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Chemically active colloids or enzymes cluster into dense droplets driven by their phoretic response to
collectively generated chemical gradients. Employing Brownian dynamics simulation techniques, our
study of the dynamics of such a chemically active droplet uncovers a rich variety of structures and
dynamical properties, including the full range of fluidlike to solidlike behavior, and non-Gaussian
positional fluctuations. Our work sheds light on the complex dynamics of the active constituents of
metabolic clusters, which are the main drivers of nonequilibrium activity in living systems.
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Introduction—The nonequilibrium physical rules that
determine the behavior of active matter [1] can naturally
be expected to provide clues towards unraveling the spatio-
temporal self-organization observed in living systems. In
particular, biochemical reactions facilitated by enzyme mol-
ecules and metabolic activity make the interior of a cell a
nonequilibrium environment with persistent chemical gra-
dients and fluxes [2,3]. Theories of active phase separation,
describing the phase behavior of motile or living units,
incorporate, in addition to thermodynamic fluxes, particle
currents stemming from nonequilibrium interactions, some
examples of which are chemical interactions [4–12], quorum
sensing [13,14], nonreciprocity [15–17], and catalysis [18].
Inside living cells, the structural compartmentalization of

biomolecules in the form of droplets are thought to help
their function, such as regulating biochemical processes
[19,20]. These condensates are typically in a dynamic
liquid-like state, although they can also exhibit solidlike
properties when associated with pathological conditions
[21,22]. Because of the metastable nature of the liquidlike
assemblies, they also exist in glassy or gel-like states that
do not have the properties of a classical liquid [23]. For
instance, in vitro tracer diffusion measurements within
phase-separated droplets have shown caging and other
signatures of glassy behavior [24], while metabolic activity
of bacteria has been shown to affect the diffusivity of the
proteins within the cell cytoplasm [25,26].

Despite an overwhelming wealth of empirical observa-
tions, the interplay between enzymatic activity in the
cytosol and the fluidity of protein condensates is still not
understood from a mechanistic perspective. The nonequi-
librium phoretic interactions, which naturally arise from
chemical activity [27], have the potential to play a major
role in such a regulation mechanism, in the same vein as the
recently proposed mechanisms that may have led to the
self-organization of metabolic cycles during the early
stages of life formation [28–30].
Here, we explore the complex dynamics within a droplet

formed by long-ranged phoretic interaction between chemi-
cally active colloids or enzymes. Tracking the motion of a
tagged biomolecule provides information about the dynam-
ics and structure inside a droplet [see Figs. 1(a)–1(c)]. The
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FIG. 1. (a) A schematic showing different regions—core,
corona, interface—in a cross section of a cluster. (b) Trajectories
of tagged colloids in a fluidlike cluster (weak phoretic inter-
action) are superimposed on transparent particles. A tagged
particle travels freely throughout the entire cluster, see Supple-
mental Material, movie SM1 [31]. (c) In an arrested cluster
(strong phoretic interaction), particle tracks vary qualitatively
depending on their initial location in the cluster. Completely
trapped colloids (green track), and those that exhibit several cage
breaking events (red and blue tracks) are seen in the same time
window; see Supplemental Material, movie SM2 [31].

*These authors contributed equally to this work.
†Contact author: ramin.golestanian@ds.mpg.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Open access publication funded by the Max Planck
Society.

