no information is lost by
tracing it out. In the other direction, the bound in (3) is
tighter the stronger is the entanglement, generated by the
isometry V, between the effective system and its effective
environment.
The second part of the canonical typicality result follows

from the application of Levy’s lemma to the distance
between Λðjψihψ jÞ and ΩΛ. For any state uniformly
sampled from S2dR−1 it follows that

Prψ
�jDðΛðjψihψ jÞ;ΩΛÞ−DðϱχΛ;ΩΛÞχ j> ϵ

�
≤2e−CðdRϵ2=4η2ΛÞ:

ð4Þ

In the above expression C is a constant that can be taken
equal to 2=9π3, and ηΛ ≔ maxϱ;σkΛðϱÞ − ΛðσÞk1=kϱ −
σk1 is the channel Lipschitz constant. See Sec. I of [26]
for details.
From the first part of the result, Eq. (3), we have that if

the channel’s entropy is large, the average distance between
Λðjψihψ jÞ and ΩΛ is small. Putting this together with
Eq. (4), the probability for DðΛðjψihψ jÞ;ΩΛÞ being further
from its mean value by an amount ϵ decays exponentially
with ϵ2 and dR. In this generalized scenario, the conditions
for the canonical typicality are then SLðΛÞ ≈ 1 and dR ≫ 1.
Application: Blurred and saturated detector—Consider

hundreds of cold atoms loaded in an optical lattice.
Nowadays, this system can be highly isolated from external
environments during the experiment. However, fully
describing its quantum state may be experimentally unfea-
sible, and theoretically intractable. It is thus highly desir-
able to obtain effective descriptions which are more
manageable while not losing experimental relevance.
Concretely, consider N two-level atoms in an optical

lattice, one atom per potential well, and no interactions.
The Hamiltonian describing this situation is then H ¼
−ℏω

P
N
i¼1 Zi=2, with Zi the usual z Pauli matrix for the

ith atom. Suppose that due to a energy restriction, a fractionp
of the atoms are excited, j1i, and the rest are in the ground
state, j0i. Accordingly, HR ⊆ HT ¼ ðC2Þ⊗N has dimension
dR ¼ ð NNp

Þ. The microcanonical state for this scenario is

simply ER ¼ P
s∶jsj¼Np jsihsj=dR. Here, s∈ f0; 1gN are

strings with N bits, and jsj represents the number of excited
atoms, i.e., the number of 1’s in s.
In this type of experiment, the energy measurement of

the atoms is frequently done with a fluorescence technique:
over the system is shone a laser whose frequency is chosen
to be resonant with a transition of the excited state with a
third level (this level is only used in the measurement
process, but not to encode information). This level is broad
and the electron quickly decays back to j1i by emitting a
photon in a random direction, and the process repeats. In
this way, if a given atom is in j1i, it will scatter light. On the
contrary, if the atom is in j0i, the laser is far from resonance
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and no light is scattered. The light scattered by the various
atoms is collected by a microscope whose resolution
determines if the light scattered by neighboring atoms
can be resolved.
Consider a situation where the fluorescence measure-

ment cannot resolve individual wells, but it takes blocks of
n sites. In this way, n atoms behave as a single effective
atom: if at least one atom is excited, light will be scattered;
if no atom is excited, no light is scattered. Which canonical
state should be assigned to this system? This situation is not
the usual system-environment split, but our formalism can
be employed to construct the generalized canonical state.
To describe this scenario, inspired by previous

works [20,21,28,32], we define the completely positive
trace-preserving map Λn→1

BnS ∶ LðC⊗n
2 Þ ↦ LðC2Þ:

Λn→1
BnS ½js0ihs00j� ¼

8>>>>>>>><
>>>>>>>>:

j0ih0j; if s0 ¼ s00 and js0j ¼ 0;

j1ih1j; if s0 ¼ s00 and js0j ≥ 1;
1ffiffiffiffiffiffiffiffi
2n−1

p j0ih1j; if js0j ¼ 0 and js00j ≥ 1;

1ffiffiffiffiffiffiffiffi
2n−1

p j1ih0j; if js0j ≥ 1 and js00j ¼ 0;

0; otherwise:

In the above, s0; s00 ∈ f0; 1gn are strings with n bits. The
factor of 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n − 1

p
in the coherence terms is the largest

possible while keeping Λn→1
BnS completely positive. There is

no effective coherence from terms as js0ihs00j with s0 ≠ s00
and js0j; js00j ≥ 1, because these states cannot be distin-
guished by the detection process. Notice that such a map is
not equivalent to neither a partial trace nor to an unitary
reshuffle followed by partial trace, as the result j1ih1j is
obtained if at least one atom is excited independently of its
position [38].
Therefore, if we split the N atoms of the total system into

k ¼ N=n blocks of n atoms, we can obtain a generalized
effective subsystem description via the map:

