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A black hole evaporates by Hawking radiation. Each mode of that radiation is thermal. If the total state is
nevertheless to be pure, modes must be entangled. Estimating the minimum size of this entanglement
has been an important outstanding issue. We develop a new theory of constrained random symplectic
transformations, based on the assumptions that the total state is pure and Gaussian with given marginals. In
the random constrained symplectic model we then compute the distribution of mode-mode correlations,
from which we bound mode-mode entanglement. Modes of frequency much larger than ½kBTHðtÞ=ℏ� are
not populated at time t and drop out of the analysis. Among other relatively thinly populated modes (early-
time high-frequency modes and/or late modes of any frequency), we find correlations and hence
entanglement to be strongly suppressed. Relatively highly populated modes (early-time low-frequency
modes) can, on the other hand, be strongly correlated, but a detailed analysis reveals that they are
nevertheless very unlikely to be entangled. Our analysis hence establishes that restoring unitarity after a
complete evaporation of a black hole does not require any significant quantum entanglement between any
pair of Hawking modes. Our analysis further gives exact general expressions for the distribution of mode-
mode correlations in random, pure, Gaussian states with given marginals, which may have applications
beyond black hole physics.
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Hawking’s black hole information paradox has for
almost half a century held the place of one of the most
important unsolved problems in fundamental physics [1].
The paradox is based on two premises. The first is
Hawking’s own discovery that black holes radiate [2,3]
in the presence of quantum fields. Hawking showed that the
state of one mode of frequency about ω localized around
some time slice is thermal at the Hawking temperature,
which is determined by the black hole mass.
The second premise is that quantum mechanics holds

everywhere. Accordingly, closed quantum systems must
evolve unitarily if the probabilistic interpretation of quan-
tum theory is to hold true. This implies that an initially
pure state will remain pure forever. One can imagine a pure
state of matter collapsing into a black hole and then
radiating away in Hawking radiation. The total state of
all the radiation, after the entire black hole has dissolved

and given back its content to the remaining universe, should
thus be pure once again. The question is hence how this can
be possible if the states of all the single modes are thermal.
A selected set of recent reviews discussing the paradox and
ways to resolve it are [4,5] and [6]. Page was the first to
point out that if the second premise holds, then a resolution
of the paradox requires that modes be entangled [7,8].
We recall that the marginal over a subsystem A of a large

pure state jΨihΨj is the density matrix ρA ¼ TrBjΨihΨj,
where B is the complement of A [9]. A resolution of
Hawking’s paradox following Page is therefore an instance
of the quantum marginal problem [10,11]: Given a fixed
Hilbert space and a set of disjoint subsystems fAigLi¼1 with
complements fBigLi¼1 and density matrices fρigLi¼1, does
there exist a global pure state jΨihΨj in H, such that ρi ¼
TrBi

jΨihΨj for all i ¼ 1;…; L? In general, this is a too
involved problem, on the current level of quantum infor-
mation science. However, if we additionally assume that
the total state jΨihΨj is a pure Gaussian quantum state, the
problem is greatly simplified. In [12], two of the present
authors showed that the constraints of the Gaussian
quantum marginal problem for bosons [13] are easily
satisfied for a macroscopic black hole.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by Bibsam.

PHYSICAL REVIEW LETTERS 133, 060202 (2024)

0031-9007=24=133(6)=060202(7) 060202-1 Published by the American Physical Society

https://orcid.org/0000-0003-4906-3603
https://orcid.org/0000-0002-4172-0317
https://orcid.org/0000-0003-0295-250X
https://orcid.org/0000-0001-8864-6022
https://ror.org/026vcq606
https://ror.org/01ej9dk98
https://ror.org/01ej9dk98
https://ror.org/011dv8m48
https://ror.org/006x4sc24
https://ror.org/03r06fs10
https://ror.org/05f0yaq80
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.133.060202&domain=pdf&date_stamp=2024-08-07
https://doi.org/10.1103/PhysRevLett.133.060202
https://doi.org/10.1103/PhysRevLett.133.060202
https://doi.org/10.1103/PhysRevLett.133.060202
https://doi.org/10.1103/PhysRevLett.133.060202
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.kb.se/samverkan-och-utveckling/oppen-tillgang-och-bibsamkonsortiet/bibsamkonsortiet.html