PHYSICAL REVIEW LETTERS 133, 058401 (2024)

0031-9007=24=133(5)=058401(7) 058401-1 Published by the American Physical Society

https://orcid.org/0000-0002-2053-3256
https://orcid.org/0000-0001-6029-4141
https://orcid.org/0000-0002-3149-4002
https://ror.org/0087djs12
https://ror.org/01bf9rw71
https://ror.org/01zkghx44
https://ror.org/052gg0110
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.133.058401&domain=pdf&date_stamp=2024-07-30
https://doi.org/10.1103/PhysRevLett.133.058401
https://doi.org/10.1103/PhysRevLett.133.058401
https://doi.org/10.1103/PhysRevLett.133.058401
https://doi.org/10.1103/PhysRevLett.133.058401
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


series of structural changes, which occur as the dimension-
less coupling strength v0 is increased, is accompanied by
dramatic changes in the dynamics of a single particle (see
Figs. 2 and 3). The chemotactic collapse is cutoff by steric
repulsion, and the cluster undergoes a gradual transition
from a fluidlike state (see Supplemental Material, movie
SM3 [31]) to a solidlike state (see Supplemental Material,
movie SM7 [31]) as v0 is increased. At intermediate values
of v0 (see Supplemental Material, movies SM4–6 [31]), the
cluster develops a solid core surrounded by a relatively
mobile region that we call the corona, which in turn is
followed by an interface consisting of chemically active
colloids that are nearly free [see Fig. 1(a)]. Using the
distribution of the positional fluctuations calculated as a
function of the step size and initial location of the colloid as
our main tool, we probe the glassy dynamics in this
mesoscopic droplet and provide several experimentally
testable results.
Theoretical model—We consider N active colloids of

radius σ within a spherical container of radius R, with the
stochastic trajectory of the ith particle (i ¼ 1;…; N)
denoted as riðtÞ. Each active colloid catalyzes a chemical
reaction converting a reactant, assumed to be abundantly
available, into a product at a rate α. They generate a
chemical field cðr; tÞ at position r that evolves following the
diffusion equation with sources at ri, namely,
∂tc −Dc∇2c ¼ α

P
i δðr − riÞ, where Dc is the diffusion

coefficient of the chemicals. Imposing the boundary con-
dition cðjrj ¼ R; tÞ ¼ 0 ensures that the chemicals are
continuously generated in the container and extracted at
the boundary, hence creating a nonequilibrium steady state.
Variation of c on the colloid surface establishes a diffu-
siophoretic slip velocity and thus net drift with a velocity
−μ∇c, where μ is the diffusiophoretic mobility (that is
negative for attractive phoretic interactions) [27]. The
equation of motion of the ith colloid is given as ṙi ¼
−μ∇cðri; tÞ þ

P
i≠j vðrijÞr̂ij þ ζ i, where rij ¼ ri − rj,

rij ¼ jrijj and r̂ij ¼ rij=rij. vðrijÞ ¼ 24ϵ½2ð2σÞ12r−13ij −
ð2σÞ6r−7ij � is a derivative of the Weeks-Chandler-
Anderson potential [33]. It imposes steric repulsion
between the colloids and vanishes for rij > 21=6ð2σÞ.
The parameter ϵ combines the strength of repulsion and
the viscous damping and is kept constant at unity. The
random fluctuations are included through the white noise
term, ζ, with zero mean and intensity 2D, where D is the
thermal diffusivity of the colloids.
Assuming a separation of scale between the sizes of the

chemicals and the colloids, we can use the quasi-stationary
solution for c sinceD ≪ Dc. Moreover, we use the far-field
approximation [11,34] and ignore corrections due to the
proximity of colloids. This approximation is justified since
exact solutions have shown that near-field effects are
unimportant for exactly similar active colloids [35]. With
these approximations, the chemical gradient ∇c can be

determined explicitly as a function of colloid positions ri as
follows

∇cðri; tÞ ¼
α

4πDc

�XN
j≠i

rij
r3ij

−
XN
j¼1

ðR=rjÞr0ij
r03ij

�
; ð1Þ

Where r0ij ¼ ri − ðR2=r2jÞrj, r0ij ¼ jr0ijj and rj ¼ jrjj.
Scaling position by σ and time by σ2=D, we identify a
dimensionless constant v0 ¼ jμjα=ðDDcσÞ which deter-
mines the strength of the interactions with respect to the
fluctuations.
Particle trajectories are obtained by the Euler integration