ΛN→k
BnS ¼ Λ

N
k→1

BnS ⊗ Λ
N
k→1

BnS ⊗ � � � ⊗ Λ
N
k→1

BnS :

The effective system is then equivalent to k two-
level atoms.
For this scenario, we can evaluate the generalized

canonical state, ΩΛBnS
¼ ΛN→k

BnS ðERÞ, to be

ΩΛBnS
¼ 1

dR

XminðNp;kÞ

jsj¼⌈kp⌉

Xjsj
q¼0

� jsj
q

�� N
k q

Np

�
ð−1Þjsj−qΠjsj:

In the above expression Πjsj is the projector onto the
subspace spanned by the strings with number of 1’s equal
jsj. The derivation is shown in Sec. IV of [26].
Given our results, we expect to observe the canonical

typicality whenever dR ≫ dS ¼ 2k. Within these assump-
tions, ΛN→k

BnS will disregard a considerable amount of

information about the microscopic description, i.e.,
SðΛN→k

BnS Þ ≈ 1. In this case, selecting any state at random
in HR and applying ΛN→k

BnS to it will lead to a good
approximation of ΩΛBnS

.
Fixed the specified Hamiltonian, in Fig. 1 we compare

two scenarios with a subsystem of k spins: the first one we
simply traced out N − k spins, i.e., we apply ΛtrN−k

. The
second one is the scheme described above, with the
subsystem of k spins being obtained by applying the
map ΛN→k

BnS .
First, note that the canonical states for the two situations

are very different. Noticing that the energy of the system is
proportional to jsj, in Fig. 1(a) we plot the energy
distribution assuming N ¼ 10 000, Np ¼ 200 and k ¼
100 for both cases. The distribution more to the left is

FIG. 1. (a) Canonical energy distributions. The probability
distribution of jsj (which is proportional to the system energy) for
two scenarios: the points on the left (circles) represent the energy
distribution for the partial trace case, while the points on the right
(squares) are related to the blurred and saturated situation. For
this plot we used N ¼ 10 000, Np ¼ 200 and k ¼ 1000.
(b) Canonical typicality for the blurred and saturated generalized
subsystem. Filled markers represent the average distance to the
generalized canonical state, and the hollow markers show the
bound in Eq. (3). The underlying system is composed by N ¼ 8
spins, with the red (squares) points representing the case where
k ¼ 2 and the blue (circles) points the case k ¼ 4.
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the one associated with the partial trace, whereas the one
more to the right is related to the blurred and saturated
detection. From this result it is clear that the appropriate
canonical state heavily depends on the generalized sub-
system description, and not exclusively on the underlying
particle structure.
The second point concerns the canonical typicality for

the blurred and saturated detection, as this aspect for the
partial trace case has been already explored in [8]. In
Fig. 1(b) the solid symbols refer to the mean and variance
for the distribution of DðϱψΛBnS

;ΩΛBnS
Þ with ψ taken at

random from the uniform measure, while the hollow
markers show the bound

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dSð1 − SLðΛBnSÞÞ

p
=2. In this

plot, the underlying system is assumed to be formed by 8
spins, N ¼ 8, and the case where k ¼ 4 is shown in blue
(circles), while the case of k ¼ 2 is shown in red (squares).
All the quantities are shown as a function of the number of
excitations, Np, which is directly linked to the restriction
dimension dR. One immediately observes that as k
decreases, the smaller are the mean distances and the
bound. Also it is clear that the bound is tighter the bigger
is dR. Both behaviors are can be understood by noticing
that, for fixed N, the smaller k and the larger dR are, the
more information about the microscopic state is being
thrown away, i.e., the larger is the channel entropy. Last,
from the error bars, the concentration around the mean
value gets stronger as the fraction of excited spins
increases. In Eq. (4) this is expressed by the Lipschitz
constant of ΛBnS, which is smaller than one and decreases
as Np grows. For instance, for Np ¼ 7 no block of 4 (or 2)
spins will have all the spins in the ground state, and thus the
only possible state for the k effective spins is to have all of
them in the excited state. Therefore, all pure states in the
subspace with Np ¼ 7 are mapped to k excited effective
spins and the canonical state is also given by k excited state,
and as such their distance and ηΛBnS

are both zero.
Conclusions—This work is a first step toward a statistical

mechanics of generalized subsystems. We introduced the
canonical state for generalized subsystems and showed that
there are situations where it is drastically different from the
canonical state one would obtain by associating the relevant
degrees of freedom of a physical scenario with the system’s
particles. We also showed that the phenomena of canonical
typicality is also present for generalized subsystems, and
thus key ingredients of traditional statistical mechanics are
inherited by this new picture. Given our all-encompassing
description of physical systems, it became explicit that the
quantity which controls the emergence of canonical typ-
icality is the entropy of the channel used to define the
generalized subsystem.
One last remark: in the presented formalism we

