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Recent experiments reported that quantum Hall chiral edge state-mediated Josephson junctions (chiral
Josephson junctions) could exhibit Fraunhofer oscillations with a periodicity of either h=e [Vignaud et al.,
Nature (London) 624, 545 (2023)] or h=2e [Amet et al., Science 352, 966 (2016)]. While the h=e-periodic
component of the supercurrent had been anticipated theoretically before, the emergence of the h=2e
periodicity is still not fully understood. In this Letter, we systematically study the Fraunhofer oscillations of
chiral Josephson junctions. In chiral Josephson junctions, the chiral edge states coupled to the super-
conductors become chiral Andreev edge states. We find that in short junctions, the coupling of the chiral
Andreev edge states can trigger the h=2e-magnetic flux periodicity. Our theory resolves the important
puzzle concerning the appearance of the h=2e periodicity in chiral Josephson junctions. Furthermore, we
explain that when the chiral Andreev edge states couple, a pair of localized Majorana zero modes appear at
the ends of the Josephson junction, which are robust and independent of the phase difference between the
two superconductors. As the h=2e periodicity and the Majorana zero modes have the same physical origin
in the wide junction limit, the Fraunhofer oscillation period could be useful in identifying the regime with
Majorana zero modes.
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Introduction—The topological boundary state-
superconductor hybrids are promising platforms for real-
izing Majorana zero modes (MZMs) and topological
quantum computation [1–8]. In the past decade,
Josephson junctions with supercurrents mediated by edge
states had been achieved in various topological systems,
such as in quantum Hall insulators [9–15], the quantum
spin Hall insulator HgTe=HgCdTe quantum wells [16], and
the higher order topological insulators [17–19]. In the
experiments, the Fraunhofer pattern that measures the
critical currents as a function of external magnetic flux
was widely used to identify edge state-mediated Josephson
junctions. A prominent feature of edge state-mediated
Josephson junctions is the superconducting quantum inter-
ference device (SQUID) like oscillations in the Fraunhofer
patterns [16,20–22] as illustrated in the right panels
of Fig. 1.
Josephson junctions with chiral edge states (CESs) as the

weak links are particularly interesting [23–26]. In these
chiral Josephson junctions, the supercurrents are medicated
by chiral edge states. It was anticipated by theories that
chiral Josephson junctions exhibit 2Φ0 ¼ h=e periodicity
in the Fraunhofer patterns, where Φ0 ¼ h=2e is the
magnetic flux quantum [23,26–30]. As depicted in

(b)

(a)

FIG. 1. Origins of 2Φ0 and Φ0 periodicity in chiral Josephson
junctions. (a) In the long junction, the crossed Andreev reflection
processes dominate. Namely, an electron e from the top edge (T)
is reflected as a hole h in the bottom edge (B). This results in a
Cooper pair e-e entering the superconductor (SC). The critical
Josephson current Ic as a function of magnetic fluxΦ has a period
of 2Φ0 (right panel). The cross circle denotes an out of plane
magnetic field B. (b) In the short junction, the wave functions
(purple lines) of the left (L) and right (R) edge state (L) are
coupled, where the supercurrent is mainly mediated by the local
Andreev reflections, which results in a Fraunhofer pattern with a
period of Φ0 instead (right panel).
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Fig. 1(a), due to the chiral nature of the CESs, in long
junctions the Andreev reflections can happen only when an
electron from the top (T) edge hits the CES/superconductor
interface and is reflected as a hole along the bottom (B)
edge [T and B label the edges as in Fig. 1(b)]. Such
Andreev reflections involving two CESs in a single
tunneling process are crossed Andreev reflections. The
2Φ0-period of the Fraunhofer oscillations is twice the
period of conventional SQUIDs involving Cooper pair
interference and is experimentally observed very recently
(Vignaud et al. [15]). However, in another experiment by
Amet et al. [11], Φ0 periodicity was observed. Other
previous theoretical works reported in Refs. [28] and [29]
noticed such inconsistency between theories and the experi-
ments, but it remains a puzzle how the Φ0 periodicity
emerges in a chiral Josephson junction [11]. Therefore, a
theory that clarifies the Fraunhofer pattern in chiral
Josephson junctions is highly desirable at the current stage.
In this Letter, we revisit the Fraunhofer patterns in chiral