of the dynamics with a time step Δt ¼ 0.001. The data
presented in this Letter are for N ¼ 1000 unless otherwise
specified. The value of v0 varies between 0.5 and 5.0. The
colloids assemble to form a single spherical droplet of size
equal to a few colloidal radii (∼10σ) at the center of the
confining sphere due to the long-range interaction
between them.
Self-part of the Van Hove functions—The central result

of our work is the analysis of anomalous fluctuations to
illustrate several aspects of the dynamics that follow from
the chemically mediated long-range interactions. We do so
by calculating the self-part of the Van-Hove functions
(SVH) [36]. In a fluid with no internal structure [37], the
SVH is Gaussian, while in a supercooled fluid it is
Gaussian with exponential tails [38,39]. We calculate the
SVH by distinguishing the initial position of the colloid in
the droplet. As a result the distribution depends on whether
the colloids were located initially in the frozen core or the
corona. The self part of the Van-Hove function Gðx; τÞ is
defined as follows:

Gðx; τÞ ¼ 1

n

Xn
i¼1

hδðx − ½xiðτ þ tÞ − xiðtÞ�Þi: ð2Þ

Gðx; τÞ is the probability distribution function that a colloid
traverses a displacement x in an interval of time τ. Variation
of Gðx; τÞ with the waiting time τ provides information
about the changing neighborhood of a colloid. The τ depen-
dent step size is thus simply the distance xiðtþ τÞ − xiðtÞ,
where the time t is chosen large enough such that the cluster
has reached a steady state. In the definition (2), the index i
is used to average over a total of n number of colloids
which are at time t located in a particular shell from the
center of mass of the cluster (as shown schematically in
Fig. 2). Since G is identical for fluctuations in the three
orthogonal directions, we present an average over all three
directions.
We find that G reveals a wealth of information about the

spatial dependence of structural rearrangements within the
cluster when it is calculated for those located in the core,
the corona, or the interface. For small v0, G is well
approximated by a Gaussian irrespective of the initial
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location of the colloids, and its width increases as ∼
ffiffiffi
τ

p
for

all τ. For a value of v0 for which the cluster is close to the
solid state,G begins to show signatures of trapping at small
τ, and cage-breaking dynamics at larger values of τ.
Calculated for colloids in the core with initial positions
within 3 − 6σ from the centre of the cluster, G shows a
sharp peak at x ¼ 0 as seen in Figs. 2(a)–2(c). The
unimodal graph falls sharply within x ∼ σ showing that
the colloids in the interior of the cluster for v0 ¼ 1.7 are
caged by their neighbors [see Figs. 2(b) and 2(c)]. For
colloids initially located in the corona within 6–9σ from the
center, the distribution clearly develops a tail—which
broadens with increasing τ [see Figs. 2(d)–2(f)]. For
colloids with initial locations in the interface within
9–12σ, G shows tails whose widths increase with increas-
ing τ [Figs. 2(g)–2(i)]. Thus the dynamics varies greatly
from the center to the surface—the innermost colloids
vibrate in nearly permanent cages (over the time scale of the
simulations), the ones which are in the corona are trapped
for variable duration of time and released before they are
trapped again. Colloids at the interface typically make long
excursions [Figs. 2(g)–2(i)]. In the fully arrested state, G
shows a single peak at x ¼ 0 of nearly constant width for all

