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We demonstrate experimentally that, applying optimal protocols that drive the system between two
equilibrium states characterized by a free energy difference ΔF, we can maximize the probability of
performing the transition between the two states with a work W smaller than ΔF. The second law holds
only on average, resulting in the inequality hWi ≥ ΔF. The experiment is performed using an underdamped
oscillator evolving in a double-well potential. We show that with a suitable choice of parameters the
probability of obtaining trajectories with W ≤ ΔF can be larger than 95%. Very fast protocols are a key
feature to obtain these results, which are explained in terms of the Jarzynski equality.
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Introduction—Numerous experimental platforms that
act on the micro and nano scales allow us to explore the
laws of thermodynamics for systems with few degrees of
freedom coupled with thermal baths [1]. Typical examples
are experiments in colloids [2–7], electric circuits [8],
single electron transistors [9–11], mechanical devices
[12,13], and single molecules [14,15]. In such systems,
fluctuations of physical quantities play a fundamental role,
contrary to classical thermodynamics, which mostly con-
siders averaged quantities. Stochastic thermodynamics
provides the suited framework to describe single realiza-
tions of thermodynamic transformation, and the associated
work and heat distribution. In particular, the second law
does not apply at the level of a single realization, and one
can observe local “violations” due to the stochastic nature
of the system, where the system can extract work, or gain
free energy, at no cost to the operator and with no
information feedback (illustration in Fig. 1) [16–19].
In a system driven by an external control parameter λ

from an initial to a final equilibrium state resulting in a free
energy difference ΔF between the two states, the proba-
bility distribution of the work performed when changing λ
is constrained by Jarzynski’s equality [20]

he−βWi ¼ e−βΔF; ð1Þ
where β ¼ 1=kBT, with T the temperature of the system
and kB the Boltzmann constant. The expression of the
second law can be recovered from the convexity of the
exponential function: hWi ≥ ΔF. We are interested here in
realizations where the free energy of the system can be
increased spending an amount of work W < ΔF. The free
energy stored in the system can be later used, resulting in
probabilistic work extraction from the device.
These realizations have been theoretically [10] and

experimentally studied [9] with a single electron transistor

with discrete energy levels, obtaining a probability of
extracting work up to 65%. Using a mechanical oscillator,
we want to illustrate this behavior using a fully classical
continuous system. Our goal is to experimentally obtain an
arbitrary large probability of having realizations with
W < ΔF. To this aim, we propose a protocol that tends
to the optimal work distribution predicted by Refs. [10,11]:
it should consist of only two peaks, with the most frequent
one below ΔF.
Experimental setup and protocol—The experimental

setup is a microcantilever, which behaves in the absence
of external forces as an underdamped harmonic oscillator
of stiffness k, resonance frequency f0 ¼ 1200 Hz and
quality factor Q ¼ 10. The deflection x of the cantilever
is measured by interferometry [21]. The oscillator is in
equilibrium with the surrounding air at room temperature T
and subject to thermal fluctuations. The variance of x is

FIG. 1. Probability distribution function of the work PðWÞ
during a transformation. (a) In classical macroscopic thermody-
namics, fluctuations are usually Gaussian and negligible com-
pared with the work mean value hWi (green vertical line).
(b) However, in stochastic thermodynamics, such fluctuations
can have a more complex distribution (such as the bimodal one
sketched here), and lead to local “violations” of the second law:
several realizations (hatched area) of a transformation can be
performed with a work W smaller than the free energy difference
ΔF (red vertical line), even if in average hWi ≥ ΔF. Note that in
this sketch, the horizontal axis is rescaled between (a) and (b).
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σ2 ¼ hx2i ¼ kBT=k ∼ 1 nm2. σ is used as the unit length,
and from now on all positions are expressed as dimension-
less quantities z ¼ x=σ, and energies in units of kBT [hence
taking β ¼ 1 in Jarzynski’s equality, Eq. (1)].
To tune the potential experienced by the resonator, we

use an electrostatic force acting on the cantilever. A time-
dependent virtual potential can be created by a fast feed-
back loop [12,22] that adjusts the voltage V applied to
the cantilever (thus the electrostatic force) depending on the
measured position z (see Fig. 2). We implement the
following simple rule: V ¼ −V0 if the position is below
a threshold λ, and V ¼ þV0 otherwise. This creates an
asymmetric double well, illustrated in Fig. 3. Two param-
eters are available to tune the potential: λ sets the barrier
position and V0 sets the centers of the two wells in
�z0 ∝ �V0. Theoretically, the potential energy constructed
by this feedback is