In this work, we show that given any two modes, their
expected entanglement is vanishingly small when averag-
ing over all pure Gaussian states whose marginals match
Hawking’s calculation. To this end, we introduce a new
method to the study of randomGaussian states: we consider
the family of N-mode pure Gaussian states whose marginals
are thermal states. This set of states can be shown to be
compact and equipped with a natural measure induced from
the Haar measure of the symplectic group. This enables us to
find the probability distribution over correlations between
two modes at asymptotic infinity Iþ. Most of these corre-
lations are very small, which implies that the corresponding
mode-mode entanglement is also very small. Some specific
pairs of modes (to be described below) can be strongly corre-
lated in the constrained random Gaussian pure state ensem-
ble, but are nevertheless also very unlikely to be entangled.
Relation to other approaches—The literature motivated

by Hawking’s information paradox is large and still growing.
After the publication of the general reviews [4–6], sub-
stantial advances have been made: based on ideas from
holographic models and AdS [14,15], they led to a partial
understanding of microscopic origin of Bekenstein-Hawking
entropy through the ideas of entanglement wedges and
islands [16–18]. And recently, a family of black hole
microstates were proposed as explanation for the micro-
scopic origin of astrophyscial black hole entropy [19,20].
Our approach is complementary to these developments, as
we focus on properties of random states, and consider them
as a model for Hawking radiation which has escaped the
black hole. This point of view was initiated by Page, who
showed that the density matrix of a small subsystem is
almost surely close to thermal, if the possible pure states of
the entire system are sampled uniformly [21].
Page’s approach has been applied by substituting the

unknown dynamics inside a black hole with a random
unitary transformation, and then estimating entanglement
between Hawking radiation emitted before and after this
internal mixing [21–23]. Compared to Page’s approach,
and those derived from it, we consider not only one
subsystem but a large number of subsystems consisting
of all the modes of the system, and we assume that their
marginals are all thermal, as they would be in Hawking’s
theory. Furthermore, motivated by the observation that
most modes of the Hawking radiation emanate in a region
where gravity is not strong at the black hole horizon, we
here consider Gaussian states as approximation to the
physical state of the Hawking radiation.
More realistic microscopic models of black hole radia-

tion, however, may yield non-Gaussian states exhibiting
subleading corrections. If we had access to a zoo of self-
consistent models (classical collapsing black hole space-
time equipped with quantum field, such that Einstein’s
equations are satisfied with stress energy tensor of the
quantum field) to compute the final state, we could analyze
how close the respective final states are to the “typical”

one we studied. As the few existing models come with
their own assumptions (lower dimensions, violations of
Einstein’s equation, truncation of quantum degrees of
freedom, etc.), such a comparison is not available for
now. Let us therefore emphasize that our claim is not that
we found the correct final state of an evaporating black
hole, but that we demonstrated that potential resolutions of
the black hole information paradox may require relatively
little entanglement between the individual modes.
Pure Gaussian states with fixed marginals—Let x̂a ¼

ðq̂1; p̂1;…; q̂N; p̂NÞ be quadratures (generalized canonical
positions and momenta) of a system with N bosonic
degrees of freedom. We here focus on states with vanishing
expectation values hx̂ai ¼ 0. The covariance matrix of such
a quantum state contains the (symmetrized) expectation
values,

Cab ¼ 1

2
hx̂ax̂b þ x̂bx̂ai: ð1Þ

C is a positive semidefinite real symmetric matrix. Its
quantum origin is reflected in the Robertson-Schrödinger
uncertainty relations that Cþ iΩ ≥ 0 is positive semi-
definite as well, where iΩab1̂ ¼ ½x̂a; x̂b� ¼ x̂ax̂b − x̂bx̂a is
the symplectic form.
Gaussian bosonic states (mixed or pure) are fully

characterized by their covariance matrix, which can be
decomposed as

C ¼ SDST ð2Þ

where S∈Spð2NÞ is a real symplectic transformation and
D ¼ diagðd1; d1;…; dN; dNÞ gives the symplectic eigen-
values. For a pure state, we have di ¼ 1, i.e.,D ¼ 1, which
means every pure Gaussian state is the vacuum with respect
to its normal modes.
The marginal state over one pair of quadrature variables

ðqi; piÞ is Gaussian. In general, this state is mixed. It is
characterized by the 2 × 2 covariance matrix CðiÞ which by
construction is real, positive, and positive semidefinite, and
also satisfies the Robertson-Schrödinger uncertainty rela-
tions. It can therefore be