τ [Figs. 2(c), 2(f), and 2(i)]. Deep into the solid state
fluctuations close to x ¼ 0 develop additional features such
as secondary peaks that reflect the underlying positional
order [Figs. 2(f) and 2(i)]. Such side peaks have been
reported in other active matter systems due to the action of
molecular motors in a gel [40].
To elucidate the non-Gaussian nature of the fluctuations,

we fit the inner dome and the outer tail of G to a family of
curves called the q Gaussian [41,42], which provides a
framework to describe systems with long-range inter-
actions [43] (see Supplemental Material for details [31]).
The q-Gaussian of a length x scaled by l is
½1 − ð1 − qÞðx=lÞ2�½1=ð1−qÞ�. In general, the range of the
exponent q is −∞ < q < 3, approaching the Gaussian as
q → 1. For q < 1, the domain of the function is bounded,
i.e., −1 < x=l < 1, while for q > 1, x=l is unbounded. G
calculated for colloids in the core is well fitted by the
q ¼ 1.45, corresponding to strong correlations [44]. For G
calculated for those in the corona, the tail is fitted by
0 < q < 1. A fitted value of q smaller than unity suggests
that fluctuations smaller than a length scale are suppressed.
We also calculate the distribution of time intervals between
successive cage-breaking events. The distribution changes

FIG. 2. Self-part of the Van Hove function (probability distribution of colloidal displacements). Gðx; τÞ in a partly arrested droplet is
shown for a different values of v0 (as indicated), increasing from left to right. G for colloids initially located within a distance of 3 − 6σ
(core), 6 − 9σ (corona), and 9 − 12σ (interface) of the center, are plotted in the three rows (from top to bottom) as indicated with
illustrations. The color maps, which indicate the waiting time τ, are chosen to be the same for colloids belonging to the same region in
the cluster. A peak at x ¼ 0, indicative of a colloid trapped in a cage, is always present for colloids that are initially located in the core, as
seen in panels (a)–(c). Such a peak is absent in fluids, and reveals slow relaxation. The peak is less pronounced for colloids originating in
the corona [see in panels (d)–(f)], and vanishes completely for those that start in the interface [see (g)–(i)]. Those in panels (d)–(i) show
pronounced tails extending until ∼10σ. At v0 ¼ 3.0 fluctuations with magnitude of the order a few σ show secondary peaks mirroring
the structure formation, as seen in panels (f) and (i).
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from being exponential in the fluid state to a power law in
the solid (see Supplemental Material for details [31]).
Mean square displacement—We discuss fluctuations in

colloid position as captured by calculating the mean square
displacement (MSD) for all colloids in the droplet (see
Supplemental Material for MSD calculated by distinguish-
ing the initial location of the colloids [31]). The center of
mass of the mesoscopic cluster diffuses while it also rotates
as a whole. To measure relative displacements of particles,
we transform to a body-fixed frame of reference located at
the center of the cluster using methods described in [45].
The MSD is calculated by averaging over trajectories of all
particles as MSDðtÞ ¼ N−1PN

i¼1hjriðtÞ − rið0Þj2i, and
shown in Fig. 3, for v0 in the range 0.5–3.0. A plateau,
defined as a flattening of the MSD curve after an initial
diffusive regime is visible at sufficiently large values of v0,
and is particularly prominent in the arrested state. It
emerges as the colloids get trapped or caged by their
neighbors and spend a long time inside those cages. Such a
subdiffusive plateau is a signature of the motion of active
particles in a complex and crowded environment [46], in
contrast to a freely moving active particle. The trapped
colloids escape from their cages after a timescale that
increases with increasing v0, as apparent in Fig. 3. Note that
the trapping occurs at comparable timescales (∼ τ) in all v0s
but in contrast, escape from a cage is a collective maneuver
and the related timescale increases over 3 orders of
magnitude from the fluid to the solid state.
State diagram—We construct a state diagram by varying

both v0 and the total number of particles. Using cues from
both the arrangement of colloids within the droplet and
their dynamics, we identify two stages in between the
fluidlike and the solidlike droplet which are called “lamel-
lar” and “lamellar-with-core” [see Fig. 4(c)]. Periodic
deviations around the smooth radial density profile,