Uðz; λ; z0Þ ¼
1

2
ðz − Sðz − λÞz0Þ2

þ λz0ðSðz − λÞ þ SðλÞÞ; ð2Þ

where S is the sign function: Sðz − λÞ ¼ −1 if z < λ and
Sðz − λÞ ¼ 1 if z > λ. To illustrate the validity of this model
for U, we record a long time trace of the position in a static
potential to evaluate the probability distribution function
(PDF) of the position PðzÞ. We then reconstruct the double
well using Boltzmann’s prescription at equilibrium,

PðzÞ ¼ 1

Zðλ; z0Þ
e−Uðz;λ;z0Þ; ð3aÞ

Zðλ; z0Þ ¼
Z þ∞

−∞
e−Uðz;λ;z0Þdz; ð3bÞ

with Z the partition function. As plotted in Fig. 3, the model
is an excellent description of the effective potential evalu-
ated through UðzÞ ¼ − lnfPðzÞ=P½−SðλÞz0�g.
To observe local “violations” of the second law, we

design the following protocol between an initial state (all
quantities labeled by the subscript i) and a final state
(subscript f). First, the cantilever evolves at equilibrium in
an initial double-well potential UiðzÞ ¼ Uðz; λi; z0Þ. Then,
we instantaneously increase the threshold λ between the
two wells, from λi to λf. Finally, the cantilever is left in the
final potential UfðzÞ ¼ Uðz; λf; z0Þ. The well centers are
left unchanged during the protocol, z0 keeping the same
value. An example of the time trace of one realization of
such protocol is plotted in Fig. 4.
Initial and final potentials are represented in Fig. 3. Each

potential is measured from the equilibrium PDF PðzÞ in the
initial and final state, then fitted with very good accuracy
using Eq. (2). The experimental values of the parameters λi,
λf and z0 are deduced from the fit. Potential wise, the
protocol amounts to leaving the lower well unaffected
while raising the upper one. The work W performed will
be 0 most of the time (anytime the system is in the lower
well, which is likely), while the free energy difference is
positive [since UðxÞ is globally increasing]: the probability
of observing W < ΔF should thus be high.
The values of z0 ¼ 1.8 and λf ¼ 0.92 are the same for all

experiments. We tune the initial threshold λi with values
going from 0 to 0.83. For each one of them, the protocol
detailed in Fig. 4 is repeated around N ∼ 2500 times.

FIG. 2. Sketch of the experimental setup. We record the
deflection z of a conductive cantilever measured with high
precision by a differential interferometer [21]. Depending on
the comparison of z with a tunable threshold λ, a constant voltage
V ¼ �V0 is applied by a fast feedback loop, creating an
electrostatic force Fel on the cantilever toward a nearby electrode
at voltage V1 ≫ V0.

FIG. 3. Double-well potentials. The potential energy of the
cantilever is the juxtaposition of two harmonic wells centered in
�z0 ¼ �1.8, the switch between the two occurring when z ¼ λ.
The two examples plotted here correspond to λi ¼ 0.45 and
λf ¼ 0.92. The measured potential UðzÞ data is inferred from
Eq. (3) and the PDF of the experimental positions z during a long
acquisition. The black dashed lines are best fit to Eq. (2), leading to
the aforementionedvalues of z0 and λ. The transformationwe apply
corresponds to a step of λ from λi to λf, leaving the lower well
untouched while raising the upper one by ΔU ¼ 2ðλf − λiÞx0.
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This allows us to obtain a good enough statistics to estimate
the PDF PðzÞ, and further on the work distribution.
Analysis—Following the classical convention of stochas-

tic thermodynamics [17], we define the workW done by the
operator through the variations of the external parameters
tuning the potential Uðz; λ; z0Þ,

W ¼
Z

∂U
∂λ

λ̇dt: ð4Þ

Since z0 is kept constant in all protocols, we do not consider
the term in ż0, which is always zero here. W is computed
using the recorded trajectories zðtÞ and Eq. (2). Since the
variation of λðtÞ is a step function, the work can be
equivalently computed as W ¼ UfðzÞ −UiðzÞ using the
value of z at the moment of the switch. From this
expression we can also infer the theoretical expectation
for hWi,

hWi ¼
Z þ∞

−∞
½UfðzÞ −UiðzÞ�

1

Zi
e−UiðzÞdz; ð5aÞ

¼ 2z0e−2λiz0

Zi
½fðλf − z0Þ − fðλi − z0Þ�; ð5bÞ

where f is defined by

fðuÞ ¼
ffiffiffiffiffiffiffiffi
π=2

p
u erfcð−u=

ffiffiffi
2

p
Þ − e−u

2=2: ð6Þ

Zi ¼ Zðλi; z0Þ is the partition function in the initial state,
which can be computed from Eq. (3b) as