Josephson junctions. Unlike previous theories, we take into
account the possible hybridization between the chiral edge
states (or more precisely, the chiral Andreev edge states
introduced later) along the two quantum (or anomalous)
Hall or superconductor interfaces (see the left panels of
Fig. 1). Using an edge-channel model as well as a lattice
model, we unambiguously show that such hybridization
would result in a crossover of the period in Fraunhofer
oscillations from 2Φ0 to Φ0 as the junction length
decreases. Specifically, we find that the supercurrents
originated from crossed Andreev reflections between two
separated edges [see Fig. 1(a)] give rise to 2Φ0 oscillations,
while the supercurrents that originated from local Andreev
reflections [see Fig. 1(b)] exhibit Φ0 oscillations.
Importantly, we demonstrate that in the Φ0 periodicity
regime, robust MZMs appear at the Josephson junction
without fine-tunings. Our theory suggests that short super-
conductor or quantum anomalous Hall insulator (QAHI) or
superconductor Josephson junctions are promising plat-
forms for realizing MZMs (Fig. 3).
Edge-channel model—We first construct an edge-

channel model to capture the low-energy physics of
Josephson junctions with CESs in the weak link as depicted
in Fig. 1. This model is applicable to describe Josephson
junctions with a quantum Hall or a QAHI weak link. In this
model, the two superconductors have a bulk pairing
potential Δ0 and a phase difference φ. The electrons of
the CESs propagate in a clockwise direction. Thus the
model Hamiltonian reads

H ¼
X
γ

Z
drΨ†

γðrÞHBdG
γ ðrÞΨγðrÞ; ð1Þ

where γ labels the left or right (L=R) and top or bottom
(T=B) edges. The Nambu basis vector ΨγðrÞ ¼
½ψ↑γðrÞ;ψ†

↓γðrÞ�T , where ψ sγðrÞ is an annihilation operator

for an electron with spin s at γ edge at position r. The
Bogoliubo–de Gennes (BdG) Hamiltonian reads

HBdG
γ ðrÞ ¼ HBdG

0;γ ðrÞ þHBdG
1 ðrÞ: ð2Þ

Here,HBdG
0;γ ðrÞ is the propagating Hamiltonian of four edges

in Fig. 1(a), while HBdG
1 ðrÞ characterize the coupling

between the left and the right CESs [Fig. 1(b)]. The exact
form of HBdG

1 ðrÞ is not a concern here. As it is shown later,
HBdG

1 ðrÞ is responsible for giving rise to the h=2e perio-
dicity in the Fraunhofer oscillations. In the presence of an
out-of-plane magnetic field, the propagating Hamiltonian
yields

HBdG
0;γ ¼

 
vγ · ðp̂þ eAÞ − μγ Δγeiχγ

φ
2

Δγe−iχγ
φ
2 vγ · ðp̂ − eAÞ þ μγ

!
: ð3Þ

Here, the momentum operator is p̂ ¼ −iℏ∇, Δγ is the
effective pairing potential (Δγ¼T=B ¼ 0, Δγ¼L=R ¼ Δ), μγ
is the chemical potential ðμγ¼L=R ¼ μ0; μγ¼T=B ¼ μÞ, vγ

