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Bell’s theorem states that the quantum mechanical description of physical quantities cannot be fully
explained by local realistic theories, laying a solid basis for various quantum information applications.
Hardy’s paradox is celebrated as the simplest form of Bell’s theorem concerning its “All versus Nothing”
approach to test local realism. However, due to experimental imperfections, existing tests of Hardy’s
paradox require additional assumptions of the experimental systems, and these assumptions constitute
potential loopholes for faithfully testing local realistic theories. Here, we experimentally demonstrate
Hardy’s nonlocality through a photonic entanglement source. By achieving a detection efficiency of 82.2%,
a quantum state fidelity of 99.10%, and applying high-speed quantum random number generators for the
measurement setting switching, the experiment is implemented in a loophole-free manner. During 6 h of
running, a strong violation of PHardy ¼ 4.646 × 10−4 up to 5 standard deviations is observed with
4.32 × 109 trials. A null hypothesis test shows that the results can be explained by local realistic theories
with an upper bound probability of 10−16348. These testing results provide affirmative evidence against
local realism, and establish an advancing benchmark for quantum information applications based on
Hardy’s paradox.
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The advent of quantum mechanics has exerted a pro-
found impact on our understanding of the world. While, it
is so counterintuitive that there exist severe controversies
for quantum theory, such as Einstein-Podolosky-Rosen’s
argument on the completeness of the quantum description
of physical reality [1]. At the heart of Einstein-Podolosky-
Rosen’s argument lies the paradox between the pro-
babilistic description by quantum theory and the local
deterministic description by classical theory of physical
reality. In response to this argument, Bell presented an
inequality as a test to determine whether quantum behavior
could be explained by local hidden variable (LHV) models
[2,3]. In quantum theory, the violation of a Bell inequality
can be achieved, indicating that the results from quantum
theory cannot be fully explained by LHV models [4]. This
phenomenon is known as Bell nonlocality [5]. Experi-
mental demonstrations of the Bell nonlocality, along with

the routine of Bell inequalities, have been conducted soon
after its derivation [6,7], and recently have been pushed into
the regime of loophole-free realization [8–14], which pro-
motes a vast range of device-independent (DI) applications
[15–34].
In addition to Bell inequalities, there exist other

approaches to demonstrate nonlocality, such as Bell’s
theorems without inequalities, which have emerged since
the Greenberger-Horne-Zeilinger theorem [5,35,36]. The
Greenberger-Horne-Zeilinger theorem pioneers an “All
versus Nothing” way to test local realism. However, at
the very beginning, it was only applicable to three or more
party quantum systems. Soon after, Hardy’s paradox was
proposed as the “simplest version of Bell’s theorem” by
simultaneouslymaintaining the ‘All versusNothing” feature
and being applicable to two-party systems [37,38]. Speci-
fically, Hardy’s paradox is interpreted as that the conditions
Pð00jA2B2Þ ¼ 0, Pð01jA1B2Þ ¼ 0, Pð10jA2B1Þ ¼ 0, must
lead to Pð00jA1B1Þ ¼ 0 for the LHV models. However, it
can maximally achieve Hardy’s value Pð00jA1B1Þ ¼
½ð5 ffiffiffi

5
p

− 11Þ=2� by quantum theory [37]. Here, PðabjxyÞ
is the joint probability involving two parties, Alice and Bob,
with x∈ fA1; A2g and y∈ fB1; B2g being measurement
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inputs and a; b∈ f0; 1g being measurement outputs for
Alice and Bob, respectively [5]. Along with this funda-
mental interest, Hardy’s paradox also finds its applications
in quantum information processing, includingDI dimension
witness, DI quantum randomness certification, DI quantum
key distribution, and self-testing of quantum systems
[39–44].
Despite great efforts by experimentalists [45–52], a

