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Finding optimal trajectories for multiple traffic demands in a congested network is a challenging task.
Optimal transport theory is a principled approach that has been used successfully to study various
transportation problems. Its usage is limited by the lack of principled and flexible ways to incorporate
realistic constraints. We propose a principled physics-based approach to impose constraints flexibly in
optimal transport problems. Constraints are included in mirror descent dynamics using the D’Alembert-
Lagrange principle from classical mechanics. This results in a sparse, local and linear approximation of the
feasible set leading in many cases to closed-form updates.
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Introduction—Optimal transport in networks has impor-
tant applications in different disciplines, in particular in
urban transportation networks [1]. Congestion not only
increases travel time for users and decreases productivity,
but it also drives air pollution. Reducing congestion
and making transportation more efficient are also a core
objective for EU policies, as highlighted throughout the
EU Transport White Paper and the Strategic Plan 2020-
2024 [2,3].
The design of efficient transportation networks is a

complex task that requires a multifaceted solution. One
of these facets is the problem of finding optimal routes for
passengers. This is a well-studied problem in operations
research [4] where minimum-cost optimization is often
considered to model discrete flows and can be solved using
classical techniques from linear programming. In our
Letter, we consider the continuous case, where flows are
real-valued quantities. A variety of approaches have been
suggested to model transport in networks using techniques
from physics of complex systems [5,6]. Path optimality and
congestion control have been studied in discrete settings
[7–9] or using the cavity method [10,11]. These usually
rely on ad hoc algorithmic updates that depend on the
specific type of constraints. The computational complexity
of the ad hoc updates is greatly influenced by the
constraints. Other approaches have been proposed to

investigate navigation in complex systems [12–18], where
the focus lies on investigating the properties of flows, rather
than their optimization, as we consider here. In addition,
these models often assume that passengers follow their
shortest paths, an assumption, which may not be satisfied in
practice. Adaptation dynamics [19–21] have been proposed
to model biological distribution networks. However, these
methods fall short of describing realistic scenarios where
transport flows are limited by constraints.
In the following we cast the problem of designing

efficient transportation networks under the broader frame-
work of optimal transport theory (OT) [22]. This has been
used to model and optimize various aspects of transport
networks such as network design [19,21,23,24] and traffic
flows [25–29]. These approaches guarantee a principled
and computationally efficient way of solving transportation
problems on networks. In addition, they model traffic
congestion with a single tuning parameter that enables a
transition between opposite traffic regimes, where traffic
congestion can either be consolidated or discouraged. In
standard OT methods, beyond few obvious constraints
(e.g., conservation of mass), the amount of flow passing
through an edge of the transportation network is uncon-
strained. As a result, traffic tends to concentrate on path
trajectories that may be structurally unfeasible, which
severely limits the applicability of OT models in real-world
situations, where, for example, roads have a limited
capacity of vehicles traveling at the same time. This Letter
proposes an approach to avoid this crucial flaw of OT
models by imposing constraints. Applying this approach
significantly impacts the overall network topology induced
by the optimal flows, as the resulting path trajectories have
different path lengths and traffic distribution than those
obtained from unconstrained scenarios.
Our approach has not only a solid foundation via the

principle of D’Alembert-Lagrange from classical mechanics
[30], but also leads to algorithms that are computationally
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efficient and have a low implementation complexity. The key
idea is to consider mirror descent dynamics of an OT
problem, where constraints are included on a velocity level.
This leads to a sparse, local and linear approximation of the
feasible set which, in many cases, allows for a closed-form
update rule, even in situations where the feasible set is
nonconvex.
The model—In analogy with electrical grids or hydraulic

networks, we model mass flow on a transportation network
using conductivities and flows on network edges. We
consider a multicommodity scenario [26,31], where mass
of different type i ¼ 1;…;M can move along different
trajectories. The flow Fi

e of mass of type i along an edge
e ¼ ðu; vÞ can be described by Fi

e ¼ μeðpi
u − pi

vÞ=le,
where pi

u is a pressure potential at node u for passenger
of type i, le is the length of the edge e, and μe its
conductivity. This latter quantity can be seen as propor-
tional to the size of an edge, and is the main variable of
interest in determining optimal trajectories. Once the
conductivity is known, the pressure differences can then
be calculated from Kirchhoff’s law, which in turn deter-
mines the flows Fi

e, see Supplemental Material (SM) [32],
which includes Refs. [33–36]. In the absence of constraints,
the optimal conductivities are the stationary solutions of the
dynamics μ̇ ¼ f, where

