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For many years, CoNb2O6 has served as an exemplar of the one-dimensional Ising model. However,
recent experimental and theoretical analyses challenge its applicability to this material. Prior to that, a
tailored spin model for 3d7 systems such as Co2þ, known as the JKΓ model, has emerged, featuring
Heisenberg (J), Kitaev (K), and Gamma (Γ) interactions. While these interactions are permitted by the
symmetry of the system, their role in CoNb2O6 remains enigmatic. We present a microscopic theory based
on spin-orbit entangled Jeff ¼ 1=2 states, aimed at elucidating the roles of Kitaev and Gamma interactions
in shaping Ising anisotropy. Leveraging strong coupling theory, we identify a dominant ferromagnetic
Kitaev interaction. Furthermore, by comparing dynamical structure factors obtained via exact diagonal-
ization with those from inelastic neutron scattering experiments, we find an antiferromagnetic Γ interaction,
which dictates the Ising axis and explains the mechanism behind moment pinning. Our theory provides a
microscopic origin for Ising behavior in spin-orbit coupled one-dimensional chains and posits CoNb2O6 as
a rare Kitaev chain.

DOI: 10.1103/PhysRevLett.133.056703

Introduction—The one-dimensional (1D) transverse
field Ising model is one of the simplest models exhibiting
a quantum phase transition and quantum critical point. The
realization of such materials has posed a formidable
challenge, with only a limited number of solid-state
materials demonstrating a 1D Ising quantum critical point
under a magnetic field. Among the extensively studied 1D
Ising systems, CoNb2O6 stands out as one of the most
investigated examples [1–14].
CoNb2O6 exhibits the anticipated quantum critical point

under an applied magnetic field of approximately 5 T, as
verified through inelastic neutron scattering (INS) [6],
specific heat [15], THz spectroscopy [16–19], and nuclear
magnetic resonance measurements [20]. The predicted E8

symmetry [21–24], a noteworthy hallmark of the 1D Ising
chain near the quantum critical point, has also been
identified using INS measurement [6]. However
CoNb2O6 displays features inconsistent with those for a
pure 1D Ising model with quantum motion of domain walls
present even in the absence of an applied transverse field
[6]. This was recently attributed to a symmetry-allowed
staggered spin exchange term [10], and a twisted 1D Kitaev
model composed of a bond-dependent Ising interaction was
suggested to explain features observed in THz spectros-
copy measurements in a low transverse field [18].
Around the same time, the nearest neighbor (n.n.)

exchange model of 3d7 honeycomb materials was devel-
oped [25,26], which is composed of Heisenberg (J),

bond-dependent Kitaev (K), and Gamma (Γ) interactions
known as the JKΓmodel [27–38]. Since Co2þ exhibits a 3d7

configuration in CoNb2O6, the 1D version of the JKΓmodel
allowed by the system’s symmetry is expected. However, the
mechanism by which the JKΓ model relates to the Ising
anisotropy, their strengths, and the specific roles of each
exchange interaction remain unresolved.
Here we present a microscopic theory of the n.n.

exchange interactions to elucidate their roles in Ising
anisotropy and domain-wall excitations in the ferromag-
netic (FM) ordered state. We find that the FM Kitaev
interaction is dominant in CoNb2O6. The Ising anisotropy
and pinning of the moment direction is due to the anti-
ferromagnetic (AFM) Γ interaction. Contributions from
other small interactions generated by the octahedra dis-
tortion and dynamical structure factor (DSF) obtained via
exact diagonalization (ED) are also presented.
Microscopic Hamiltonian—To derive a microscopic

theory, we commence with a brief review of the atomic
wave functions of Co2þ, which gives rise to Jeff ¼ 1=2
states through the interplay of Hund’s coupling and spin-
orbit coupling (SOC) [25,26,35]. A Co2þ ion with a 3d7

electron configuration is surrounded by an octahedral cage
of oxygen atoms. This generates a cubic crystal field that
splits the d-orbital manifold into t2g and eg states, separated
by the cubic crystal field energy Δc. Because of a large
Hund’s coupling JH (JH > Δc), the Co2þ ion forms a high-
spin t52ge