CðiÞ ¼ S2diagðμi; μiÞST2 ; ð3Þ

where μi ≥ 1 is its symplectic eigenvalue and S2 ∈Spð2Þ is
a two-dimensional real symplectic transformation.
Important examples of Gaussian states, the covariance

matrices of which are proportional to the identity, are
thermal equilibrium states of a single harmonic oscillator
mode. For a mode of frequency ωi and temperature Ti, their
covariances are diagonal:

CðiÞ ¼ diag½μi; μi�; with μi ¼ coth

�
ℏωi

2kBTi

�
: ð4Þ
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Here, 1
2
ðμi − 1Þ is the expected number of quanta in the

mode, which vanishes only in the vacuum state when the
temperature Ti is zero.
In the following, we consider the set MĈ of all pure

Gaussian N-mode state covariance matrices C whose mar-
ginals are identical to some prescribed single-mode margin-
als CðiÞ, collectively referred to as Ĉ ¼ diagðCð1Þ;…; CðNÞÞ.
This set can be equipped with a natural choice of measure
ρðCjĈÞ: as detailed in [24], we obtain it from the restriction
of the Haar measure on all symplectic transformations to the
compact subset of transformations which [via (2)] generate a
covariance matrix C with the prescribed marginals Ĉ. The
resulting distribution ρðCjĈÞ thus allows us to study the
typical two-mode correlations in the ensemble MĈ.
Two-mode correlations and entanglement—To study

correlations between two modes of a given N-mode
Gaussian state, we consider its reduction to two modes
which we call 1 and 2. All the other modes are hence
numbered 3; 4;…; N. The correlation within and between
modes 1 and 2 is described by their covariance matrix,

C1∧2 ¼
 

Cð1Þ Cð12Þ
C⊺
ð12Þ Cð2Þ

!
: ð5Þ

where Cð1Þ and Cð2Þ are the covariance matrices of modes 1
and 2 as introduced above, and Cð12Þ captures the corre-
lations across variables in mode 1 and mode 2. In the total
(large) covariance matrix C, Cð1Þ and Cð2Þ are diagonal
2-by-2 blocks, and Cð12Þ is an off-diagonal 2-by-2 block.
It is well established [25] that one may first separately

diagonalize Cð1Þ and Cð2Þ using two symplectic trans-
formations, to get CðiÞ ¼ μi12 (i ¼ 1, 2), and then use
special orthogonal transformations (which leave the
μi12-form of on CðiÞ unchanged) to get

Cð12Þ ¼ Cð21Þ ¼ diag½cþ; c−�; ð6Þ

with cþ ≥ jc−j. The 4-by-4 matrix C1∧2 in (5) can therefore
without restriction be taken to consist of four diagonal
2-by-2 submatrices. For convenience we shall use the
parametrization d� ¼ ð1= ffiffiffi

2
p Þðcþ � c−Þ, where both d�

are non-negative.
The matrix C1∧2 in (5) can be a covariance matrix of a

quantum state if it satisfies the Robertson-Schrödinger
uncertainty relations, which is the case if both its sym-
plectic eigenvalues νþ, ν− [being functions of μ1, μ2, dþ,
and d−; see [24], Sec. II, Eq. (8)] are larger or equal to one.
As shown in Fig. 1, valid Gaussian states lie below a
(μ1- and μ2-dependent) curve in the d� plane.
A two-mode Gaussian state is entangled if and only if the

Peres-Horodecki criterion is satisfied [25]. This criterion is
generally given in terms of positivity after a partial trans-
pose, which for two-mode Gaussian states reduces to the

statement that smallest symplectic eigenvalue (νPT− ) of a
partially transposed density matrix is less than one. The
dashed red line in Fig. 1 is given by νPT− ¼ 1, and hence
separates entangled from not entangled (separable) states.
The symplectic eigenvalues νPT� are the same algebraic
functions as ν�, with only the roles of dþ and d−
interchanged. To illustrate the above, in Fig. 1 we plot
the logarithmic negativity N ¼ max½0;− ln νPT− � of the
state in color coding. We see that entangled states only
occur in a relatively small corner toward the maximum
value of d−. For large values of μ ¼ μ1 ≈ μ2 detailed
estimates show that the size of the area corresponding to
entangled states relative to the size of all allowed states falls
off at least as logðμÞ=μ2; for illustration, see Fig. 3(c).
Induced probability distribution over two-mode

