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3Laboratoire de Pysique Théorique et Modélisation, UMR 8089, CY Cergy Paris Université, 95302 Cergy-Pontoise, France
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To understand the onset of collective motion, we investigate active systems where particles switch on
and off their self-propulsion. We prove that even when the only possible transition is off → on, an active
two-state system behaves as an effective three-state (inactive/passive) system that exhibits a sharp phase
transition in 1D, and critical behavior in 2D, with scale-invariant activity avalanches. The obtained results
show how criticality can naturally emerge in active systems, providing insight into the way collectives
distribute, process, and respond to local environmental cues.
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Collective motion is observed in a large variety of
biological systems; fish schools [1], bird flocks [2], and
ungulate herds [3,4] are a few of the countless existing
examples [5,6]. Despite the fact that collective motion is in
general not a continuous process [7,8], and animal groups
display repeated transitions from static to moving phases
[4]—with the former associated with, e.g., resting or
feeding phases—most experimental and theoretical studies
have focused on the characterization and modeling of
groups of constantly moving units [1,2,6]. Moreover,
transitions from static to moving states have been recently
shown to also occur in (subcritical) active colloidal systems
[9], which proves that such transitions are observed in both,
living and nonliving active matter.
A prominent example of such transitions is the onset of

collective motion from an initially polarized static group,
which remains largely unexplored. One exception is a
recent study on the initiation of a marathon, where
boundary displacements set in motion the crowd [10]. In
animal groups, on the other hand, collective motion is often
triggered by the behavioral shift, from static to moving, of
one single individual [3,11–13]. The behavioral shift of this
first individual can be the result of, for instance, the
decision of the individual to search for a new feeding
area, or a reaction to a predator attack [8]. In general, it is
expected that certain features of the behavioral shift of this
first individual—e.g., its velocity—encode information
about the stimulus that triggered its behavioral change.
Understanding how information spreads in active and

animal systems remains an open crucial question. It has
been argued [14–16] that biological systems have to
operate at criticality to ensure efficient responses and fast
information propagation to external perturbations. In the

context of animal behavior, evidence of critical behavior
was reported in bird flocks [2,17,18], fish schools [19], and
sheep herds [3]. Information propagation, on the other
hand, has been mostly studied, not on active systems, but
on static lattices and networks [20]. Except for the study of
epidemic spreading in moving agent systems [21–26], the
role of agent motility in a propagation process, despite its
relevance, is unknown. Moreover, in these models [21–25],
with the exception of Refs. [27–29], active agents do not
exhibit a coupling between the internal state dynamics and
the equation of motion of the agents.
Here, we fill this fundamental gap and investigate a

generic coupling in which the agent’s internal state controls
the agent’s active speed. Specifically, we consider systems
in which the state of an agent i is given by its position xi
and its behavioral state qi that adopts one of the two
possible values: I (inactive) or A (active). The generic
feedback mechanism between the internal state qi and the
spatial dynamics of the agent is given by

ẋi ¼ V½qi� ¼
�
v if qi ¼ A

0 if qi ¼ I
; ð1Þ

where the dot denotes the temporal derivative and v the
active velocity. Initially, individuals are equally spaced a
distance Δ0 ¼ jxiþ1ðt ¼ 0Þ − xiðt ¼ 0Þj, where, in 1D,
i ¼ 1 and i ¼ N are the leftmost and rightmost agents,
respectively, and all individuals are in state I, except for one
agent (usually i ¼ 1) that is in state A [Fig. 1(a) upper
panel]. This condition corresponds to an initially polarized
static group of agents and one initiator. Given an agent in
state I and another one in state A, separated by a distance
jΔxj, we consider only one possible transition:

I þ A ⟶
γðjΔxjÞ
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where γðjΔxjÞ ¼ αKðjΔxj=dÞ denotes the transition rate,
with α a constant rate, d a characteristic length, and
KðuÞ ¼ e−juj. Note that we have tested KðuÞ ¼ e−u

2

, step
function, and other functional forms for KðuÞ, obtaining
(qualitatively) the same results [30]. For v ¼ 0, the model
describes the propagation of state A on a lattice such that for
t → ∞, all individuals end up in state A. As explained
below, for v > 0 the system exhibits different propagation
regimes that are controlled by the active speed v. For v < 0,
the simple generic coupling given by Eq. (1) fundamentally
changes the physics of the problem. The system behaves as
an effective three-state (inactive/passive) model that exhib-
its a sharp phase transition in 1D and critical behavior
in 2D.
We observe that the model can be interpreted as follows.