2
g electron configuration and a 12-fold degenerate

L ¼ 1, S ¼ 3=2 subspace is further split by SOC resulting
in a low-energy, pseudospin-1=2 Kramer’s doublet [25,26].*Contact author: hy.kee@utoronto.ca
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The Co2þ ions form a 1D chain in the ac plane where the
chain is along the crystallographic c axis as shown in
Fig. 1(a). They are linked by distorted edge-sharing oxygen
octahedra which define two local Cartesian coordinate
systems denoted by XYZ and X0Y 0Z0, respectively, where
the X̂ and Ŷ 0 axis are chosen to be along the anion
directions and make an angle 2θ. Because of the staggered
distortion of the oxygen cages, C2 symmetries are lost,
but a glide symmetry remains with the glide ac plane at
b ¼ 1=4 as shown in the blue arrow in Fig. 1(a).
We first develop a theory for ideal octahedra cages, with

X̂ ¼ X̂0, Ŷ ¼ Ŷ 0, and Ẑ ¼ Ẑ0, and the Ẑ axis lying within
the ac plane. Using the local XYZ coordinates, the n.n.
generic Jeff ¼ 1=2 exchange model is given by the JKΓ
model [25,26,31,36,38]:

H0
ij ¼ ½Jsi · sj þ Ksγi s

γ
j þ Γðsαi sZj þ sZi s

α
j Þ�; ð1Þ

where γ ¼ XðYÞ and α ¼ YðXÞ for the xðyÞ bond, which
reflects the bond-dependent K and Γ interactions, and ij
refers to n.n. sites.

It is insightful to rewrite the above model in a global
xyz coordinate system. In the ideal case, we take ŷ ¼
ð1= ffiffiffi

2
p Þ½−110� which is parallel to the b̂ axis, and define

x̂ ¼ ð1= ffiffiffi
2

p Þ½110� to bisect the X̂ and Ŷ axis. Then, ẑ is
fixed to the local oxygen direction Ẑ ¼ ½001� as shown in
Fig. 1(b). Transforming from XYZ to global xyz coordi-
nates, the n.n. Hamiltonian is given by

H0
ij ¼ JKðsxi sxj þ syi s

y
jÞþ Jszi s

z
j þ

Γffiffiffi
2

p ðsxi szj þ szi s
x
jÞ

þ ð−1Þi
�
−
K
2
ðsxi syj þ syi s

x
jÞþ

Γffiffiffi
2

p ðsyi szj þ szi s
y
jÞ
�
; ð2Þ

where JK ¼ ½J þ ðK=2Þ�.
Before we present the strength of the J, K, and Γ

interactions, let us discuss the impacts ofK and Γ in the FM
ordered state with J < 0. When K < 0, in the absence of Γ,
jJKj > jJj, the FM moment is within the xy plane. but
pinned, via quantum fluctuations, towards the local X̂ or Ŷ
axis along the oxygen directions. As we slightly turn on the
AFM Γ interaction, the FM moment changes from the X̂ (or
Ŷ) to x̂ axis, which makes an angle η ∼ 55° from the −ĉ axis.
Upon increasing the AFM Γ strength, the moment stays in
the xzðacÞ plane but tips closer towards the -ĉ axis denoted
by the red arrow Mz0. Thus a reasonably sized AFM Γ
interaction is required to achieve the moment direction
consistent with experimental findings, η ∼ 31° [2,4]. On
the other hand, if the K > 0, in the absence of Γ, the FM
moment is along the local Z axis denoted by the red arrow
Mz in Fig. 1(c), due to the AFMKitaev term. This makes the
angle of η ∼ 35° from the þĉ direction, which is already
close to experimental findings. Since Γ tips the moment
away from the ẑ axis, it implies that Γ ∼ 0 for K > 0.
The above analysis for ideal octahedral cages uncovers