loophole-free Hardy’s paradox test is still missing, signifi-
cantly limiting its related quantum information applica-
tions. In this Letter, we challenge local realism with
Hardy’s violation by utilizing polarization-entangled pho-
ton pairs with a high fidelity of up to 99.10%, fast random
basis choices, and a high detection efficiency of around
82.2% to obtain the joint probabilities of Alice and Bob.
Specifically, by simultaneously closing the locality loop-
hole and detection loophole and using high-speed quantum
random number generators (QRNGs) to guarantee random
measurement setting choices, we demonstrate a Hardy’s
violation of PHardy ¼ 4.646 × 10−4 up to more than 5
standard deviations with a set of events containing
4.32 × 109 trials during 6 h of running time (for local
realistic theory, the Hardy’s value should be PHardy ≤ 0).
Through the null hypothesis test following the prediction-
based-ratio (PBR) method [53], the upper bound of the
probability that local realistic theories can reproduce the
observed Hardy’s correlation is p ≤ 10−16348. These results
provide strong evidence that quantum mechanical predic-
tions cannot be described by local realistic theories.
Moreover, our results serve as a benchmark for quantum
information applications based on Hardy’s paradoxes.
One of the main obstacles for the loophole-free Hardy’s

paradox test is that, compared with Bell inequality tests,
theoretical analysis remains incomplete. In practice, due to
imperfect detection efficiency η < 1, there are undetected
events denoted as u. If one discards these undetected events,
it will result in a severe detection loophole. Here, to test local
realism with Hardy’s paradox without detection loophole,
we take these undetected events u into account. During each
trial, Alice and Bob choose one of two measurement
settings, respectively. The measurement results for Alice
and Bob are denoted as ternary elements a; b∈ f0; 1; ug,
respectively. Inspired by Refs. [54,55], when Hardy’s con-
ditionsPð00jA2B2Þ¼0,Pð01jA1B2Þ¼0, andPð10jA2B1Þ¼
0 are satisfied, there must be Hardy’s value PHardy ¼
Pð00jA1B1Þ − Pð0ujA1B2Þ − Pðu0jA2B1Þ ≤ 0 for local
hidden variable models. However, positive Hardy's values
can be achieved for quantum theory with

Pmax
HardyðηÞ ¼

1

2
½1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ηð3η − 2Þ

p
�

þ 3η½1 − 3ηþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ηð3η − 2Þ

p
�; ð1Þ

for η∈ ð2=3; 1� (see Supplemental Material [56], Sec. I, for
details).

In addition to the imperfect detection efficiency, due to
the dark counts of detectors and multiple pairs of photons
from the entangled source, there are also some double-click
events in practical experiments, which correspond to cases
where both result 1 and 0 are obtained simultaneously in a
single laboratory. Here, to close the detection loophole, we
designate these double-click events as inconclusive events
u, too. Moreover, due to such imperfections, zero Hardy’s
conditions are experimentally unattainable. Consequently,
a form of Hardy constrained Eberhard inequality PHardy ≤ 0

together with three Hardy’s conditions is necessary for a
loophole-free Hardy’s paradox test. Inspired by the strategy
of tackling nonzero Hardy’s conditions in Refs. [57,58],
when Hardy’s conditions Pð00jA2B2Þ ¼ ε1, Pð01jA1B2Þ ¼
ε2, and Pð10jA2B1Þ ¼ ε3 are satisfied, there must be
Hardy’s value

PHardy ¼Pð00jA1B1Þ−Pð0ujA1B2Þ−Pðu0jA2B1Þ−
X3

i¼1

εi

≤ 0; ð2Þ

for LHV models. Here, u denotes inconclusive events
including undetected events and double-click events, εi
with i∈ f1; 2; 3g are small values for nonzero Hardy’s
conditions.
Another obstacle is that, compared with Bell inequality

tests, the loophole-free Hardy’s paradox test requires even
higher detection efficiency and higher fidelity of the
entangled states. For example, with the system detection
efficiency (η ≈ 78.8%) and quantum state fidelity
(F ≈ 98.66%) in Ref. [11], we show that the Hardy’s value
should be less than 10−6, which is very difficult to realize in
a loophole-free manner (see Supplemental Material, Sec. I,
for detail). In the following sections, we experimentally
demonstrate a loophole-free Hardy constrained Eberhard
inequality violation by quantum mechanics statistics as a
paradox against local realistic theories.
Experiments—The present Hardy’s paradox test is illus-

