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Despite intense research in topological photonics for more than a decade, the basic question of whether
photonic band topology is rare or abundant—i.e., its relative prevalence—remains open. Here, we use
symmetry analysis and a dataset of 550 000 synthetic two-dimensional photonic crystals to determine the
prevalence of stable, fragile, and higher-order topology across 11 plane groups and find a general
abundance of nontrivial band topology. Below the first band gap and with time-reversal symmetry, stable
topology is more prevalent in the transverse electric polarization, is weakly dependent on contrast, and
fragile topology is nearly absent. In time-reversal broken settings, Chern insulating phases are also
abundant, albeit less so in threefold symmetric settings. Our results elucidate the role of symmetry,
dielectric contrast, polarization, and time-reversal breaking in engendering topological photonic phases and
may inform new design principles for their experimental realization.
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Topological properties of photonic crystals (PhCs) [1,2]
have attracted substantial interest since the prediction of
topological insulators in electronic systems [3,4]. Recent
research has run the gamut of time-reversal (T) invariant
and broken topology, ranging across topological degener-
acies [5], Chern phases [6–9], higher-order topology
[10,11], and beyond. Here, we investigate the prevalence
of stable, fragile, and higher-order photonic topology in all
two-dimensional (2D) symmetry settings that admit their
symmetry-based identification. In this pursuit, we create a
database of topological 2D PhCs, analogous to recent
databases of electronic and phononic materials [12–17].
Our Letter is motivated by the following questions: How

prevalent is nontrivial photonic topology? How is this
prevalence affected by dielectric contrast, symmetries, and
mode polarization? Are certain regions of the photonic
band structure more likely to be topological than others?
Answering these questions is of fundamental importance
for the understanding, design, and experimental realization
of photonic topological phenomena, because an under-
standing of the parameter space of topology can inform
general design principles—e.g., the symmetries, geometric
features, and dielectric contrasts most advantageous to
engendering topological phases. To address these ques-
tions, we adopt recent symmetry-based topological frame-
works [18–22], that have recently seen application and
adaptation also to the photonic context [23–29]. Their

generality and efficiency naturally lend them to high-
throughput calculations, enabling us to answer the above
questions by comprehensively sampling the design space of
2D PhCs.
Methodology—We briefly summarize the symmetry-

based approach, which diagnoses topology from the ability
to decompose a set of bands into linear combinations of
elementary band representations (EBRs) [30,31]. These
EBRs span the space of symmetry-respecting atomic limits
(symmetric, exponentially localized Wannier orbitals). For
example, in a mirror-symmetric 1D crystal (line group
p1m) there are four EBRs, induced by placing even or odd
Wannier orbitals at either the unit cell center or boundary.
We restrict our focus to sets of bands that are k-wise
gapped from all other bands along all high-symmetry k
lines (i.e., satisfy compatibility relations [32]), and call
such sets “multiplets.” Conceptually, if such a multiplet
cannot be expressed as a sum (physically, a “stack”) of
EBRs, there is a topological obstruction to smoothly
deforming the multiplet to an atomic limit. More techni-
cally, given a trivial multiplet n in a PhC with plane group
symmetry G, k-wise gapped from all other bands, there
exists a symmetry- and gap-preserving equivalence relation
between n and a decomposition in the EBRs of G [19–21]:

n ∼⨁
qα
mα

qðqjDα
qÞ: ð1Þ

Here, ðqjDα
qÞ denotes an EBR induced from a maximal

Wyckoff position q in G, transforming like the αth irre-
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ducible representation (irrep) Dα
q of the associated site-

symmetry group Gq ≡ fg∈Gjgq ¼ qg, and mα
q ∈ f0; 1;

2;…g is the decomposition’s EBR multiplicity.
The key simplification of symmetry-based frameworks

[19–21] is to relax the strict functional decomposition of
Eq. (1) to a decomposition of band symmetries. Speci-
fically, we decompose the so-called symmetry vector n of
n—enumerating the symmetry content of n through the
multiplicities nαk of little group irreps Dα

k across all high-
symmetry k points—into the symmetry vectors nðqjDα

qÞ
associated with each EBR ðqjDα

qÞ:

n ¼
X

qα

cαqnðqjDα
qÞ: ð2Þ

The symmetry-inferable topological diagnosis is made on
the basis of the decomposition coefficients cαq [21,33,34]