that the magnetic moment pinning direction is determined
by either (i) AFM Kitaev or (ii) a combination of FM
Kitaev and AFM Γ interactions. In solid-state materials
such as CoNb2O6, the octahedral lattice structure deviates
from ideality. Octahedral distortions generate additional
exchange interactions [35,37], which play a certain role in
elucidating the phenomena observed in real materials.
Presented below is the complete n.n. Hamiltonian formu-
lation and the methodology employed to estimate these
exchange interactions. Our focus is to identify the dominant
interactions and determine the sign of the Kitaev inter-
action. This emphasis stems from the fact that the mecha-
nism behind the Ising moment pinning hinges on the sign
of K, which, in turn, gives information on the role of the
Kitaev and Gamma interactions.
Hamiltonian with octahedra distortion—Octahedral dis-

tortions modify the ideal H0
ij and generates other bond-

dependent interactions such as K0, Γ0, and Γ00, see the
Supplemental Material [39] for their definitions in the local
XYZ coordinates. Among them K0 needs some attention.
While K takes the form of sxi s

x
j for the x bond, K

0 takes the

FIG. 1. (a) Twisted chain consisting of an x and y bond. Each
site within the unit cell contains local Cartesian coordinates, XYZ
vs X0Y 0Z0 (X̂ and Ŷ 0 are chosen along the anion directions),
related by a c-glide symmetry along the chain ĉ direction. Ẑ ≈ Ẑ0

such that the XY and X0Y 0 plane lie approximately within the
same plane, and the angle between the X̂ and Ŷ 0 axes is defined by
2θ. For an ideal octahedra chain with θ ¼ 45°, (b) Ẑ lies within
the ac plane, and the global xyz coordinate is shown with respect
to the local XYZ coordinate, and (c) the red arrowsMz andMz0 in
the ac plane represent two magnetic moment directions, where
η ∼ 35° measured from the �ĉ axis. The anisotropic g factor
changes η ∼ 33° (see the Supplemental Material [39] for the
details), closer to the experimental findings, 31°[2,4].
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form of syi s
y
j for the x bond (for y bond, they are Ksyi s

y
j and

K0sxi s
x
j ). Thus when K ¼ K0, we lose the bond-dependent

Kitaev interaction, and the model with K ¼ K0 is nothing
but the isotropic XY model. Similarly, when Γ ¼ Γ0 ¼ Γ00,
we lose the bond-dependent Γ interaction, and it maps to
the XXZ model. In general, it requires a fine-tuning to
make them equal.
In the global coordinates, with ŷ chosen to be parallel to

the b̂ axis and x̂ chosen to bisect the local X̂ and Ŷ 0 axes
making an angle 2θ, the n.n. HamiltonianHij including the
octahedra distortion has the following form:

Hij¼Jxxsxi s
x
jþJyys

y
i s

y
jþJszi s

z
jþJxzðsxi szjþszi s

x
jÞ

þð−1Þi�Jxyðsxi syjþsyi s
x
jÞþJyzðsyi sziþ1þszi s

y
iþ1Þ

�
; ð3Þ

where

Jxx ¼
�
J þ K þ K0

2
þ Γ0

�
2cos2ðθÞ;

Jyy ¼
�
J þ K þ K0

2
− Γ0

�
2sin2ðθÞ; Jzz ¼ J;

Jxz ¼ ðΓþ Γ00Þ cosðθÞ; Jyz ¼ ðΓ − Γ00Þ sinðθÞ;

Jxy ¼
ðK0 − KÞ

2
sinð2θÞ: ð4Þ

The glide plane lies in the ac plane as shown in Fig. 1(a).
Note that the exchange term Jszi s

z
j is not modified by the

distortion and its strength is determined by the Heisenberg
interaction J. When θ ¼ 45°, i.e., x̂ bisects X̂ and Ŷ ¼ Ŷ 0,
the above model is same as the ideal case, H0

ij [Eq. (2)]. In
CoNb2O6, θ ∼ 40° [4].
Let us now estimate the exchange parameters in Eq. (3).