calculated from the center of mass of the droplet, serves
as the metric to distinguish a lamellar droplet that has
developed shells like an onion from a fluidlike droplet
without spatial ordering [see Figs. 4(a) and 4(b) and
Supplemental Material for details [31] ]. The dynamics
in a lamellar droplet is still fluidlike (Supplemental
Material, movie SM4 [31]). Development of structural
inhomogeneities in a similar density of the positions of
colloids within a spherical shell at an even higher v0 signals
the transformation of a lamellar droplet into a lamellar
droplet with a core. In the state lamellar-with-core, the
droplet develops an inner core within which colloids are
immobile due to the surrounding dynamic layer that we call
the corona [see Figs. 4(a) and 4(b), Supplemental Material,
movies SM5 and SM6 [31] ]. Irregular sharp peaks in
densities reveal that the solid structure formed is not
isotropic due to the finite size of the cluster [see Figs. 4(a)
and 4(b) and Supplemental Material for details and
Supplemental Material, movie SM7 [31] ]. Figure 4(c)
displays a state diagram in the N − v0 plane and shows
that the state boundaries shift to lower values of v0 with
increasing N, which is a feature of the long-range

(a)

(b)

(c)

FIG. 4. (a) Density profile for v0 ¼ 0.5, 0.7, 0.9, 3.0 corre-
sponding to states fluid, lamellar, lamellar-with-core, and solid,
respectively. (b) Snapshots from simulations illustrating typical
structure of the droplet in each state. (c) State diagram in the
N − v0 plane, showing fluid, lamellar, lamellar-with-core, and
arrested states. Note that the state boundaries shift towards
smaller values of v0 with increasing system size. The dashed
black line is the power-law scaling expected using a scaling
argument (see Appendix).

FIG. 3. Mean square displacement (MSD) for different values
of v0. A plateau develops in the arrested states as colloids are
repeatedly trapped into, and released from temporary cages. The
reduction in the MSD upon increasing v0 is due to the increase in
the attractive interaction between colloids, and saturation corre-
sponds to the cluster size.
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interactions mediated by the chemical field. The transition
from fluid to solid occurs when v0 is large enough to drive
an instability analogous to gravitational collapse, beyond a
threshold v0 ∼ N−2=3 [4] (see Appendix for the derivation
of the scaling argument).
Concluding remarks—The strength of the effective

interaction mediated by the collective response of the
colloids to the chemical field determines whether the
cluster resembles a fluid or is rather in a hybrid state with
a central core resembling a solid and an outer corona of
relatively freely moving colloids. We observe strikingly
different dynamics in the two cases: in the first case, the
colloids are free to span the full cluster while the motion of
the caged ones is restricted to a fraction of the colloids in
the second case. We observed narrow Gaussian peaks and
extended tails in the distributions of particle displacements,
similar to what is ubiquitously observed in glassy systems
[38,39,47], where the dominant dynamics of the particles is
random hopping and trapping, also including solid-liquid
interfaces [48]. The crucial difference between the system
at hand and the classically studied systems is that in our
system both the inner dome and the tail are fitted by the q-
Gaussian.
Finally, we note that the exponent of anomalous dif-

fusion, and the parameter q quantifying the degree of
nonextensivity are related in simple systems via the Tsallis-
Bukman law [49], which has been verified experimentally
in vibrated granular rods [50]. In the present case, the finite
size of the droplet leads to the formation of a layered
inhomogeneous structure with an interface that give rise to
a relatively more complex dynamics with q exponents that
depend on the waiting time, and continuously time-varying
anomalous exponent (scaling of the MSD). Therefore, we
do not expect such a simple relation to hold here, as any
given trajectory will effectively sample different types of
environment governed by different statistical properties in
each short segment of the dynamics (see Ref. [31] for
details). Our results will be helpful to serve as a motivation
for further theoretical developments that are needed to
characterize cage-breaking dynamics in a finite active
inhomogeneous cluster.
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End Matter