employed quantum channels exclusively to define the
generalized subsystems. However, given the formalism’s
flexibility, we could changeΛ by a composition of channels
as Λ∘Γ, with Γ∶ LðHRÞ ↦ LðHRÞ, without altering any of

the presented results. In this situation Γ can be thought as a
pre-processing of the underlying description, with pure
states of HR generically being mapped into mixed ones.
Such a possibility is interesting in at least two ways. First it
shows that the phenomena of canonical typicality is robust
to noise, which might substantiate the success of ensem-
bles. Second, this might alleviate the requirement for
canonical typicality that the underlying states whose
effective description behave similarly to the canonical
state, are states taken from the uniform measure. For
complex systems we do not expect nature to be able to
efficiently sample from such a measure [39]. By prepro-
cessing the states from the uniform measure, we are
effectively inducing a new measure, which might lead to
more physically feasible samples. For instance, it is
expected that the average amount of entanglement to drop
after the preprocessing.
Altogether, the presented formalism not only gives a

more suitable description of the statistical mechanics of
complex quantum systems, but it also sheds light on some
conceptual issues of traditional statistical mechanics.

Acknowledgments—This work is supported in part by the
National Council for Scientific and Technological
Development, CNPq Brazil (projects: Universal Grants
No. 406499/2021-7 and No. 409611/2022-0), and it is
part of the Brazilian National Institute for Quantum
Information. T. R. O. acknowledges funding from the Air
Force Office of Scientific Research under Grant
No. FA9550-23-1-0092.

[1] J. L. Lebowitz, Phys. Today 46, No. 9, 32 (1993).
[2] E. T. Jaynes, Phys. Rev. 106, 620 (1957).
[3] E. T. Jaynes, Phys. Rev. 108, 171 (1957).
[4] S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghi,

Eur. Phys. J. H 35, 173 (2010).
[5] I. E. Farquhar, P. T. Landsberg, and W. E. Pauli, Proc. R.

Soc. A 239, 134 (1957).
[6] P. Bocchieri and A. Loinger, Phys. Rev. 111, 668 (1958).
[7] R. Zwanzig, Phys. Rev. 124, 983 (1961).
[8] S. Popescu, A. t. Short, and A. Winter, Nat. Phys. 2, 754

(2006).
[9] P. Reimann, Phys. Rev. Lett. 101, 190403 (2008).

[10] J. Gemmer, M. Michel, and G. Mahler, Quantum Thermo-
dynamics: Emergence of Thermodynamic Behavior Within
Composite Quantum Systems, Lecture Notes in Physics
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2004).

[11] P. Hayden, D. W. Leung, and A. Winter, Commun. Math.
Phys. 265, 95 (2006).

[12] M. Tiersch, F. de Melo, and A. Buchleitner, J. Phys. A 46,
085301 (2013).

[13] P. Strasberg, A. Winter, J. Gemmer, and J. Wang, Phys. Rev.
A 108, 012225 (2023).

[14] R. Steinigeweg, J. Gemmer, and W. Brenig, Phys. Rev. Lett.
112, 120601 (2014).

PHYSICAL REVIEW LETTERS 133, 060401 (2024)

060401-5

https://doi.org/10.1063/1.881363
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1103/PhysRev.108.171
https://doi.org/10.1140/epjh/e2010-00007-7
https://doi.org/10.1098/rspa.1957.0027
https://doi.org/10.1098/rspa.1957.0027
https://doi.org/10.1103/PhysRev.111.668
https://doi.org/10.1103/PhysRev.124.983
https://doi.org/10.1038/nphys444
https://doi.org/10.1038/nphys444
https://doi.org/10.1103/PhysRevLett.101.190403
https://doi.org/10.1007/s00220-006-1535-6
https://doi.org/10.1007/s00220-006-1535-6
https://doi.org/10.1088/1751-8113/46/8/085301
https://doi.org/10.1088/1751-8113/46/8/085301
https://doi.org/10.1103/PhysRevA.108.012225
https://doi.org/10.1103/PhysRevA.108.012225
https://doi.org/10.1103/PhysRevLett.112.120601
https://doi.org/10.1103/PhysRevLett.112.120601


[15] S. Lloyd, Black holes, demons, and the loss of coherence:
How complex systems get information and what they do
with it, Ph. D. thesis, Rockefeller University, 1988.

[16] P. Hayden and J. Preskill, J. High Energy Phys. 09
(2007) 120.

[17] V. L. Ginzburg and L. Landau, On the Theory of Super-
conductivity (Springer, New York, 2009).