correlations—The distribution over the ensemble of all
pure Gaussian states with fixed marginals Ĉ ¼
diagðCð1Þ;…; CðNÞÞ induces—through the two-mode
covariance matrix (5)—a distribution on its 2 × 2 off-
diagonal block Cð12Þ [as before, the pair (12) may stand
for any fixed pair of modes]. This probability distribution,
denoted by ρðCð12ÞjĈÞ, is one of the central quantities in
this Letter since it gives the typical behavior of two-mode
correlations in a random N-mode Gaussian state with fixed

FIG. 1. Correlations and entanglement between two jointly
Gaussian modes. Colored region shows the allowed region in
the variables ðdþ; d−Þ parametrizing the mode-mode correlation
matrix block Cð12Þ, where in this example the two diagonal blocks
have symplectic eigenvalues μ1 ¼ 3 and μ2 ¼ 2 (see main text).
Blue region indicates no entanglement (separable states). Region
bounded by green curve indicates entangled states, colored from
blue to yellow by increasing logarithmic negativity. Maximal
entanglement is found at the tip at ðdþ; d−Þ ¼ ð0; d3Þ. Marked
points in the figure are d1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ21 − 1Þðμ22 − 1Þ=ð2μ1μ2Þ

p
,

d2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðμ1 − 1Þðμ2 − 1Þp

, and d3 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðμ1 þ 1Þðμ2 − 1Þp

;
see [24].
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single-mode marginals. We construct it explicitly (see
Supplemental Material [24]), showing, in particular, that
it may be reinterpreted just as a probability measure
ρðdþ; d−jĈÞ over the two real, non-negative numbers
dþ; d− ≥ 0, already known from above to basis-independ-
ently characterize the state’s two-mode correlations. In the
limit of many marginals ρðdþ; d−jĈÞ takes the form

ρðdþ; d−jĈÞ ∝ dþd−
χðdþ; d−Þ

Q
N
i¼3 Φðμ1; μ2; Cð12Þ; μiÞ

½ðν2þ − 1Þðν2− − 1Þ�2 ;

ð7Þ

where χðdþ;d−Þ¼Θðν−−1ÞΘð ffiffiffiffiffiffiffiffiffiffiffiffi
2μ1μ2

p
−dþ−d−Þ denotes

the characteristic function of the region of valid states. Only
states i with μi strictly larger than one contribute to the
product; the explicit form of Φ together with its properties
[33] are derived and discussed in [24].
For a large number of modes, these properties typically

lead to a concentration of the probability distribution
around dþ ¼ d− ¼ 0. In this case, the probability density
can be approximated by a Gaussian matrix model which is
obtained by applying exp½logð…Þ� to ρðdþ; d−jĈÞ, and
performing a leading order expansion of logΦ in dþ
and d−. This results in

ρðdþ; d−jĈÞ ≈ 4ΛþΛ−dþd−e−Λþd2þ−Λ−d2− ; ð8Þ

where Λþ and Λ− are eigenvalues of the bilinear form
describing the Gaussian distribution, which can be written
as (for other forms of the sums, see [24])

Λ� ¼
XN
j¼3

�
μ1μ2 � 1

ðμ21 − 1Þðμ22 − 1Þ−
μ4jμ1μ2 � μ2j

ðμ2jμ21 − 1Þðμ2jμ22 − 1Þ
�
: ð9Þ

Correlations in evaporating black hole Hawking
radiation—Hawking in [2,3] showed that in a
Schwarzschild black hole spacetime formed from gravita-
tional collapse, observers at future null infinity Iþ—far
outside the black hole and long after its formation—
observe a quantum field, which at past infinity was in
its vacuum state, to be in a thermal state. That is, that the
black hole emits thermal radiation at the Hawking temper-
ature THðMÞ ¼ m2

Pc
2=ð8πkBMÞ.