The first individual that becomes active—for instance, due
to some external perturbation, e.g., the presence of a
predator—chooses a velocity v. All subsequent transitions
I → A can be interpreted as a mimetic process: inactive
agents as transition to active, adopt the velocity of the other
active agents, and thus, acquire the velocity of the
first agent.
Propagating regimes and fronts—To understand the

presence of distinct propagating regimes and the relation
between the propagating front speed c and the active agent
velocity v, we derive the associated Kolmogorov forward
equation [32] corresponding to Eq. (1) and transition (2),
and obtain a hydrodynamic description of the model in
terms of a density field ηAðx; tÞ ¼ hPi δ(x − xiðtÞ)δqiðtÞ;Ai
[ηIðx; tÞ ¼ hPi δ(x − xiðtÞ)δqiðtÞ;Ii] of active [inactive]
individuals at time t in position x:

∂tηAðx; tÞ ¼ Γðx; tÞηIðx; tÞ − v∂xηAðx; tÞ ð3aÞ

∂tηIðx; tÞ ¼ −Γðx; tÞηIðx; tÞ; ð3bÞ

where Γðx; tÞ ¼ R
∞
−∞ ηAðx0; tÞγðjx0 − xjÞdx0. For v ¼ 0 and

after approximating Γðx; tÞ ≃ dα
�
aηA þ ðd2b=2Þ∂2xηA

�
,

where a ¼ R
∞
−∞ KðjujÞdu, and b ¼ R

∞
−∞ u2KðjujÞdu—for

details see [30]—it is possible to show that Eq. (3) exhibits
propagating fronts that move at speed c0 ∼ αΔ−1

0

ffiffiffiffiffiffiffiffi
2ab

p
. In

this limit, Eq. (3) exhibits a behavior similar to the one of
the Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) equa-
tion [33]; Fig. 2(a), upper panels and videos S2 in [30]. On
the other hand, for v ≠ 0, the behavior of Eq. (3) is
fundamentally different from, and not reducible to the
one of the FKPP equation. When the agent speed is such
that 0 < v < c0, the density profiles of the expanding
active population (of a semi-infinite system of agents
located initially at x > 0) can be approximated by a plateau,
where the right (R) and left (L) edges are given, respec-
tively, by yRðLÞðxÞ ¼ ARðLÞf1 ∓ tanh½x − xRðLÞðtÞ�=lRðLÞg
with ARðLÞ, lRðLÞ constants. The position of the right and
left edges are xRðtÞ ∝ ct and xLðtÞ ∝ vt and thus, advance
at speeds c and v, respectively; Fig. 2(a) middle panels,
Fig. S1, and videos S3 in [30]. In agent-based model
(ABM) simulations as well as by integrating Eq. (3), we
find that the speed c of the leading edge exhibits a generic
linear dependency with the active agent velocity v:

cðvÞ ≃ c0 þmv; ð4Þ

where, importantly, m ≠ 1. For an exponential function K
and in the explored range of Δ0, we obtain m ¼ 4