trated in Fig. 1. Using a pump laser of 780 nm, the
polarization-entangled 1560 nm photon pairs are generated
through spontaneous down conversion (SPDC) in the
PPKTP crystal within a Sagnac loop. Then the two photons
of a pair are transmitted to Alice’s and Bob’s laboratories
through fiber links for measurements. To close the locality
loophole and address the freedom-of-choice loophole [8–
10], we design a space-time configuration for our system,
as shown in Fig. 2. Specifically, it is necessary to spacelike
separate the setting choices on one side (the first dots on the
red bar and blue bar denote the beginning of setting choice)
from the measurements output on the other side (the last
dots on the two bars denote the end of the measurement), as
well as from the emission of the pump photons (the
coordinate origin denotes the beginning of the emission
of photons, and the second dots on the two bars denote the
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end of setting choice), which can also be viewed as the
emission of the hidden variable λ. The synchronization of
the experimental system is achieved by locking the seed
laser for the pump light, the QRNG for the setting choice,
and the time-digital convertor (TDC) for the signal collec-
tion to the same clock. We carefully adjust the relative
delay between the QRNG and pump light to ensure that
the polarization of the photons can be modulated when the
setting choice signal is simultaneously applied to the
Pockels cell. Meanwhile, Alice’s measurement station is
separated far apart from Bob’s measurement station (93 m
for Alice from the source to her laboratory, and 90 m for
Bob’s case), and the lengths of the optical fibers (129 m for
Alice and 116 m for Bob) are set appropriately to ensure
time delays of 627 ns and 563 ns, respectively, from photon
generation to detection.
Furthermore, concerning the freedom-of-choice loop-

hole, we need to make sure that the random numbers used
for measurement setting choices are completely undisturbed
and truly random, i.e., the local hidden variables cannot
manipulate the generation of random numbers. In principle,

because there is an overlap between the backward light
cones of two QRNGs and the pump laser, the independence
and randomness of Alice’s and Bob’s random numbers
cannot be confirmed without making any assumptions [9].
Here, the high-speed QRNGs we used can generate random
numbers within a time interval of 100 ns after receiving the
trigger signal, and the delay time can be flexibly adjusted to
accommodate our space-time configuration. Thus the free-
dom-of-choice loophole can be addressed by assuming that
the random numbers from QRNG are truly independent
from any local hidden variables.
The measurements of Alice and Bob consist of Pockels

cells, HWPs, PBSs in turn and finally SNSPDs. To
distinguish the results 0, 1, and u experimentally, we place
two detectors on the two output ports of the PBS and label
the clicks on the transmission and reflection paths as 0 and
1, respectively. In addition, we denote the undetected
events (absence of detector clicks) and double-click events
(i.e., clicks on both detectors at one station) as u. The
system heralding efficiencies are measured to be 82.1%�
0.2% (82.4%� 0.2%) for the transmission (reflection) path