Because of the complexity of the exchange processes, it is
challenging to pin down the numbers below 1 meV
precisely using perturbation theory. Thus we are going
to determine the dominant interactions using a combination
of density function theory (DFT) and a strong coupling
expansion up to the fourth order.
Determination of the exchange integrals—We estimate

the hopping parameters, the crystal field splitting (Δc) and
charge-transfer gap ðΔpdÞ using DFT and maximally
localizedWannier functions generated by OpenMX [40–43].
The strong coupling expansion requires determining all
relevant hopping paths. For d7, there is one hole in t2g and
two holes in the eg orbitals, resulting in three categories of
exchange paths: t2g − t2g, eg − t2g, and eg − eg processes,
denoted as A, B, and C, respectively [25,37]. Each process
further includes three different exchange mechanisms
which are named intersite-U, charge transfer, and cyclic.
Among them, the C process does not contribute to the
Kitaev interaction, since eg-eg exchanges do not change the
angular momentum.

After determining all relevant hopping parameters using
DFT (see the Supplemental Material [39] for the tight
binding parameters) and employing a strong coupling expan-
sion, we find that the Kitaev and Heisenberg interactions are
largest for a reasonable size of Hund’s coupling as shown in
Fig. 2. The dependence of J and K on the Hund’s coupling
strength in the range of 0.1< JH=U < 0.2, suitable for
cobalt ions [25], is shown in Fig. 2 where the A, B, and C
processes are plotted using different line styles. The red and
blue lines represent the Kitaev and Heisenberg interactions,
respectively. The solid lines are the total Kitaev and
Heisenberg interactions after summing A, B, and C proc-
esses; overall, we find that both interactions are FM.
For JH=U ¼ 0.2, the two dominant interactions are J ¼

−0.8 and K ¼ −1.1 meV. We estimate the remaining
exchange integrals by computing the DSF from exact
diagonalization (ED), using the open-source numerical
package QuSpin [44], and fit it with the INS data [14]
as shown in Fig. 3. The details about the DSF computation
and systematic fitting procedure to the INS data are
explained in the Supplemental Material [39]. A summary
of the n.n. exchange parameters is listed in Table I and the
mapping to Jα;β with α; β ¼ x, y, z is also listed. Note that
the K < 0 and J < 0, while Γ > 0. The significant values
of Jxy and Jxz highlight the importance of K and Γ, as
indicated by their relationships in Eq. (4). With the
parameter set listed in Table I, we found that the Ising
moment aligns along the Mz0 direction with η ∼ 35° due to
the sizable AFM Γ interaction, which causes the moment
direction to deviate from the x̂ axis towards the −ĉ axis, as
illustrated by the blue arrow in Fig. 1(c).
It is important to note that the Kitaev interaction stays

FM and dominant. This is due to an AFM exchange
contribution from t2g − t2g processes which cancels with
the FM contribution from eg − t2g and eg − eg processes,

FIG. 2. The Heisenberg (blue) and Kitaev (red) interactions vs
JH=U for Δpd=U ¼ 0.365, Δc=U ¼ 0.09, and U ¼ 10 eV. The
contributions from t2g − t2g (A), t2g − eg, and eg − eg (Bþ C),
and sum of Aþ Bþ C processes are represented by the dashed,
dotted, and solid lines, respectively. See the main text for details.
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resulting in a small FM J. This can be contrasted with 3d7

honeycomb cobaltates, such as BaCo2ðAsO4Þ2 which has a
much larger direct hopping integral leading to the cancel-
lation of Kitaev contribution from t2g − t2g and t2g − eg

processes yielding a small Kitaev interaction, but dominant
FM Heisenberg interaction [37]. The Kitaev interaction
becomes more dominant by moving towards the Mott
insulating limit; increasing the charge-transfer gap (Δpd)
while keeping the Hubbard U fixed results in a faster
reduction of the FM Heisenberg interaction strength due to
a larger AFM contribution from the t2g − t2g processes (see
the Supplemental Material).
Significance of the sign of the Kitaev interaction—Our

theory offers two ways to generate Ising behavior.
Interestingly, the Ising axis as the moment direction
consistent with the experimental results in CoNb2O6 also
presents two distinct possibilities: aligning the Ising axis
either with Mz or Mz0, as depicted by the red arrows in
Fig. 1(c). Let us investigate microscopic origins of the two
possibilities and their implications.
Imagine that the moment aligns with the z axis, directed