Zðλ; z0Þ ¼
ffiffiffi
π

2

r �
2 − erfc

�
λþ z0ffiffiffi

2
p

�
þ e−2λz0erfc

�
λ − z0ffiffiffi

2
p

��
:

ð7Þ

As shown in the Supplemental Material [23], the full
distribution of the work PðWÞ can actually be computed
in this playground.
The free energy difference in the system ΔF ¼ Ff − Fi

can be computed in two different ways. For a given
protocol, the work distribution obeys Jarzynski’s equality
[Eq. (1)], thus ΔF ¼ − lnhe−Wi can be deduced from the
experimental work distribution with good enough statistics.
The second approach is to use the partition function Z at
equilibrium: since the free energy of the system is
F ¼ − lnðZÞ, the free energy difference ΔF ¼ lnðZi=ZfÞ
can be theoretically directly calculated from the parameters
of the initial and final potentials.
Results—The protocol is repeatedN ∼ 2500 times for ten

values of λi ranging from 0 to 0.83. For each λi, we compute
thework distribution. An example for λi ¼ 0.45 is plotted in
Fig. 5(a), where we also report the mean work hWi
performed by the driving, and the difference in free energy
ΔF. The work distribution consists mostly of two narrow
peaks. The first one, for W ¼ 0, corresponds to the cases
where the cantilever is in the lower well (z < λi) of the
potential during the step of λ. Since there is no change in
the lower part of the potential, there is no energy cost. The
second peak comes from the caseswhere z > λf: in this area,
the potential is shifted by ΔU ¼ Wmax ¼ 2z0ðλf − λiÞ, and
driving the parameter λ implies this amount of work. We
also observe some intermediate values, corresponding to
λi < z < λf: the cantilever is initially in the upper well but
ends in the lower one due to the step in λ, resulting in an
intermediate energy change ΔU ¼ 2z0ðz − λiÞ, where z is
the value of the deflection at the time of the switch.
As illustrated in Fig. 5(b), the second law is always

satisfied (hWi > ΔF), but we manage to observe an almost
arbitrary large proportion of transient violations (W < ΔF).
Indeed, by tuning the initial asymmetry of the potential, we
can increase the probability of being in the lower well
(z < λi) during the switch. The probability of observing a
transient violation of the second law PðW < ΔFÞ can thus
be arbitrary large. With our choice of parameters, for values
of λi very close to the final value of λf, we manage to
measure values of PðW < ΔFÞ of 95%. Our experimental
results are in excellent agreement with the theoretical
expectation, whose analytical expression is given in the
Supplemental Material [23]. However, the free energy ΔF
decreases when increasing λi: work extraction is more and
more likely, but the gain with respect to ΔF decreases.
Another theoretical result that we can probe with our

experiment is the inequality [24]

PðW ≤ 0Þ ≤ e−ΔF: ð8Þ

In our case, PðW ≤ 0Þ ¼ PðW ¼ 0Þ since W cannot be
negative. Moreover, this probability is very close to PðW ≤
ΔFÞ since the work distribution consists mainly of two
peaks: the one in 0 and the other inWmax, above ΔF. Some

FIG. 4. Trajectory of an underdamped oscillator evolving in a
time-dependent asymmetric double-well potential. The position z
is expressed in units of standard deviation σ in a single well.
The center of the wells is kept constant at �z0 ¼ �1.8, but
the commutation threshold λ is changed in less than 5 μs from
λi ¼ 0.45 to λf ¼ 0.92 at t ¼ 150 ms.
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trajectories present a work in between the two peaks, but
they are infrequent and poorly sampled in our experiment.
The two probabilities PðW ≤ ΔFÞ and PðW ¼ 0Þ therefore
coincide within statistical uncertainties, as shown in
Fig. 5(b). In this same figure, we plot the upper bound

given by Eq. (8), which is indeed confirmed in our
experiment, and close to be saturated.
It is interesting to notice that in our system the dis-