[Figs. 1(a) and 1(b)]: if all cαq can be chosen as non-negative
integers, n is compatible with the symmetries of an atomic
limit, i.e., nominally topologically trivial [35]. If the
decomposition must include EBRs that are not centered
at the unit cell origin,n is also said to be an obstructed atomic
limit, which may host bulk polarization and corner anoma-
lies with corresponding filling anomalies [26]. Conversely,
if a decomposition exists with integer cαq but requiring at
least one negative coefficient,n is topologically fragile [37]:
by addition of appropriate atomic limits (namely, the EBRs
associated with negative cαq), the band topology is trivial. In
contrast, if the decomposition requires non-integer, rational
cαq, the topology of n is stably nontrivial [18]—being
trivializable only by other nontrivial bands. If no decom-
position exists, n describes a set of band symmetries that are
inconsistent with compatibility relations [32], indicating a
set of bands that is not gapped along high-symmetryk lines.
We implemented a software package, MPBUTILS.JL [38], to
facilitate this analysis, allowing automatic clustering and
diagnosis of compatibility-respecting photonic bands [39].
The Supplemental Material [40], S1 and S2, provides a
technical glossary and further methodological details.
PhC dataset—Of the 17 plane groups that describe the

symmetry settings of 2D PhCs, only 11 allow symmetry-
based distinctions between trivial and fragile or stable
topology [21,34], namely those with a proper subgroup
of Cn≥2. For each of these 11 plane groups, we generated
10 000 randomPhCunit cells using a Fourier-based level-set
technique [24,64] [Fig. 1(c) and the Supplemental Material
[40], S11). Summarizing, we consider a “two-tone” dielec-
tric motif in each unit cell: in one region, Ω1, we place
vacuum and in the other,Ωε, a dielectric with permittivity ε,
scanning parametrically across ε∈ f8; 12; 16; 24; 32g and
sampling filling fractions jΩεj=ðjΩεj þ jΩ1jÞ randomly
from a uniform distribution between 0.2 and 0.8.We remark
that the topological prevalence in permeability-defined
PhCs is one-to-one related to the prevalence in permittivity-
defined PhCs due to electromagnetic duality (Supplemental
Material [40], S8). For each PhC, we compute the requisite
band symmetries at high-symmetry k points for the first 40
bands, using MIT PHOTONIC BANDS [65] and the tooling
developed in Ref. [24], for both transverse electric (TE) and
magnetic (TM) polarizations, obtaining the corresponding
symmetry vectors of each separable multiplet [Figs. 2(a)
and 2(b)]. Finally, each multiplet’s symmetry-diagnosable
band topology is determined via Eq. (2). Altogether, our
dataset encompasses 11 ðsymmetryÞ × 10 000 ðmotifÞ ×
5 ðcontrastÞ × 2 ðpolarizationÞ ¼ 1 100 000 distinct calcula-
tions. We use a 64 × 64 discretization grid and include 40
bands (convergence analysis in the Supplemental Material
[40], S15), for which a typical single-core calculation (Xeon
Platinum 8260) takes on the order of 20 s.
Stable and fragile topology—Figure 2 summarizes our

results on the prevalence of stable and fragile topology in
T-invariant 2D PhCs. We report the prevalence of band
topology multiplet by multiplet rather than cumulatively

(a)

(c)

(b)

FIG. 1. Methodology, workflow, and dataset. (a) Band structure
of a p6-symmetric PhC, hosting five separable bands, i.e.,
multiplets [TE polarization, unit cell from (c)]. (b) For each
multiplet, we decompose the symmetry vectors, n, in EBRs to
obtain a symmetry-based diagnosis of band topology from the
decomposition’s coefficients. (c) Examples of PhC unit cells in
our dataset, spanning 11 plane groups, each labeled in Hermann–
Mauguin notation [63] and grouped by their rotational symmetry
(Cn). Groups that admit stable, T-invariant topology are high-
lighted in yellow.
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(i.e., up to and including the nth multiplet), because
cumulative fragile topology is nearly absent (cumulative
statistics in the Supplemental Material [40], S7).
We focus first on T-invariant stable topology, which is

symmetry diagnosable in just three plane groups—p2, p4,
and p6 (i.e., with Cn¼2;4;6-symmetric unit cells) [21]—and
indicates an odd number of Dirac points in each n-fold
symmetric Brillouin zone (BZ) sector (equivalently, a π
Berry phase for loops encircling such sectors) [36,66], with
associated edge states connecting their boundary projec-
tions (Supplemental Material [40], S9.B) [26,67,68].
Figure 2(a) summarizes our results for a fixed permittivity
of ε ¼ 16 for the dielectric region. Surprisingly, stable
topology is widely prevalent. For example, given a random
PhC in p2, one should expect Dirac points with a likelihood
of ∼30%–50%, depending on multiplet and polarization.
We emphasize that these Dirac points are qualitatively
different from the more familiar doublet of Dirac points at
the BZ boundary (K and K0 points) of C6-symmetric
settings [69,70]: here, instead, there are n mod 2n Dirac
points in the BZ interior [Fig. 2(b)]. Polarization-wise, we
find that stable topology is more prevalent in the TE than
the TM polarization, especially evident in p4 and p6 where
stable topology in the first TM multiplet is nearly absent.