Appendix: The scaling argument from a continuum
theory—We have outlined an argument for determining
the boundaries separating various states in Fig. 4. In this
Appendix, we present a coarse-grained description for the
time evolution of the number density ρ of the colloids as
coupled to the concentration c of the substrate, and

sketch the steps that lead us to the derivation of the
scaling law. Averaging over thermal noise, we define the
mean number density by summing over the positions ri
of the individual colloids as ρðr; tÞ ¼ P

ihδðr − riÞi.
Ignoring the short-range repulsive interactions between
the colloids, we can derive [4] the dynamics for ρ as
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follows:

∂tρ ¼ D∇2ρþ μ∇ · ðρ∇cÞ; ðA1Þ

where c is the concentration field produced collectively
by the colloids and D is the variance of the thermal noise
in the Langevin dynamics of a single colloid. The
concentration c is governed by the following reaction-
diffusion equation

∂tc −Dc∇2c ¼ αρ: ðA2Þ

Following the same approximations as in the main text,
i.e., a separation of timescales between the diffusion of
the chemicals and the diffusion of the colloids, we can
formally solve for the chemical concentration field as
follows:

c ¼ α

Dc

Z
ddr0Gðr − r0Þρðr0Þ; ðA3Þ

where G is the Green’s function described in the main
text that implements the boundary condition of vanishing
flux on the surface of the confining sphere. Substituting
the expression for c in Eq. (A1) we obtain the effective
equation for ρ as

∂tρðr;tÞ¼D∇2ρ−
μα

Dc
∇ ·

�
ρ∇

Z
ddr0Gðr−r0Þρðr0Þ

�
: ðA4Þ

From Eq. (A4), it is clear that the cluster is formed by a
competition between the first and the second terms which
describe respectively diffusion and attractive effective
interactions between the colloids, which correspond to
the case where μ is negative. Writing the density as
ρðr; tÞ ¼ ρ0 þ δρðr; tÞ, in terms of a mean uniform
density ρ0 and density fluctuations δρðr; tÞ, we can
perform a linear stability analysis of the homogeneous
state in Fourier space q and approximately implement the

finite size of the cluster via a minimum cutoff on jqj. We
obtain ∂tδρðq; tÞ ¼ λðqÞδρðq; tÞ, where the growth rate is
given as

λðqÞ ¼ −Dq2 þ αjμjρ0=Dc: ðA5Þ

We observe that (for negative μ) λðqÞ is positive for all
perturbations with wave numbers jqj < q0, where
q0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αjμjρ0=ðDDcÞ

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
v0ρ0σ

p
, signaling a system-

wide instability. To obtain a critical value of v0 we
stipulate that the transition from fluid to solid occurs
when q0 ≈ L−1, where L is the minimum size of a close-
packed cluster, such that L3 ≈ σ3N, which yields the
scaling relation

v0 ∝ σ2=L2 ∝ N−2=3: ðA6Þ

Following [4] we can formulate an alternative argument
for the derivation of the scaling relation from the stability
of steady-state profiles of the chemical field c. At steady
state, where the phoretic drift flux balances the diffusive
flux, Eqs. (A1) and (A2) can be combined to obtain a
Poisson-Boltzmann-type equation for c̃ ¼ jμjc=D (the
nondimensionalized chemical concentration)

−∇2c̃ ¼ k2 expðc̃Þ; ðA7Þ

where k2 ¼ 4παμρ0=ðDDcÞ ¼ 4πv0σρ0, which is the
same combination of terms that appears in Eq. (A5). As
discussed in [4], the density of c at the middle of the
cluster grows with increasing k2 until the outgoing flux at
the boundary can no longer balance the phoretic fluxes
leading to a collapse. The condition for collapse depends
on the dimension, and in three dimensions is given by
Nv0σ=L ¼ const. Substituting L3 ≈ σ3N as the critical
size when the collapse occurs, we find that v0 at the tran-
sition scales as N−2=3 identical to the arguments based on
linear stability analysis of the homogeneous state.
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