towards the oxygen atom, which aligns with INS data when
the dominant FM J condition holds (jJjð≡jJzzjÞ >
jJxxj; jJyyj). This condition necessitates a significant
AFM Kitaev but minimal Γ interactions, enforcing Jxy ¼ 0

and Jxz ¼ 0 as noted in [10,14,45]. Consequently, K ¼ K0

and Γ ¼ −Γ00. This, combined with the J term, yields the
FM XXZ model with pronounced Ising anisotropy along
the local Z axis, i.e., traditional XXZ magnets. However,
from a microscopic viewpoint presented above, the equality
K ¼ K0 is unlikely due to the need for identical contribu-
tions from the exchange path of dxz-dxy and dyz-dxy orbitals
for a given bond. Furthermore, the Kitaev interaction
is FM.
Alternatively, aligning the Ising axis along Mz0 away

from the oxygen atom, as found in our theory, offers
another approach. This is a nontraditional Ising magnet, as
the pinning of moment is due to the bond-dependent AFM
Gamma interaction in the presence of FM Kitaev inter-
action, which cannot be reduced to the standard anisotropic
XXZ type. Furthermore, adopting this z0 axis as the
empirical Ising axis allows for the transformation of
parameters outlined in Table I in the xyz to x0y0z0 coor-
dinates while keeping ŷ ¼ ŷ0. The comparison between
exchange interactions in x0y0z0 coordinates and xyz coor-
dinates is provided in the Supplemental Material [39]. The
resulting n.n. interactions in x0y0z0 coordinates remarkably
resembles those reported in [10,14,45], further corroborat-
ing our results.
Discussion and summary—Our theory provides a micro-

scopic origin of Ising behaviors in spin-orbit coupled
chains beyond the example of CoNb2O6 presented here.
It extends beyond the symmetry-allowed spin model and
differs from other analyses [10,14,45–47], where the Ising
axis is empirically chosen, which impedes the identification
of the origin of the Ising anisotropy.
To advance research on two-dimensional Kitaev cobal-

tates, it is noteworthy to observe the distinction between

FIG. 3. (a)–(c) Sxxðk; wÞ at various transverse fields obtained by
the ED on a 16-site cluster with periodic boundary conditions
using the parameters summarized in Table I with second n.n.
XXZ interactions, a small mean field term, and gy ¼ 3.3 (see the
main text for details). (d)–(f) The INS data are adopted from
Ref. [14]. The details of the INS calculations are provided in the
Supplemental Material [39].

TABLE I. Strengths of spin-1=2 n.n. exchange interactions in
local XYZ coordinates, and their transformed values in global xyz
coordinates.

Interaction in ðXYZÞ meV Interaction in ðxyzÞ meV

J −0.8

↔

Jxx −2.27
K −1.1 Jyy −0.66
Γ 0.56 Jzz ¼ J −0.80
K0 −0.03 Jxy 0.53
Γ0 −0.57 Jxz 0.63
Γ00 0.26 Jyz 0.19
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CoNb2O6 and honeycomb cobaltes such as BaCo2ðAsO4Þ2,
where the Kitaev interaction is weakened due to exchange
path cancellation [37]. This difference is primarily linked to
cobalt ion spacing. Our study suggests that increasing the
Co-Co distance to minimize direct exchange is advanta-
geous for enhancing the Kitaev interaction in honeycomb
cobaltates, thus facilitating the realization of the Kitaev
spin liquid.
In summary, through an examination of the exchange

interactions derived from the Jeff ¼ 1=2 wave functions in
the local oxygen coordinates, we show that the Ising
anisotropy arises from an AFM Γ interaction in the
presence of a FM Kitaev interaction, which also facilitates
domain wall motion. Our theory illustrates that CoNb2O6,
once considered an Ising chain exemplar, is a rare bond-
dependent Kitaev chain, where the Kitaev interaction
predominates. Our theory offers an alternative angle on
Ising behaviors in 1D Ising systems and will motivate
future investigations into various Ising-like chains.
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