Further, varying the permittivity of the dielectric region
[Fig. 2(c)], we observe that the overall prevalence is only
weakly dependent on dielectric contrast: physically, dielec-
tric contrast mainly controls the size of band gaps—
affecting band symmetries and topology only if multiple
band closures separate the band structure from the empty-
lattice limit. As such, geometry is the main design variable
for engendering stable PhC topology. The prevalence of
frequency-isolated Dirac points—i.e., Dirac points whose
frequency do not intersect other bulk bands—is a small
fraction of the overall prevalence of stable topology,
however [Fig. 2(d)]: nearly absent in the first multiplet
and at most a few percent in higher multiplets. Of this small
fraction, a still smaller fraction falls below the light line
(Supplemental Material [40], S6.A).
Unlike stable topology, fragile topology is symmetry

diagnosable in all 11 plane groups [Fig. 2(a)]. Although far
less prevalent than its stable counterpart, several plane
groups feature a substantial prevalence of fragile bands,
especially among higher multiplets. We find fragile bands
in settings with both C2T and C3 symmetry (characterized
by relatively winding “straight” [18] and “concentric”
[71,72] Wilson spectra, respectively). However, we find
a nearly complete dearth of cumulatively fragile multiplets:

(b) (c)

(a)

(d)

FIG. 2. Prevalence of stable and fragile time-reversal invariant topology. (a) Prevalence of symmetry-identifiable stable and fragile
topology across plane groups (permittivity ε ¼ 16; prevalence reported multiplet by multiplet). Plane groups that allow symmetry-based
identification of stable topology are highlighted in yellow. (b) Examples of three PhCs with stable topology and associated Dirac points
at generic k points (TE polarization). The selected examples have no intersecting trivial bulk “Fermi pockets,” i.e., the Dirac points are
frequency isolated. (c) Permittivity dependence of stable topology in p2, p4, and p6 for the first multiplet. (d) Fraction of cumulatively
stable multiplets whose associated Dirac points are frequency isolated. A nearly complete absence is observed in the first multiplet.

PHYSICAL REVIEW LETTERS 133, 056602 (2024)

056602-3



across our entire dataset, we identify just 43 PhCs with
cumulatively fragile topology, all with centering-related
EBR decompositions (Supplemental Material [40], S7).
Despite recent progress [73–77], the observable conse-
quences of cumulatively fragile topology remains largely
an open question, especially in PhCs [23,78]. Analyzing
the cumulatively fragile PhCs individually, we find that the
corresponding bands feature pairs of nodal points in each
n-fold symmetric BZ sector (Supplemental Material
[40], S7).
Higher-order topology—Beyond the symmetry-

indicated classifications of stable, fragile, and trivial (i.e.,
atomic limits) band topology [19–21] exists a finer grada-
tion associated with higher-order topology and filling
anomalies [79]. In particular, a filling anomaly exists in
any finite Cn-symmetric tiling of a PhC unit cell with
nonzero bulk polarization (P) or corner anomaly (Q)
associated with fractional mode densities at the tiling’s
edges or corners, respectively. Both P and Q can be
evaluated from band symmetry [79]—or, equivalently,
from the EBR decompositions of Eq. (2) (Supplemental
Material [40], S5). We give values of P and Q in
dimensionless units below; i.e., Q is defined modulo 1
and P modulo direct lattice vectors.
We restrict our attention to multiplets without cumula-

tively stable topology, i.e., integer EBR decomposition
coefficients, corresponding to bands that are symmetry
compatible with a gapped trivial or fragile limit. For each
PhC sample, at a given unit-cell centering choice, we
classify its multiplets as higher-order nontrivial if it has
vanishing bulk polarization (P ¼ 0) and nonzero corner
anomaly (Q ≠ 0). By requiring P ¼ 0 we ensure that a
Q ≠ 0 filling anomaly is strictly isolated to corners, and not
coexisting with a corresponding edge anomaly [26,79–82];
additionally, if P ≠ 0, the definition of Q is dependent on
the tiling’s boundary configuration in C3-symmetric set-
tings (Supplemental Material [40], S5.F). Unlike assign-
ment of stable and fragile band topology, P and Q are
generally dependent on the choice of unit-cell centering
(Supplemental Material [40], S5.B). Because of this, when
assessing higher-order topology, we augment our dataset to
include all the possible recenterings of aCn-symmetric PhC
that preserves a Cn axis at the unit cell origin, treating each
recentered PhC as a distinct sample.
Figure 3 reports the prevalence of higher-order topology

consistent with this definition, along with supercell calcu-
lations of selected samples showcasing the associated
corner anomaly. Prevalence is highest in plane groups with
a C6 subgroup, lowest in those with only a C2 subgroup,
and intermediate in those with a C4 or C3 maximal
subgroup. In particular, we highlight two interesting
features in specific plane groups. First, an absence of
nontrivial higher-order topology is observed below the
third multiplet in p2: this is because a fP ¼ 0; Q ≠ 0g
multiplet requires three bands in C2-symmetric settings, but