denotes the Fermi velocity of edge states (vγ¼T=B ¼
ðχγvF; 0Þ, vγ¼L=R ¼ ð0; χγvsÞ with χL=R ¼ χT=B ¼ �1),
vF is the bare velocity of CESs, and vs is the renormalized
Fermi velocity. Note that the chemical potential μ0 of the
left and right edges is affected by the superconductor,
which can be different from the chemical potential μ of the
top and bottom edges [14]. Moreover, because of the
proximity effects, in which the electrons enter the super-
conductors virtually, vs would be approximately renormal-
ized as vs ≈ vF=ð1þ g=Δ0Þ and the proximity pairing
potential Δ ≈ gΔ0=ðgþ Δ0Þ with g as an effective coupling
strength [15,29]. The Landau gauge A ¼ −yBx̂ captures
the effects of a magnetic field with strength B.
Possible Andreev reflection processes in short and long

junctions—Before evaluating the supercurrent mediated by
the CESs in Fig. 1, we first analyze the possible Andreev
reflection processes. Such processes are significantly dif-
ferent in short and long junction limits. In the long junction
limit where the coupling Hamiltonian HBdG

1 ðrÞ is negli-
gible, the electrons and holes on the CESs propagate
circularly along the edges. It is worth noting that the
electrons and holes propagate in the same direction on a
CES. As a result, for an Andreev reflection process, an
incoming electron at the top edge can only be reflected as a
hole at the bottom edge [see Fig. 1(a)]. Such crossed
Andreev reflections result in a Cooper pair tunneling from
the top edge to the superconductor on the right, leading to a
supercurrent denoted by Is;c. On the other hand, in the short
junction case, an additional Andreev reflection path could
appear. As schematically shown in Fig. 1(b), an incoming
electron at the top edge can be directly reflected as a hole to
the left edge because of the finite coupling between the left
and right CESs. Such local Andreev reflections at one edge
give rise to a supercurrent denoted by Is;l. In the following
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section, by using the scattering matrix method [31], we
demonstrate that Is;l and Is;c have periods Φ0 and 2Φ0,
respectively.
Scattering matrix for chiral Josephson junctions—To

derive the scattering matrix, we first analyze the scattering
modes given by the eigenstates of HBdG

0;γ . Specifically, the
scattering modes behave as plane waves of pure electrons
and holes on the top and bottom edges. Explicitly, on the
left and right edges, the scattering modes are superpositions
of electrons and holes, yielding

ΨS
eγ ¼ ζeγeiks;e;γy; ΨS

hγ ¼ ζhγeiks;h;γy ð4Þ

with the wave vector ks;e=h;γ ¼
�
ϵ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ μ02

p �
=χγℏvs, ϵ

is the energy, eðhÞ represents the electron (hole)-like
state. ζeγ ¼ ðeiχγφ=2;−e−βÞTγ , ζhγ ¼ ðe−β; e−iχγφ=2ÞTγ , with
β ¼ arcsinhðμ0=ΔÞ. The subscript γ and χγ are defined in
the same way as in the BdG Hamiltonian. These chiral
modes were called chiral Andreev edge states (CAES) in
previous experiments [32,33]. As will be shown later, the
CAES are essential for realizing MZMs in the chiral
Josephson junctions.
However, the CAES become nonchiral due to the

hybridization effect of the wave functions when the
junction length d is comparable with the localization length
ξd of the CAES, i.e., the coupling Hamiltonian HBdG

1

becomes essential. In this case, the left and right edges
are coupled, and we can rewrite the two scattering modes

ΨS
αþ ¼ �rα;LLζαL þ tα;LRζαR

�
eiks;α;þy;

ΨS
α− ¼ �rα;RRζαR þ tα;RLζαL

�
eiks;α;−y; ð5Þ

where � labels the propagating direction, α ¼ e=h, and
χe=h ¼ �1. We assume the dispersion relation of the
scattering modes does not change as an approximation,
i.e., ks;α;� ¼ ��ϵþ χα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ μ02

p �
=ℏvs. The overlap of the

left and right edges is characterized by tα;LRðRLÞ ¼
e−ðd=ξdÞ∓iχαπðΦ=Φ0Þðy=WÞ, which is dressed by Peierls sub-
stitution and is exponentially suppressed when d=ξd
increases. Here, the magnetic flux Φ ¼ BdW with W as
the junction width. Note that the unitary condition requires
jrα;γγj2 þ jtα;γγ0 j2 ¼ 1 and rα;γγ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − expð−2d=ξdÞ

p
is

assumed.
Origin of h=e and h=2e periodicity—The flux-

dependent Josephson current through the junction is related
to the scattering matrix by [34]