Hawking’s derivation uses wave packet modes,

anj ¼
1ffiffiffiffiffiffiffi
Δω

p
Z ðjþ1ÞΔω

jΔω
dω ei2πnω=Δωaω; ð10Þ

obtained from the continuum s-wave modes aω with
positive frequency. These modes are characterized by their
bandwidth Δω which is a free parameter in Hawking’s
theory. The inverse bandwidth Δt ¼ 2π=Δω is the width of
the mode in time and increasing n → nþ 1 shifts the center

of the mode byΔt. This construction is given in the original
papers [3,34], and for convenience reviewed in [24].
Hawking showed that the expectation value μnj ¼

2ha†njanji þ 1 for late times (large n) and sufficiently large
frequencies (large j) is thermal as in (4). In [34], Wald
showed that ha†nja†nji ¼ hanjanji ¼ 0 so that the covariance
matrix of one mode has the form (4). Wald further also
showed that for the same time slice (same value of n) two-
mode correlations vanish [34]. Page and others considered
non-s-wave terms. These have the form (4) with ðμi − 1Þ
multiplied by graybody factors. These decrease quickly
with l such that the radiated power is dominated by
s-wave modes.
For the evaporating black hole we posit that its radiation

is as in Hawking’s theory with suitable Δt. On the one
hand, Δtmust be chosen (much) shorter than the remaining
lifetime of the black hole, which scales as ðM=mPÞ3. On the
other hand, Δt must be longer than the internal timescale
of the black hole which different authors have variously
suggested to scale as ðM=mPÞ [35] or ðM=mPÞ2 [26]. We
here opt for the largerΔt, which we call an epoch. Note that
epochs cannot be of constant length, but must become
shorter as the black hole loses mass. Including numerical
constants we define the length of epoch n of a black hole of
mass Mn to be the time it takes that black hole to radiate
away one Planck mass in Hawking’s theory, which means

Δn ¼ κtPðMn=mPÞ2: ð11Þ

One epoch corresponds to a slice of Schwarzschild space-
time as indicated in Fig. 2. The dimensionless constant κ
depends on the type and number of fields taken into
account, and Page estimated it to be on the order of 104

or below [27].
To each epoch, we now associate one infinite family of

modes anj as above, where n indicates the epoch and j ¼
0; 1;… for each epoch. In particular, we now assume the
bandwidths of the modes to depend on n as Δωn ¼ 2π=Δn
so that their width in time corresponds to the epoch’s
length. We assume that these modes have thermal margin-
als; that is, they have the form (4) with

μnj ¼ coth½ðjþ 1Þηn�; ηn ¼
ℏΔωn

2TnkB
¼ 8π2mP

κMn
: ð12Þ

Using that ηn ≪ 1 remains small, the product in (7) and
the sum in (8) can be approximated by integrals [24]. To
this end, in (7) we write

Q
n;jΦnj ¼ expðPn;j logΦnjÞ and

approximate the summation over j by an integral for each
epoch n. This integral takes a value F which depends only
on μ1, μ2, and d� but not on n, which is divided by ηn.
Hence the summation over n factorizes out and yields a
factor of
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σ ¼
X
n

1

ηn
≈

κ

16π2
M2

i −M2
R

m2
P

; ð13Þ

where Mi is the initial mass of the black hole, and MR is
some final mass entering the problem definition, for
instance, beyond which Hawking’s derivation is no longer
valid. For the following M2

R can be neglected compared
to M2

i . With this integral approximation the probability
distribution reads

ρðdþ; d−jĈÞ ¼
dþd−½ðν2þ − 1Þðν2− − 1Þ�−2χðdþ; d−ÞeσFQ

i¼1;2Φðμ1; μ2; Cð12Þ; μiÞ
;

ð14Þ
where

F ¼ arccoth2ðμ1Þ þ arccoth2ðμ2Þ
− arccoth2ðνþÞ − arccoth2ðν−Þ: ð15Þ

Similarly, the integral approximation for the Gaussian
approximation (8) reads [24]

Λ� ≈ σ

�ðμ21 − 1Þarccothðμ2Þ ∓ arccothðμ1Þðμ22 − 1Þ�
ðμ1 ∓ μ2Þðμ21 − 1Þðμ22 − 1Þ :

ð16Þ

For most modes in our ansatz, their symplectic eigen-
value μnj is not very large and the Gaussian approximation
applies. In particular, due to the large numerical prefactor
from