fe ¼ μβe

P
iðpi

u − pi
vÞ2

l2
e

− μe ≡ μβ−2e jFej2 − μe; ð1Þ

with Fe ¼ ðF1
e;…; FM

e Þ and j · j denotes the Euclidean
norm. Intuitively, this equation describes a positive feed-
back mechanism where conductivities increase for larger
fluxes and decrease for negligible ones [19]. It can be
shown that the dynamics in Eq. (1) admits a Lyapunov
function Lβ which can be interpreted as a combination of
the cost to operate the network and that of building the
infrastructure [26], see SM [32]. Moreover, we have that
f ¼ −S∇Lβ, where S is a diagonal matrix with diagonal

entries Se ¼ 2μβe=le and Eq. (1) can therefore be seen as a
mirror descent for the cost function Lβ [37]. This scaling in
S has the advantage of ensuring good behavior of the
resulting numerical methods. One can also reinterpret
Eq. (1) as a classical gradient descent by applying a
suitable transformation [38], we do not explore this here.
Variants of these dynamics have been proposed to model

distributions over networks [20,21,27,39,40]. The constant
β∈ ð0; 2Þ regulates the desired transportation regime. The
setting β < 1 penalizes traffic congestion by distributing
paths on more edges, β > 1 encourages path consolidation
into fewer highways, and β ¼ 1 is shortest pathlike.
In addition to imposing Kirchhoff’s law on nodes to

ensure mass conservation, solving these dynamics outputs
otherwise unconstrained optimal μe and Fe (see SM [32]).
While this may be enough in ideal cases, in more realistic
scenarios it is important to further constrain the solution.

For instance, structural constraints may limit the maximum
amount of flow that an edge can carry, or a budget
constraint may be used to limit the infrastructure cost
for building the network. Hence, the dynamics μ̇ ¼ f must
be altered to account for these additional constraints.
There are many ways in which constraints can be added.

A popular approach is to add constraints on a so-called
position level, which leads to gradient inclusions in
continuous time [ [41], Ch 3.4], and projected gradient
descent in discrete time. Unfortunately, the scope of
projected gradients is limited, due to the fact that projec-
tions can only be efficiently evaluated for constraints that
have a particular structure (such as a low-dimensional
hyperplane, the probability simplex, or a Euclidean norm
ball). When the feasible set is nonconvex and/or fails to
have a simple structure, evaluating projections is a com-
putationally daunting task. This motivates our formulation
(see also Ref. [42]), which includes constraints on a
velocity level and yields a sparse local and linear
approximation of the feasible set. As a consequence, the
updates for μ can often still be evaluated in closed form (or
there is an efficient way of computing them numerically)
even though the underlying feasible set is nonconvex
or fails to have a simple structure. We will highlight
explicit examples of such situations in the remainder of
this Letter.
We define C ≔ fμ∈RE

≥0jgðμÞ ≥ 0g as the set of feasible
conductivities μ ¼ ðμ1;…; μEÞ, with g a constraint function
that we assume continuously differentiable and E is the
number of network edges. Interpreting μ as a “position”
variable we can equivalently express the constraints in C in
terms of a “velocity” variable by imposing μ̇ðtÞ∈Vα(μðtÞ),
where Vα(μðtÞ) is the set of feasible velocities and α ≥ 0 is
a constant typically referred to as a “restitution” parameter
or “slackness,” see Appendix for details.
For μðtÞ ∉ C and an active constraint i, the constraint

μ̇ðtÞ∈Vα(μðtÞ) is equivalent to dgi(μðtÞ)=dt≥−αgi(μðtÞ),
which ensures that potential constraint violations decay at
the rate α > 0. The situation is visualized in Fig. 1(a).
In order to account for the velocity constraint μ̇∈VαðμÞ

we augment the dynamics μ̇ ¼ f with a reaction force R

FIG. 1. (a) Visualization of the set C and the set of feasible
velocities Vαðμ1Þ and Vαðμ2Þ at points μ1 and μ2, respectively.
Point μ1 lies on the boundary of C, while μ2 is infeasible; α is a
restitution parameter. (b) When the vector field f is pushing away
from C, a force −R∈NVα

ðμ̇Þ is added to the dynamics to ensure
μ̇∈VαðμÞ.
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that forces the solution to remain within the desired
constraints:

μ̇ ¼ f þ R; with − R∈NVαðμÞðμ̇Þ; ð2Þ

where NVαðμÞðμ̇Þ denotes the normal cone of the set VαðμÞ
at μ̇. Because of the scaling of the gradient with S, the
normal cone is defined with respect to the inner product
ha; bi ¼ aTS−1b, where a; b∈RE are arbitrary vectors.
This has the important effect of guaranteeing that Lβ (of the
unconstrained dynamics) is still a Lyapunov function also
in the constrained setting and that Lβ(μðtÞ) is monoton-
ically decreasing along the trajectories of Eq. (2). A
detailed derivation is included in the SM [32].
The addition of R ensures that even if f pushes μ away

from C, as shown in Fig. 1(b), the force R, which is
orthogonal to the set VαðμÞ, annihilates the component of f
that would lead to a constraint violation and ensures that
μ̇∈VαðμÞ. As discussed above, we can therefore conclude
that μð0Þ∈C ⇒ μðtÞ∈C for all t ≥ 0 and μð0Þ ∉ C ⇒
μðtÞ → C for t → ∞.
In addition, we infer from Fig. 1 that the resulting μ̇ in

Eq. (2) is nothing but the projection of f onto the set VαðμÞ
and as a result, we can rewrite μ̇ in the following way:

μ̇ ≔ argmin
v∈VαðμÞ

1

2
hv − f; v − fi; ð3Þ

which can also be equivalently reformulated as the quad-
ratic program (QP)

μ̇ ≔ argmin
v∈VαðμÞ

1

2
ðv − fÞTS−1ðv − fÞ: ð4Þ

This reformulation is not only useful for numerical
computations, but also highlights that the velocity μ̇ is
chosen, at each point in time, to match the unconstrained f.
Figure 1(a) visualizes the set C and the set of feasible
velocities Vαðμ1Þ and Vαðμ2Þ at points μ1 and μ2, respec-
tively. Point μ1 lies on the boundary of C, while μ2 is
infeasible. We note that the cone Vαðμ2Þ includes an offset,
which is controlled by the restitution parameter α; this
ensures that any v∈Vαðμ2Þ leads to a decrease in constraint
violation. Figure 1(b) shows that when the vector field f is
pushing away from C, a force −R∈NVα

ðμ̇Þ is added to the
dynamics. The force R annihilates the component of f that
would lead to a constraint violation and ensures μ̇∈VαðμÞ,
where μ̇ is chosen as close as possible to f. This can also be
interpreted as Gauss’s principle of least constraint. It is
important to note that VαðμÞ is a polyhedral set that only
includes the constraints Iμ, a subset of the original con-
straints gðμÞ ≥ 0. The set VαðμÞ represents therefore a
sparse, local, and linear approximation of the feasible set.
The solution μ̇ of Eq. (3) can then be used to update the
conductivity with a discrete-time algorithm:

μtþ1 ¼ μt þ τμ̇; ð5Þ

where τ > 0 is the step size.
This general formalism can be applied to a variety of

scenarios, provided one can compute∇g, which determines
the set VαðμÞ. We can then solve Eq. (4) by using numerical
solvers tailored to the QP, which then yields the update
Eq. (5). Additional details about the computational com-
plexity for solving Eq. (5) are described in the SM [32].
However, in important special cases, the optimization
Eq. (5) can be solved in closed form, as we illustrate
below with three relevant examples.
Capacity constraints—In cases of structural constraints

that strictly limit the amount of mass that can travel along
any given edge, one can consider capacities ce ≥ 0 on
edges and set constraints as geðμÞ ¼ ce − μe. The velocity
constraint v∈VαðμÞ in Eq. (3) reads as ve ≤ αgeðμeÞ, for
e∈ Iμ, which is strictly negative, since α > 0 (SM [32]). As
previously discussed, α > 0 is a restitution parameter that
dictates the rate at which constraint violations decay. In
discrete time, one should choose α > 0 such that ατ ≤ 1 to
guarantee convergence (see Ref. [42]). We can then solve
Eq. (3) in closed form for edges violating the constraint
obtaining ve ¼ minfαðce − μeÞ; feg. In summary, for each
edge e, we have

μ̇e ¼
�
αðce − μeÞ; if fe ≥ αðce − μeÞ and μe ≥ ce;

fe otherwise:
ð6Þ

Figure 2 shows the path topologies with capacity
constraints on synthetic data, compared against the uncon-
strained case. We generate random planar networks as the
Delaunay triangulation [43] ofN ¼ 300 points in the plane.
We measure the Gini coefficient GiniðTÞ calculated on the
traffic on edges, defined as the E-dimensional vector T with
entries Te ¼