Isðφ;ΦÞ ¼ −
2ekBT

ℏ
d
dφ

X∞
n¼0

ln det ½1 − SAðiωnÞSNðiωnÞ�;

ð6Þ

where ωn ¼ ð2nþ 1ÞπkBT are fermionic Matsubara
frequencies, T is the temperature. The scattering matrix

SN describes the normal transimission from 1 to 2 (3 to 4) at
the top (bottom) edge, while the scattering matrix SA
captures all possible Andreev reflection processes that
scatter an incoming scattering state at 2 or 4 into an
outgoing state at 3 or 1 through the left and right edges [see
Fig. 1(b)]. The explicit forms of SN and SA are shown in
Supplemental Material I.B [35]. After some approxima-
tions (for details, see Sec. I.C in [35]), the total super-
current Isðφ;ΦÞ can be decoupled into two parts Isðφ;ΦÞ≈
Is;cðφ;ΦÞ þ Is;lðφ;ΦÞ, where Is;c and Is;l are defined as the
supercurrent arising from the crossed and the local Andreev
reflections, respectively, are shown in Fig. 1.
We now study the critical supercurrents when φ varies

from 0 to 2π at a fixedΦ, which gives rise to the Fraunhofer
pattern. Before looking at the total upper critical super-
currents IcðΦÞ ¼ maxφfIsðφ;ΦÞg, we first study the upper
critical currents given by the crossed and the local Andreev
reflections, respectively. The upper critical supercurrents
Ic;c ¼ maxφfIs;cðφ;ΦÞg, and Ic;l ¼ maxφfIs;lðφ;ΦÞg are
(details derivations can be found in Supplemental Material
I.C [35])

Ic;cðΦÞ≈
����I0 þ I1 cos

�
π
Φ
Φ0

þ ϕ0
	����; ð7Þ

Ic;lðΦÞ≈
���� − I2 cos

�
π
Φ
Φ0

þ ϕ

	����; ð8Þ

where I0 ¼ ð2ekBT=ℏÞsin2ðδkWÞsechΓ, I1 ¼ ðekBT=2ℏÞ
sin2ð2δkWÞsech2Γ with Γ ¼ 2πkBTðd=ℏvF þW=ℏvsÞ as
the ratio between temperature and Thouless energy,
δk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ μ02

p
=ℏvs as the Fermi wave vector, I2 ¼

ð4ekBT=ℏÞe−½ðπkBTd=ℏvFÞþðd=ξdÞ�, and the field-independent
phase ϕ0 ¼ 2μd=ℏvF þ arctanð2β tan δkWÞ, ϕ ¼ μd=ℏvF.
First of all, one can show that I0 is always larger than I1

in Ic;cðΦÞ, thus the periodicity of Ic;cðΦÞ is 2Φ0. This is
consistent with previous theoretical findings [23,29].
Importantly, the critical current Ic;lðΦÞ possesses a period
of Φ0 Fraunhofer oscillations. Physically, the supercurrents
arising from local Andreev reflections mostly enter the
supercurrent through top and bottom edges independently,
and the interference between these two edges thus acquires
a period of Φ0, which mimics the scenario of the quantum
spin Hall Josephson junction [16]. Briefly, the local
Andreev reflection induced by the left-right edge coupling
originates the Φ0 periodicity of the Fraunhofer pattern.
To see the crossover from Φ0 to 2Φ0 periodicity as