[18] T. Fukuhara, S. Hild, J. Zeiher, P. Schauß, I. Bloch,
M. Endres, and C. Gross, Phys. Rev. Lett. 115, 035302
(2015).

[19] C. Gross and I. Bloch, Science 357, 995 (2017).
[20] C. Duarte, G. D. Carvalho, N. K. Bernardes, and F. de Melo,

Phys. Rev. A 96, 032113 (2017).
[21] P. Silva Correia and F. de Melo, Phys. Rev. A 100, 022334

(2019).
[22] R. Alicki, M. Fannes, and M. Pogorzelska, Phys. Rev. A 79,

052111 (2009).
[23] S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghì,

Phys. Rev. Lett. 96, 050403 (2006).
[24] M. Ledoux, The Concentration of Measure Phenomenon

(American Mathematical Society, Providence, 2001), p. 89.
[25] M. Tiersch, Benchmarks and statistics of entanglement

dynamics, Ph.D. thesis, University of Freiburg, 2009.
[26] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.133.060401 for de-
tailed proofs and further clarifications.

[27] S. N. Ruijsenaars, Ann. Phys. (N.Y.) 116, 105 (1978).
[28] O. Kabernik, Phys. Rev. A 97, 052130 (2018).

[29] G. D. Carvalho and P. S. Correia, Phys. Rev. A 102, 032217
(2020).

[30] C. Duarte, B. Amaral, M. T. Cunha, and M. Leifer,
arXiv:2011.10349.

[31] O. Kabernik, J. Pollack, and A. Singh, Phys. Rev. A 101,
032303 (2020).

[32] C. Pineda, D. Davalos, C. Viviescas, and A. Rosado, Phys.
Rev. A 104, 042218 (2021).

[33] P. S. Correia, P. C. Obando, R. O. Vallejos, and F. de Melo,
Phys. Rev. A 103, 052210 (2021).

[34] R. O. Vallejos, P. S. Correia, P. C. Obando, N. M. O’Neill,
A. B. Tacla, and F. de Melo, Phys. Rev. A 106, 012219
(2022).

[35] J. Watrous, The Theory of Quantum Information (Cam-
bridge University Press, Cambridge, England, 2018).

[36] W. Roga, M. Fannes, and K. Życzkowski, Phys. Rev. Lett.
105, 040505 (2010).

[37] W. Roga, K. Życzkowski, and M. Fannes, Int. J. Quantum.
Inform. 09, 1031 (2011).

[38] This can be easily apprehended in the simple case where two
atoms are seeing as a single effective atom due to the lack of
resolution in the measurement process, Λ2→1

BnS . In this case
we have the following map: j01ih01j ↦ j1ih1j,
j10ih10j ↦ j1ih1j, and j11ih11j ↦ j1ih1j. Clearly this can-
not be cast as a unitary transformation followed by the
partial trace of either one of the particles.

[39] D. Poulin, A. Qarry, R. Somma, and F. Verstraete, Phys.
Rev. Lett. 106, 170501 (2011).

PHYSICAL REVIEW LETTERS 133, 060401 (2024)

060401-6

https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1103/PhysRevLett.115.035302
https://doi.org/10.1103/PhysRevLett.115.035302
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1103/PhysRevA.96.032113
https://doi.org/10.1103/PhysRevA.100.022334
https://doi.org/10.1103/PhysRevA.100.022334
https://doi.org/10.1103/PhysRevA.79.052111
https://doi.org/10.1103/PhysRevA.79.052111
https://doi.org/10.1103/PhysRevLett.96.050403
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.060401
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.060401
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.060401
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.060401
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.060401
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.060401
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.060401
https://doi.org/10.1016/0003-4916(78)90006-4
https://doi.org/10.1103/PhysRevA.97.052130
https://doi.org/10.1103/PhysRevA.102.032217
https://doi.org/10.1103/PhysRevA.102.032217
https://arXiv.org/abs/2011.10349
https://doi.org/10.1103/PhysRevA.101.032303
https://doi.org/10.1103/PhysRevA.101.032303
https://doi.org/10.1103/PhysRevA.104.042218
https://doi.org/10.1103/PhysRevA.104.042218
https://doi.org/10.1103/PhysRevA.103.052210
https://doi.org/10.1103/PhysRevA.106.012219
https://doi.org/10.1103/PhysRevA.106.012219
https://doi.org/10.1103/PhysRevLett.105.040505
https://doi.org/10.1103/PhysRevLett.105.040505
https://doi.org/10.1142/S0219749911007794
https://doi.org/10.1142/S0219749911007794
https://doi.org/10.1103/PhysRevLett.106.170501
https://doi.org/10.1103/PhysRevLett.106.170501