all p2 multiplets are singly degenerate (see the Supple-
mental Material [40], Sec. S5.D). Second, in plane groups
p31m, p6, and p6mm, there always exists a centering
choice that ensures P ¼ 0 (Supplemental Material [40],
S5.G). Considering this, it is natural to expect a higher
prevalence of higher-order topology in these settings.
However, p31m defies this expectation, suggesting that
the prevalence of higher-order topology in p6 and p6mm is
attributable to their higher rotational symmetry.
Time-reversal breaking and Chern topology—Thus far,

we have focused on T-invariant PhCs, which necessarily
have trivial Chern topology. To assess the prevalence of
nontrivial Chern phases under T breaking, and focusing on
the TE polarization [83], we incorporate a gyroelectric effect
due to a ẑ-oriented external magnetic field. This lifts the
scalar permittivity ε to an anisotropic, nonreciprocal tensor ε
with off-diagonal and diagonal elements εxy ¼ −εyx ¼ iεB
and εxx ¼ εyy ¼ εð1þ B2Þ1=2, respectively, where B repre-
sents the effective magnetic field amplitude [5].
Fixing ε ¼ 16 and restricting our attention to the

Cn-symmetric plane groups—p2, p4, p3, and p6—that
admit a symmetry-based identification of the Chern number
modulo n [36], we report the prevalence of nonzero Chern
numbers in Fig. 4. For the first multiplet, the results can be
understood (and approximately lower-bounded for small
B), from the corresponding prevalence of Dirac points
under T symmetry [Fig. 4(a), red bars]. Specifically, in 2D,
the sources of Chern topology are Dirac [6] and quadratic
degeneracies [85]. In p2, for example, the only such
sources are Dirac points in the BZ interior: as a result,

(a)

(b)

FIG. 3. Prevalence of corner anomalies. (a) Prevalence of
cumulative higher-order topology, as defined in the main text.
(b) Supercell simulations of selected PhC samples with corner
anomalies, clad by suitable atomic-limit PhCs (Supplemental
Material [40], S5.E), in p2, p4, p3, and p6. Contours of energy
density shown in green.
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the prevalence of symmetry-identifiable stable T-invariant
and T-broken nontrivial topology agrees exactly at small B.
Conversely, p4 and p6 also allow T-protected Dirac and
quadratic degeneracies at high-symmetry k points, con-
tributing to a higher prevalence of Chern-nontrivial phases
than their T-invariant counterparts. In contrast, p3 does not
support robust Dirac points due to its lack of twofold
rotation symmetry. Instead, it admits a solitary quadratic
degeneracy associated with the Γ2Γ3 irrep, whose T
breaking can realize nontrivial Chern topology. The first
multiplet of p3, however, is singly degenerate and so never
includes this irrep, which explains its associated absence of
nonzero Chern numbers.
For larger magnetic fields [Fig. 4(b)], this simple under-

standing of breaking T-protected degeneracies is modified
by the potential for driving multiple band inversions as B is
increased. In the aggregate, however, the influence of
T-breaking strength is modest since such inversions tend
to produce changes of the band topology that average out
over distinct PhC samples.
Discussion—By comprehensively sampling the space of

symmetric 2D PhCs, we have investigated the relative
abundance of stable, fragile, and higher-order photonic
topology. Our Letter demonstrates that the prevalence of
photonic topological band features is mainly affected by
polarization, symmetry, and geometry—and only to a lesser
extent by dielectric contrast and T-breaking amplitude,
which mainly affect the spectral separation between bands.
Contrary to the prevalent association of photonic topology
with exotic or rare phenomena—but consistently with
recent results from the electronic and phononic domains

[12–17]—we conclude that photonic topology is very
prevalent. Certain photonic topological features, most
notably cumulatively fragile topology, remain rare,
however.
Our Letter motivates investigations along several lines

[86]. For instance, can we understand the observed sta-
tistics physically, e.g., via the empty-lattice approximation?
What is the physical reason for the near absence of
cumulative fragile topology? What are the most naturally
observable consequences of fragile topology in photonics?
Does a similar abundance exist for 3D PhCs? And, within a
particular symmetry setting, which geometrical motifs are
most associated with topological band features? Our dataset
[93] may also enable machine-learning-based investiga-
tions into topological physics [88,89] and photonics
[64,90,91]. Finally, the prevalence observed in our Letter
highlights that the main design challenge of photonic
topology is one of finding desired band topology jointly
with desired spectral properties, e.g., large topological gaps
or well-isolated degeneracies, motivating further research
in topological inverse design [25,92].
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