FIG. 1. Schematics of the experiment for the loophole-free Hardy’s paradox. (a) Bird’s-eye view of the experimental apparatus: Alice
and Bob are located on opposite sides of the entanglement source, and the straight-line distance between Alice (Bob) and the source is
93� 1ð90� 1Þ m. (b) Preparation of the entangled photon pairs: light pulses with a duration of 10 ns and a repetition rate of 200 kHz,
generated by a 1560 nm seed laser diode (LD), undergo amplification through an erbium-doped fiber amplifier (EDFA). Subsequently,
the pulses are frequency-doubled using an in-line periodically poled lithium niobate (PPLN) crystal. The remaining 1560 nm light is
eliminated by a wavelength-division multiplexor (WDM) and spectral filters. Two 780 nm quarter-wave plates (QWPS) and a half-wave
plate (HWP) before the Sagnac loop are used to control the polarization of the pump laser, thereby changing the relative amplitude and
phase of the created polarization-entangled photon state.Then the 780 nm pump photons are fed into the periodically poled potassium
titanyl phosphate (PPKTP) crystal in the Sagnac loop, consisting of two reflection mirrors (RMs) and a dual-wavelength polarizing
beam splitter (PBS), to generate polarization-entangled photon pairs of 1560 nm. After the Sagnac loop, dichroic mirrors (DM) are used
to remove the residual 780 nm pump laser. Then the entangled photons are collected into optical fibers by couplers and transferred to
Alice and Bob at opposite sites for polarization projection and measurements. (c) Single-photon polarization measurement: on the
measurement side, the photons pass through the fiber and then undergo polarization state measurements. The setup for performing
single-photon polarization measurements consists of a Pockels cell, QWP, HWP, and PBS. And the photons are finally collected into a
single-mode optical fiber for detection by superconducting nanowire single-photon detectors (SNSPDs). There are two SNSPDs at each
side to collect the photons transmitted and reflected at the PBS. The measurement settings choice is performed under a quantum random
number generator (QRNG), which is triggered by a 200 kHz signal and generates a random output with a 1∶1 ratio of 0 and 1. Here, 0
corresponds to a low voltage and 1 corresponds to a high voltage. After the random signal is generated, it is applied to the Pockels cell,
which modifies the polarization measurement by exerting different influences on the polarization at different voltage levels. The time-
digital convertor (TDC) is applied to keep track of the photon detection and random number generation events.
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for Alice, and 82.1%� 0.2% (82.2%� 0.2%) for the
transmission (reflection) path for Bob, using SNSPDs with
efficiencies higher than 96%. The heralding efficiencies are
determined by the ratio of twofold coincidence events to
single counts, corresponding to the total events detected by
a single detector directly measured across the entire system
without accounting for any losses. These efficiencies
significantly surpass the recorded values in previous loop-
hole-free Bell tests with photons (see Table I). Furthermore,
because the efficiency of SNSPD is polarization sensitive,
we place a PC closely before each SNSPD. We utilize these
PCs to adjust the efficiencies of the two paths at each
measurement site to be close, since any discrepancy in
efficiencies can be interpreted as a change of the meas-
urement bases (because this offset affects the ratio of the
probabilities of detecting photons in the transmission and
reflection paths). And we employ the Hardy constrained
Eberhard inequality of the form Eq. (2), which considers all
detection events and inherently closes this loophole.
To observe Hardy’s nonlocality in this experiment,

the quantum state jψðθÞi¼cosðθÞjHViþsinðθÞjVHi
and measurement settings Ai ¼ cosðθAi

Þσz þ sinðθAi
Þσx,

Bj ¼ cosðθBj
Þσz þ sinðθBj

Þσx, where i; j∈ 1, 2 are

preoptimized for the overall efficiency ηAðηBÞ.
Specifically, in the optimization, we set the detection
efficiency to be η ¼ 82%, the corresponding quantum
state, Alice’s and Bob’s measurement settings are opti-
mized to be θ ¼ 0.2764, fθA1

¼−2.8417;θA2
¼2.1628g and

fθB1
¼0.2999;θB2

¼−0.9788g in radian, respectively (see
Supplemental Material, Sec. I for details). In the imple-
mentation, we measure the visibility to be 99.5% and
98.4% in horizontal and vertical basis and diagonal and
antidiagonal basis, respectively. Furthermore, we character-
ize the quantum state by state tomography measurement,
and the fidelity of the nonmaximally polarization-entangled
state is 99.10% (see Supplemental Material, Sec. II, for
more details). To reduce the dark count, both windows in
which Alice and Bob record detection events are set to
15 ns, which are centered on the expected arrival time of
Alice’s and Bob’s photons. The average dark count in this

FIG. 2. Space-time diagram for the experimental events. The
red (blue) bar and dots represent the crucial times and nodes for
Alice’s (Bob’s) measurement. The coordinate origin denotes the
beginning of the emission of the photon pairs. The orange line
represents the space-time relationship of photon propagation in
the optical fiber (the solid orange line is for the photons generated
at the onset of generation, the dashed orange line is for the
photons at the end of generation). TE ¼ 10 ns is the duration
required to generate entangled photon pairs. TQRNG 1;2 is the
duration for QRNG to generate random bits to control the Pockels
cells. Tdelay 1;2 is the time required between the random bits’
generation and transferred to Pockels cells. TPC 1;2 is the prepa-
ration time for the Pockels cells to be ready for the projection
measurements after obtaining random bits from QRNGs. TM 1;2 is
the duration for SNSPDs to output electric signals. TQRNG 1 ¼
TQRNG 2 ¼ 96 ns, Tdelay 1 ¼ 270 ns, Tdelay 2 ¼ 230 ns, TPC 1 ¼
112 ns, TPC 2 ¼ 100 ns, TM 1 ¼ 55 ns, TM 2 ¼ 100 ns. The linear
distance between Alice (Bob) and the source is 93�1ð90�1Þm,
and the corresponding fiber length is 129 (116) m.