P
i jFi

ej=n, where n is the number of pas-
sengers. The coefficient has value in [0, 1] and it determines
how traffic is distributed along network edges, with
GiniðTÞ ¼ 0, 1 meaning equally balanced or highly unbal-
anced traffic on few edges, respectively. The choice of the
edge capacity ce influences this value, with lower ce
imposing stricter constraint and thus encouraging traffic
to distribute more equally along the edge, i.e., lower Gini,
as shown in Fig. 2(a). Conversely, this implies longer routes
for passengers, as measured by an increasing average total
path length hli ¼ P

e;i lejFi
ej=n compared to the uncon-

strained solution, as shown in Fig. 2(b).
Budget constraint—As a second example, we consider a

global constraint that involves all the edges at once, a
budget constraint gbðμÞ ¼ b −

P
e μe. This is relevant

when a network manager has a fixed limited amount of
resources b > 0 to invest. We note that, while the Lyapunov
function Lβ contains a similar budget term—the cost to
build the infrastructure—this cost is not regarded as a
constraint in standard approaches [20,26] but as part of the
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energy consumption, and the budget b is not a Lagrange
multiplier but a measurable constant. Furthermore, unlike
the previous case where including a positivity constraint
μe ≥ 0 is optional (but it can in principle be imposed as
well, see SM [32]), here we need to include that explicitly.
In the standard OT formalism positivity is ensured, pro-
vided μe is initialized as a positive quantity. Adding
constraint may not preserve positivity anymore during
the updates, this is the case for the budget constraint, as
we observed empirically. Positivity is enforced by adding
gpðμÞ ¼ μ ≥ 0, i.e., μe ≥ 0 ∀ e.
In this budget constraint setting, the conductivities violate

the constraint whenever
P

e μe > b. We derive a closed-
form solution as μ̇e ¼ fe − Seλb, if fe − Seλb ≥ −αμe, and
μ̇e ¼ −αμe otherwise, where λb ∈R, a Lagrange multiplier
for the budget constraint, can be numerically determined via
fixed-point iteration (SM [32]).
Combining linear and nonlinear constraints—All the

previous examples considered linear constraints, where it is
simple to derive analytical solutions. In general, constraints
can be more complicated and thus require numerical
methods to solve the constrained QP in Eq. (3). In this
scenario, we consider a nonlinear budget constraint of the
form gδðμÞ ¼ b −

P
e μ

δ
e ≥ 0, where δ > 0 is a nonlinearity

parameter. Setting δ ¼ 1 gives a linear budget constraint as
the one discussed earlier. A nonlinear example is a volume-
preserving constraint where δ ¼ 1=2, this is relevant for
biological processes such as leaf venation and vascular
systems [21,44]. This nonlinear budget induces the velocity
constraint

P
e δμ

δ−1
e ve ≤ αgδðμÞ. In addition, we also

consider a capacity constraint as in the first scenario
studied above. Overall, three functions are required:
(i) gδðμÞ to impose nonlinear budget constraint; (ii) geðμÞ
to impose edge capacity, and (iii) gpðμÞ to ensure positivity.
We derive the closed-form solution as

μ̇e¼

8>><
>>:
αðce−μeÞ if fe−Seλδhe≥αðce−μeÞ; μe≥ce
−αμe if fe−Seλδhe≤−αμe; μe≤0

fe−Seλδhe otherwise;

ð7Þ

where he ¼ δμδ−1e and λδ > 0. The value of λδ can
be determined numerically using fixed-point iteration
(SM [32]). The value αðce − μeÞ ensures there is no
violation on the edge capacity, −αμe imposes positivity
constraint, and fe − Seλδhe captures budget violation.
Overall, this scenario ensures that the velocity μ̇e has an
upper bound of αðce − μeÞ and lower bound of −αμe. The
choice of δ impacts the topological properties of the
resulting network, e.g., the total path length. In the
numerical experiments, we set the nonlinearity parameter
as δ∈ ð0; 1Þ.
Grenoble network—We examine the topology of various

constrained solutions on the road network of the city of
Grenoble [45], see Fig. 3(a). This has 640 nodes and 740
edges. As a relevant example, we set the central bus station
as the destination node and select the remaining 639 nodes
as origins, but our method still applies to other choices of
origin-destination pairs, e.g., peripheral nodes connecting
to other peripheral nodes or to various hubs. This can be
specified inside Kirchhoff’s law, see SM [32].
Routes generated from the nonlinear constraint scenario