3
in both,

simulations and from Eq. (3); Fig. 1 and Fig. S2 in [30].
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FIG. 1. Information propagation in a 1D system. (a) The
kymograph shows the evolution of the activation wave in
simulations. Green corresponds to density of active and gray
inactive agents. The leading edge moves at speed c, Eq. (4). The
upper rectangle illustrates the process with agents represented as
disks. See video S1 in [30]. (b) Propagating front speed c vs v.
Blue symbols correspond to simulations, solid line is Eq. (4).
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FIG. 2. Dynamic regimes. (a) Density profile of active agents
ηAðx; tÞ at a fixed time t in agent-based model (ABM) simulations
and in the numerical integration of Eq. (3) (PDE). Three different
regimes are shown: the limit v ¼ 0, the slow velocity regime
(0 < v < c0), and the HS or selfish regime (v ≥ c0). The
insets display the density of inactive agents ηIðx; tÞ at time t.
(b) Mapping of our two-state model with spatial coupling onto
the three-state SIR model (color code as in Fig. 1).
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Another propagation regime—which we refer to as high-
speed (HS) (or “selfish”) regime—is observed when
v ≥ c0. The initial active agent moves so fast that it goes
by inactive agents, which do not have the time to transition
to the active state and are left behind. Eventually, the fast-
moving active agent recruits a second agent that starts
running near the initial active agent, which contributes to
recruiting a third active agent, and so on, until a collective
response emerges; see Fig. 2(a) lower panels and video S4.
This regime is also reproduced by Eq. (3), where we
observe as in ABM simulations, that an initial small density
profile of active agents grows in height and width over
time, asymptotically converging to a propagating front (see
videos S5 [30]). To discuss the relevance of these regimes,
let us consider a hypothetical scenario in which the first
active individual—i.e., the leftmost individual—reacts to
the presence of a predator (located further to the left). If this
individual chooses to move with speed v < c0, an activa-
tion wave will propagate through the system and all
individuals will transition to the active state, and the group
will move to the right, away from the predator. Importantly,
the structure of the group will remain the same, and
consequently the leftmost individual, and thus the closest
to the predator, will always be the initiator. Hamilton selfish
herd hypothesis [34], however, suggests that individuals
may try to protect themselves by moving to the inside of the
group, leaving other agents exposed to the predator.
Logically, the strategy requires individuals to modify the
group structure. The initiator, to stop being the leftmost
individual, needs to move with a speed v > c0. Only using
such high speeds, will the initiator manage to penetrate
inside the group and leave a number of agents between its
position and the predator.
From two to effective three states—Fluctuations, which

cannot be analyzed by the deterministic approach given by
Eq. (3), play a fundamental role in the dynamics of the
system [Eqs. (1) and (2)]. To understand such fluctuations,
we start out by considering v < 0 and a system composed
of only two individuals, in states A and I, located at
positions xAðtÞ ¼ −jvjt − Δ0 and xIðtÞ ¼ 0, respectively
[see Fig. 2(b)]. We are interested in knowing the probability
pIðtÞ that the individual, initially inactive, remains in state I
at time t. This probability obeys ∂tpI ¼ −αKðjxAðtÞj=dÞpI ,
with initial condition pIðt ¼ 0Þ ¼ 1. The solution of this
equation, with KðuÞ ¼ expð−jujÞ, reads

pIðtÞ ¼ exp

�
−
αe−Δ0=d

ðjvj=dÞ
�
1 − e−

�
jvj
d

	
t

�

: ð5Þ

For v → 0, it is evident that pIðt → ∞Þ → 0, meaning
that certainly, the activation of the initially inactive agent
has occurred. On the other hand, for a nonzero v,
pIðt → ∞Þ > 0. This implies that with probability pT ¼
1 − pIðt → ∞Þ < 1 the activation of the initially inactive
agent has occurred.

In the following, we prove that the problem can be
mapped onto the susceptible-infected-recovered (SIR)
model or forest fire model [35–37]. The SIRmodel is defined
by the reactions S þ I !σ 2I and I !ρ R. In a system with
only two agents, initially in states S and I , the probability of
finding the initially susceptible agent in state S at time t reads
pSðtÞ ¼ exp ½−ðσ=ρÞð1 − e−ρtÞ�, and thus pSðt → ∞Þ ¼
exp ½−ðσ=ρÞ�. By taking ρ ← jvj=d and σ ← αe−Δ0=d, it
becomes evident that pSðtÞ is identical to Eq. (5). Let us
now consider a semi-infinite lattice, initially in the configu-
ration ISSS � � �, with interaction to nearest neighbors. If
state R is not present, all agents end up being infected.
Otherwise, if at some point an agent in state I transitions
to R before passing over the disease to its neighbor, the
infection cascade is interrupted [see Fig. 2(b)]. The proba-
bility of observing n lattice sites in state R for t → ∞ is
½1 − pSðt → ∞Þ�npSðt → ∞Þ. This implies that outbreak
sizes (n) are exponentially distributed and the average size
remains finite. Similarly in our 1D active model, the prob-
ability PðsÞ of observing s ¼ nAðt → ∞Þ active agents at
t → ∞, involves s successive activation transmissions fol-
lowed by a transmission failure, which can be expressed as
PðsÞ¼½pT �spIðt→∞Þ≃e−spIðt→∞ÞpIðt→∞Þ, which leads
to hsi ∼ 1=pIðt → ∞Þ. As in the SIR model in 1D, acti
vation cascades are exponentially distributed and the
average number of active individuals at t → ∞—hsi≃R
∞
0 spðsÞds—remains finite. All this demonstrates the exist-
ence of a mapping between our 1D active model with v < 0
and the SIR model in 1D. Defining as order parameter
ϕ ¼ hsi=N, it is evident that in 1D for v < 0 and in the
thermodynamic limit, ϕ → 0. For v ¼ 0, on the other hand,
we have seen that pIðt → ∞Þ ¼ 0 and pT ¼ 1, and thus in
the thermodynamic limit hsi → ∞ and ϕ → 1. The same
applies to v > 0; the leftmost agent in state A has always a
neighbor at a distance less or equal toΔ0. In summary, in 1D,
ϕ ¼ 0 for v < vc and ϕ ¼ 1 for v ≥ vc with vc ¼ 0.
Importantly, all of this proves that our active system in 1D,
where active particles move, behaves as a lattice model with
effective three states.
Phase transition and criticality—Since the three-state