FIG. 3. Bar chart of the six joint probabilities for the present
Hardy’s paradox. The height of each bar shows the value of the
corresponding joint probability. The last three bars represent the
three Hardy’s conditions, which are small quantities relative to
the other probabilities. The height of the first bar, representing
Pð00jA1B1Þ, is greater than the sum of the other five bars,
indicating a positive PHardy. These results present strong evidence
against local realism.

TABLE I. Efficiencies and fidelity in the existing photonic
experiments of loophole-free Bell tests and related applications.
The efficiencies are averaged over Alice’s and Bob’s detection
efficiency.

Label Experiment Year Type Efficiency Fidelity

(1) Shalm et al. [9] 2015 Bell test 75.15%
(2) Giustina et al. [10] 2015 Bell test 77.40%
(3) Bierhorst et al. [22] 2018 QRNG 75.50%
(4) Liu et al. [23] 2018 QRNG 78.65%
(5) Li et al. [11] 2018 Bell test 78.75% 98.66%
(6) Zhang et al. [24] 2020 QRNG 76.00%
(7) Shalm et al. [25] 2021 QRNG 76.30%
(8) Li et al. [26] 2021 QRNG 81.35%
(9) This work 2023 Hardy test 82.22% 99.10%
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window is less than 5 counts per second. After stable ex-
ecution of 6 h with 4.32 × 109 trials, as shown in Fig. 3,
the observed probabilities in the Hardy’s paradox test
are ε1 ¼ Pð00jA2B2Þ ¼ ð1.120� 0.136Þ × 10−4, ε2¼
Pð01jA1B2Þ¼ð1.578�0.162Þ×10−4, ε3 ¼ Pð10jA2B1Þ ¼
ð1.818� 0.171Þ × 10−4, Pð0ujA1B2Þ ¼ ð1.157� 0.052Þ×
10−3, Pðu0jA2B1Þ ¼ ð1.154� 0.056Þ × 10−3, and
Pð00jA1B1Þ ¼ ð3.227� 0.199Þ × 10−3. These probabil-
ities result in a positive Hardy’s value PHardy ¼ 4.646 ×
10−4 based on the Eq. (2), which is more than 5 standard
deviations according to the observed statistics (here the
standard deviation is σ ¼ 7.771 × 10−5).
To quantify the statistical significance of Hardy’s vio-

lation, we conduct a hypothesis test of local realism with
the prediction-based-ratio (PBR) method of analysis, which
allows to analyze the experimental results without assum-
ing independent and identical conditions [53]. The null
hypothesis is that the experimental results can be accounted
for by local hidden variable models. The maximal prob-
ability that the observed experimental results comply with
the null hypothesis is quantified by a statistical p value.
Under the PBR analysis, our demonstration shows that the
p value is upper-bounded by 10−16348, providing extremely
strong evidence against local realism (see Supplemental
Material, Sec. III for more details) [56].
Discussion and conclusion—We have presented a refine-

ment of the theoretical analysis of loophole-free demon-
stration of Hardy’s paradox. By applying high detection
efficiency, a high fidelity entangled photon source, fast
QRNGs, and spacelike separating the events corresponding
to measurement setting choices, entangled state prepara-
tions and photon detections, we have simultaneously closed
the locality loophole, and addressed the freedom-of-choice
loophole in the experiment. By combining the strategy of
treating double-click events as inconclusive events and
considering local hidden variable models under imperfect
detection efficiencies, we have also closed the detection
loophole.
After stable execution for 6 h, a positive Hardy’s value

PHardy ¼ 4.646 × 10−4 is observed, exceeding 5 standard
deviations. Based on a null hypothesis test, the p value that
the possibility our results can be explained by local realistic
theories does not exceed 10−16348. Therefore, our experi-
ment provides a significant evidence that quantum
mechanical description of physical quantities cannot be
accounted for by local realism. Besides this fundamental
interest, these results mark a milestone for quantum
information applications based on the Hardy’s paradox.
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