balance traffic more than the unconstrained case and result
in longer routes, see Figs. 3(b) and 3(c). Adding a budget
constraint for β > 1 results in more distributed traffic
(lower Gini) without increasing much the total path length,
compared to the unconstrained case. This could be used for
instance to allocate to roads infrastructural works aimed at
maintenance or upgrade when having a restricted budget.
Discussion—Distributing flows in a transportation net-

work is challenging. Approaches based on optimal trans-
port theory are promising, but they are limited by the lack
of a mechanism to incorporate realistic constraints. We
show how to impose arbitrary constraints on OT problems
in a principled and flexible way. The constraints are lifted
from a position to a velocity level and are included in the
corresponding mirror descent dynamics. This results in a
scalable algorithm that solves constrained OT problems in a
computationally efficient manner. The algorithm relies on a
sparse local approximation of the feasible set at each
iteration. Thus, closed-form updates can often be derived,
even if the underlying feasible set is nonconvex or non-
linear. Otherwise, one can resort to efficient numerical
methods to solve at most a quadratic program. Our physics-
based approach is a change of paradigm with regard to how

FIG. 2. Capacity constraint on synthetic networks. (a) Gini
coefficient of the traffic distribution on edges. The edge capacity
ce ¼ c is selected as a percentile of the distribution of μ over
edges obtained in the unconstrained case (Unconstrained).
(b) Ratio of average total path length to that of Unconstrained,
hlif. Markers and shadows are averages and standard deviations
over 20 network realizations, with 100 randomly selected origins.
All passengers have the same central destination (square magenta
marker). (c) Example trajectory of one passenger type (green
color), whose origin is the green triangle marker. Edge widths are
proportional to the amount of passengers traveling through an
edge; β ¼ 1.8.
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OT problems are modeled and solved numerically. This
calls for a generalization of transportation problems in
wider scenarios, e.g., in networks with multiple transport
modes [28], with real-time traffic demands [46], or with
noise-induced resonances [47].
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End Matter

Appendix A: Details about setting the constraints—We
define C ≔ fμ∈RE

≥0jgðμÞ ≥ 0g as the set of feasible
conductivities μ ¼ ðμ1;…; μEÞ, with g a constraint
function that we assume continuously differentiable
and E is the number of network edges. We focus on
those edges where constraints are not satisfied, and
denote the set of active constraints for a given μ as
Iμ ≔ fi∈ZjgiðμÞ ≤ 0g. Interpreting μ as a “position”
variable, a constraint to ensure μðtÞ∈C, ∀ t ≥ 0, can be
equivalently formulated as a constraint on its velocity
μ̇ðtÞ∈TC(μðtÞ), ∀ t ≥ 0, with μð0Þ∈C, where TCðμÞ
denotes the tangent cone of the feasible set at μ, see
Ref. [49]. However, it will be convenient to slightly
extend the notion of tangent cone to also account for
infeasible initial conditions (this is particularly important
for the discretization), which is achieved by imposing
μ̇ðtÞ∈Vα(μðtÞ), where VαðμÞ ≔ fv ∈ REj∇giðμÞTv ≥
−αgiðμÞ; i ∈ Iμg, and α ≥ 0 is a constant typically
referred to as a “restitution” parameter or “slackness.”
We note that VαðμÞ generalizes the notion of the tangent
cone, since for μ∈C, VαðμÞ ¼ TCðμÞ. We assume
mild regularity conditions (constraint qualification). A

sufficient condition is, for example, the existence of
v∈RE such that ∇giðμÞTv > 0 for all i∈ Iμ.
For μðtÞ ∉ C, the constraint μ̇ðtÞ∈Vα(μðtÞ) is equiv-

alent to dgi(μðtÞ)=dt ≥ −αgi(μðtÞ), i∈ IμðtÞ, which ensures
that potential constraint violations decay at the rate α > 0.

Appendix B: Details about our method—From a
variational optimization perspective, our approach is
related to successive linear and sequential quadratic
programming [50–52]. The underlying idea of these
methods is to linearize the objective function and the
constraints about the current iterate and to solve a local
linear and/or quadratic program. Our Letter improves
upon these ideas and tailors these to optimal transport
problems in the following way: (i) we linearize a subset
of constraints at every iteration, which means that the
subproblem Equation (3) typically includes very few
constraints and can be solved efficiently; (ii) we introduce
a non-Euclidean inner product that is adapted to optimal
transport problems and is used to show that Lβ is a
Lyapunov function; (iii) we provide closed-form updates
in various problem instances that are practically relevant.
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