SIR model in 2D exhibits critical behavior [31], we
investigate whether the two-state active model in 2D also
displays criticality. In 2D, agents move according to
ẋi ¼ V½qi�x̂, while transitions are controlled as before by
Eq. (2). The initial condition corresponds to a polarized
group of inactive agents, which are arranged equally spaced
on the half-plane extending to the right. At t ¼ 0 there is
either one active agent or the entire left boundary is active.
Importantly, the reported results are not affected by the
presence of polarization fluctuations, if an alignment
mechanism as in the Vicsek model is included in the
model: particles quickly return to the polarization of the
majority, see [30] for details and video S6.
We observe that in 2D the order parameter ϕ as a

function of v indicates the presence of a phase transition at
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a critical speed vc, with vc < 0; Fig. 3(a). Interestingly, we
observe that at v ∼ vc there exists a remarkably large
variability of possible outcomes for the same initial con-
ditions; see video S7 [30] and Fig. 3(c), III and IV.
Specifically, the distribution of the number s of active
agents at t → ∞, PðsÞ, is power-law distributed, which is
indicative of critical behavior. Specifically, PðsÞ ∝ s−β,
with β ≃ −1, and thus we observe from small to giant,
system spanning, activity avalanches; Fig. 3(b). Compare
these findings with what is known for dynamic percolation
[38]. Criticality in our system is also manifested through
the behavior of susceptibility χðϕÞ ¼ Nðhϕ2i − hϕi2Þ,
which increases with system size alongside with a narrow-
ing tendency [inset of Fig. 3(a)]. Furthermore, we find at
v ∼ vc the absence of characteristic correlation length,
signifying that all length scales are possible [30].
Note that the mapping onto the two-dimensional SIR

lattice model is no longer exact, but an approximation.
Since in the SIR model at the critical point, we observe that
as the infection propagation advances, islands of suscep-
tible agents are left behind. These islands are protected by a
layer of recovered agents and will never be infected [30]. In
contrast, in the studied two-state system, due to the
displacement of active agents, islands of inactive agents
can be activated later on by passing active agents [30].
In short, our study proves that a generic coupling

between the agent’s internal state and active movement
has a profound impact on the physics of the propagation
process; specifically, the coupling renders an active two-
state system into an effective (inactive/passive) three-state
(excitable) system that in 2D is able to display critical
behavior. The obtained results are of key importance to the
understanding of (i) criticality in active system, and of
(ii) how collectives distribute, process, and respond to the
environmental information that is sensed by group mem-
bers. The analysis also shows how the agent velocity selects
the propagation regime. For example, when individuals

move with velocity 0 < v ≪ c0, all group members get
activated and move together, keeping the same (relative)
group structure. On the other hand, if the first individual
reacts to a threat, e.g., a predator, and chooses to move with
velocity v ≫ c0, the individual will manage to seek cover
inside the group, leaving a number of conspecifics between
its position and the predator, modifying the group structure,
cf. Hamilton’s selfish herd hypothesis [34]. Finally, the
reported predictions can be tested in experiments. In
particular, preliminary results [39] show that active two-
state models, in the spirit of the one analyzed here,
reproduce collective diving events in fish [40], and density
and velocity waves in human crowds [10]. We anticipate
that these models also explain density fluctuations in sheep
herds [4], and activation waves in subcritical Quincke
rollers [9].
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