sipation (the quality factor Q) can be changed by control-
ling the pressure of the air surrounding the cantilever.
However as we start from equilibrium and the work
corresponds to an instantaneous change of the potentials,
the dynamics of the system and the quality factor have no
influence on the results plotted in Fig. 5: the work
distribution and ΔF would be the same in an overdamped
system.
Conclusion—We have shown, using a fully classical

continuous mechanical system, how we can observe an
arbitrary large number of apparent “violations” of the
second law of thermodynamics, while being consistent
with the rules of stochastic thermodynamics. We show a
clear trade-off between this probability and the free energy
gained during those events. We reach the theoretical limit of
95% probability (for our set of parameters) of having
anomalous trajectories with W < ΔF. This result is made
possible by the specific way in which the potential is driven
during the protocol: the center of the two wells does not
change and only the minimum of the upper well is raised.
We show in the Supplemental Material [23] that for
constant stiffness wells, this protocol is the most efficient.
Indeed it produces a work probability distribution with
mainly two Dirac functions that matches the optimal
distribution described in Refs. [10,11] to maximize the
work extraction probability. One Dirac peak is centered in
zero and corresponds to the trajectories that start in the
lower well. The other is centered to a positive value of the
work and corresponds to the trajectories starting on
the upper well. In our experiment the relative amplitude
of the two peaks, which determines the amount of
“anomalous” trajectories, can be tuned by changing the
minimum positions of the wells through the value of λ. In
this way we have transformed for the transition properties a
continuous classical system to a two level system using a
protocol similar to the one of Ref. [11], which requires only
a quench. In this context, the fast switch between the initial
and final state is a key ingredient of the protocol, again as
proposed in Refs. [10,11]. However, we do not use slow
ramps as proposed in Ref. [10] and experimentally applied
in Ref. [9]. Indeed a slow ramp would broaden the peaks of
the work distribution, resulting in a situation similar to
Fig. 1 and those described in the Supplemental Material
[23]. For symmetric distributions as well, where the mean
and the median are equal, observing W < ΔF is unlikely:
the probability is smaller than 50%, this limit being reached
in the reversible limit.
Let us conclude by saying that in spite of the fact there is

an energy gain for 95% of the trajectories, the total mean
remains positive. In order to use this energy surplus one
should introduce a demon that selects the good trajectories,
i.e., those starting on the lower well. Of course such a

(a)

(b)

FIG. 5. (a) Work distribution for N ¼ 2450 protocols, corre-
sponding to the protocol in Fig. 3 (λi ¼ 0.45, λf ¼ 0.92). We also
report the mean work hWi ¼ 0.24� 0.02 and free energy differ-
ence ΔF ¼ 0.13� 0.01 computed using Jarzynski’s equality. We
observe a transient violation of the second law in 85% of the
protocols (note the vertical log scale), when W ¼ 0. The other
values of the work are mostlyW ¼ Wmax (right peak with 14% of
the occurrences). The last 1% of the trajectories is distributed
between the two extreme values. Although poorly sampled, it is
compatible with the theoretical expectation [23] (dashed orange
curve, including the two delta peaks plotted here using a bin
width of 0.1). (b) Mean work hWi (green circle, top curve) and
free energy difference ΔF (dark red plus, bottom curve) and for
all initial conditions λi. Experiment (markers with error bars
corresponding to 1 standard deviation of the statistical uncer-
tainties) and theory (dashed lines) are in excellent agreement. The
second law of thermodynamics hWi ≥ ΔF always holds, though
the probability of observing the contrary on the single trajectory
reaches 95% for the highest values of λi (blue circle marker,
experiment, and dashed blue line, theory, right vertical scale). The
probability of observing a zero work PðW ¼ 0Þ (blue cross)
coincides with the one of transiently violating the second law, and
is upper bounded by e−ΔF (dotted blue line, right vertical scale),
as predicted by Eq. (8) [24].
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demon would need some energy to elaborate the informa-
tion gathered from the dynamics, and the second law of
thermodynamics will still hold overall. However the
advantage of this demon is that this energy loss could
be spent remotely (in space or time) with respect to that of
the standard operation of the system. It therefore decouples
the transformation of the system from the necessary energy
consumption that can be spent elsewhere or at some other
time. This could, for instance, allow for a chemical reaction
to stay cool during an exothermic transformation, or model
some enzyme behavior in biological processes.
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