P
n η

−1
n , being proportional to κ ≈ 104 and to the

square of the initial black hole mass, the probability
distribution ρðdþ; d−jĈÞ is narrowly concentrated near
d� ¼ 0, i.e., at vanishing correlations. In particular, as
seen in Fig. 3(a), this means that although for modes with
lower μnj the entangled area corresponds to a sizable
portion of the state space, the probability distribution is
peaked away from entangled states.
For the most highly excited modes in our ansatz the

Gaussian approximation does not apply, but the probability
distribution takes the shape seen in Fig. 3(c). The two most
highly excited modes are the modes with j ¼ 0 from the
earliest two epochs, i.e., the modes a10 and a20. They have
symplectic eigenvalues of μ10 ≈ κMi=ð8π2mPÞ and μ20 ≈
κðMi −mPÞ=ð8π2mPÞ. Considering the probability distri-
bution for these two most highly excited modes, it is useful
to express the symplectic eigenvalues of their joint two-
mode state relative to μ10, i.e., by setting

ν� ¼ κMi

8π2mP
y�: ð17Þ

By an asymptotic analysis of the exact probability distri-
bution it can then be shown that the probability distribution
for large black hole masses converges to

ρðdþ; d−jĈÞ ∝
4π2

κ

y2þ − y2−
y3þy3−

e−ð4π2=κÞðy2þþy2−Þ=ðy2þy2−Þχðdþ; d−Þ:

ð18Þ

The shape of the distribution relative to μ10 is hence
strongly dependent on the nondimensional constant κ.
This effect can be traced back to our choice of the duration
of each epoch, and on the assumption that the marginals of
each wave packet mode with these lengths in time are
thermal. As seen in Fig. 3(c), already at a value of κ ¼ 103

this distribution peaks at relatively large correlations, and
the peak moves farther toward the lower right-hand corner
when κ is increased farther. However, only a negligibly
small portion of the probability distribution reaches into the
region of entangled states. This is due to the size of this
region relative to the region of all allowed states decreasing
rapidly for large μ ≈ μ1 ≈ μ2, as stated above. In fact, one
can show that the probability to find an entangled state
between the two most excited modes in the radiation of the
black hole falls of at least as fast as

Pent ¼ O
�
κ2ðMi=mPÞ7e−Mi=ð4π2mPÞ�: ð19Þ

For a derivation of this result and a discussion of other
asymptotics, see [24].

FIG. 2. Penrose diagrams representing stationary and evapo-
rating black holes (following [36]). Dashed lines indicate
horizons, wiggly lines singularities, and 45° lines future or past
null infinity (I�). (a) Diagram of a stationary black hole with
fixed mass. Red curve: a time slice of modes escaping to Iþ.
Lower singularity is in the past (white hole), upper singularity in
the future (black hole). (b) Diagram of an evaporating black hole
obtained by joining time slices of decreasing black hole mass.
This spacetime only has one singularity inside the black hole. The
red curve corresponds to the same time slice as in (a). The blue
ring indicates the region where the curvature near the horizon
becomes large enough, such that backreaction and eventually
quantum gravitational effects become relevant. Most modes of
the outgoing radiation emanate outside this region motivating our
assumption of Gaussianity.
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Discussion—We have developed the general theory of
constrained symplectic transformations, resulting in a
mathematically consistent picture of random multimode
pure Gaussian states with local modes being thermal. We
applied the theory to the Hawking radiation. Considering
any fixed two modes in this picture we have shown the vast
majority of pure Gaussian states with thermal marginals
have zero entanglement between them. They may still
admit quantum correlations as characterized by quantum
discord [37,38]. The partner mode construction [39–42]
guarantees that in a pure Gaussian state to every mode with
a mixed state marginal there exists a partner mode such that
the two modes are entangled and in a product state with the
remainder of the system. Here, our findings suggest that the
partner mode for a Hawking mode must be a potentially
complicated combination of all other Hawking modes. (In
the context of AdS/CFT, see also [43,44].) Quite remark-
ably, the present result harmonizes very well with a result
of Page who calculated that two-mode correlations due to
recoil effect in Hawking radiation, though nonzero, are
exceedingly small [7]. The present picture may hence
suggest that in the search for dynamical mechanisms of
black hole evaporation, the assumption of Gaussianity of
the resulting radiation may be a good working hypothesis.
Independently, the theory of constrained randomized sym-
plectic transformations developed here may be applied in
other fields, including in particular the research on thermal-
ization of subsystems of a closed quantum or classical
system; see [45–47], and references therein.
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