the junction length increases, we numerically evaluate
Eq. (6) without approximations. The calculated
Fraunhofer patterns at various lengths with d=ξs ¼ 0.4,
0.7, 1.2 (ξs ¼ ℏvF=Δ0 as superconducting coherence
length) are shown in Fig. 2(a). As expected, in the long
junction region when d=ξs ¼ 1.2, the coupling between the
left and right CESs is weak and the crossed Andreev
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reflection processes dominate. As a result, the 2Φ0-periodic
component is dominant. On the other hand, in the short
junction case when d=ξs ¼ 0.4, the local Andreev reflec-
tion becomes more significant and the Φ0-periodic com-
ponent is dominant.
Figure 2(b) shows the critical currents in the zero

magnetic flux (Φ ¼ 0) as a function of junction length
d, where Ic;c (Ic;l) only includes crossed (local) Andreev
reflection contributions and Ic is the total critical super-
current. To be more accurate, here Ic;c (Ic;l) is plotted
numerically using the full expression from Eq. (6) after
separating the total current into these two contributions (see
Sec. I.C in [35] for explicit expression). As expected, Ic;l
decreases more dramatically with the increase of d com-
pared with Ic;c. Notably, the Ic;c and Ic;l crossover each
other at a critical length dc, where Ic ≈ 0. When d < dc, the
Φ0-periodic component can dominate as Ic;l > Ic;c.
Figure 2(c) shows the width dependence of the critical
current. By fixing d ¼ 0.84ξs and increasing W, it can be
seen that Ic;l is not sensitive to the change of W but Ic;c is
exponentially suppressed with the width of the junction
increases, which is as expected since Ic;c arises from the
cross Andreev reflections between the top and bottom edge.
This is consistent with the recent experiment that the
2Φ0 periodicity was only observed in junctions with small

W [15]. Finally, to further support our theoretical analysis,
we adopt a minimal two-band QAHI lattice model in
a superconductor/QAHI/superconductor configuration to
simulate the Fraunhofer pattern with the lattice Green’s
function method [39–42]. The lattice model results are fully
consistent with the results shown in Fig. 2 of the edge-
channel model (for details of the lattice model calculations,
see Sec. II.B in [35]). Remarkably, taking the parameters
from the two experiments [11,15], we show that the period
of oscillations in both experiments can be explained well by
our theory (details can be found in Sec. I.E in [35]).
Emergence of MZMs in short junctions—Previously, it

was shown that the left-right edge coupling induces the
anomalous periodicity of h=2e. Here, we demonstrate
another important consequence of the left-right edge
coupling: the emergence of robust MZMs at the
Josephson junction without fine-tuning. The schematic
picture of a short Josephson junction with counterpropa-
gating left and right edge modes is depicted in Fig. 3(a). A
superconductor-QAHI-superconductor junction lattice
model is built in the Supplemental Material II.A [35]. If
the left and right edge modes are coupled, we can regard the
QAHI weak link as a quasi-1D wire with a single helical
channel [7,43,44]. When this helical channel is coupled to a
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reflections Ic;c, and the critical supercurrent from local Andreev
reflections Ic;l at zero magnetic flux as a function of d. dc labels
the critical length where Ic ≈ 0. In (a) and (b), the width of the
junction is set asW=ξs ¼ 3. (c) Junction width dependence of Ic;c
and Ic;l for d=ξs ¼ 0.84. The width regions are highlighted,
where Ic;c is larger than Ic;l. We set the parameters as vF ¼ 2,
Δ0 ¼ 0.08, μ ¼ 0.02, and μ0 ¼ 0.1. The coupling strength
g ¼ Δ0=5, which yields vs ¼ 1.6 and Δ ¼ Δ0=6. The temper-
ature is kBT ¼ 0.05Δ0. To describe the coupling of the edge
states, the parameter ξd is set to be 0.1ξs, where ξs is the
superconductor coherent length.
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FIG. 3. (a) A short Josephson junction with counterpropagating
left and right edge states. When the left and right edge state wave
functions overlap (purple lines), MZMs emerge at the ends
(labeled as γ1 and γ2). (b) The LDOS at one end of the junction
versus the phase difference φ. There is a φ-independent MZM.
(c) The localized wave function of MZMs at the Josephson
junction (the boundary of the junction region is highlighted by a
red box). (d) The energy spectrum of superconductor-QAHI-
superconductor junction, with the periodic boundary condition
along the y direction. The four CAESs emerge in the low-energy
states. The energy gaps circled in red are the effective pairing
gaps of the states at the Josephson junction. (c) and (d) Corre-
spond to φ ¼ 0 in (b). See the details in Supplemental Material
II.A and II.B [35].
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superconductor, MZMs emerge at the two ends of the
quasi-1D channel [45–51].
To demonstrate the existence of MZMs in this system,

the local density of states (LDOS) at a transverse end of the
junction as a function of the Josephson phase difference φ
is plotted in Fig. 3(b). The prominent LDOS peak near the
zero energy indicates the MZM, which resides inside the
pairing gap and is robust against the variation of the phase
difference φ [Fig. 3(b)]. Notably, the optimal phase differ-
ence is φ ¼ 0 to maximize the topological superconducting
gap. This is in sharp contrast with the previous topological
Josephson junction proposals in which the topological
regime appears when the phase difference of the junction
is near π [52–57]. It is also important to note that the
topological superconducting gap protecting the MZM is
quite sizable, which is about 10% of the superconducting
gap of the superconductors (and it can be further optimized
by increasing the coupling between the CAESs from the
left and right edges). The wave function of the MZMs is
shown in Fig. 3(c), which displays the expected localization
behavior at the two ends of the junction.
Figure 3(d) shows the energy spectrum of the Josephson

junction. The propagating states inside the pairing gap are
the CAESs. When the CAESs from the left and the right
edges couple, hybridization gaps emerge, which are high-
lighted by the red circles. When the hybridization gap is
finite, a pair of MZMs emerge at the two ends of
the Josephson junction with wave functions depicted in
Fig. 3(c). This is the second main result of this Letter.
Interestingly, the existence of h=2e Fraunhofer oscillations
and the existence of the MZMs originate from the same
mechanism in our theory, which is the coupling of the
CAESs. Therefore, the appearance of the Φ0 oscillations in
the Fraunhofer pattern may imply the presence of MZMs at
the end of chiral Josephson junctions (given that the
number of chiral edge states at the junction is odd).
Note that there could be other scenarios [12,14], where
the Φ0 periodicity is due to the additional counterpropagat-
ing conduction channels introduced by the charge accu-
mulation effect at the weak link boundary (for details see
Supplemental Material II.C [35]). Consequently, further
experiments are needed to verify the appearance of MZMs.
Conclusion and discussion—In this Letter, we have

discovered that an anomalous Φ0 periodic supercurrent
is generated by the coupling of CAESs on opposite edges in
CESs-mediated Josephson junctions (chiral Josephson
junction). Importantly, the coupling of CAESs is also
responsible for the appearance of MZMs at the Josephson
junction, as long as the number of CESs at each edge of the
weak link is odd. Therefore, by measuring the Φ0 perio-
dicity of the Fraunhofer pattern, one may identify the
parameter regime with MZMs.
Recently, the superconductor-QAHI-superconductor

Josephson junction has been realized in the gate-defined
Josephson junction in twisted bilayer graphene [58], in

which the superconducting states, as well as the QAHI
state, can be achieved in a single piece of twisted bilayer
graphene sample through electric gating [58–62]. And the
model in Fig. 3(a) can also be achieved by depositing
superconducting electrodes on moiré transition metal
dichalcogenides, where robust QAHI states have been
experimentally observed [63–67]. These newly discovered
QAHI platforms are promising for observing the 2Φ0

period to Φ0 period crossover and realizing MZMs.
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