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We study the effect of dynamical screening of interactions on the transition temperatures (Tc) of exciton
condensation in a symmetric bilayer of quadratically dispersing electrons and holes by solving the
linearized Eliashberg equations for the anomalous interlayer Green’s functions. We find that Tc is finite for
the range of density and layer separations studied, decaying exponentially with interlayer separation. Tc is
suppressed well below that predicted by a Hartree Fock mean field theory with unscreened Coulomb
interaction, but is above the estimates from the statically screened Coulomb interaction. Furthermore, using
a diagrammatic framework, we show that the system is always an exciton condensate at zero temperature
but Tc is exponentially small for large interlayer separation.
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The possibility of Bose-Einstein condensation (BEC) of
interlayer excitons formed due to the attractive interaction
between electrons and holes in oppositely doped semi-
conductor bilayers [1–5] has been studied extensively over
the past six decades, however, experimental evidence in
semiconductor systems outside the quantum Hall regime
[6] has been absent. Recent advances in precision control of
particle-hole symmetric electron-hole bilayers have
brought us closer to their realization [7–14] making
conceptual questions of their phase diagram of current
relevance.
In addition to the condensate phase, the electron hole

bilayer system could exhibit a rich phase diagram contain-
ing supersolid, density wave, Wigner crystal, FFLO, and
Fermi liquid phases as the temperature, interlayer separa-
tion (d), electron density, screening, interlayer tunneling,
and layer imbalance are tuned [15–17]. However, the
precise zero temperature phase diagram of the symmetric
bilayer is not yet settled. Different calculational approaches
agree when d is less than the intralayer particle separation
—electrons and holes pair up across the layers to form
excitons that undergo a BEC below some finite temperature
Tc. The attractive interaction weakens rapidly with d and
there are two possible scenarios in the opposite limit of
larged—(a) an exciton condensate is always formed albeit at
a vanishingly small Tc or (b) the exciton condensate is very
unstable and forms an electron-hole plasma even at zero
temperature (potentially due to intralayer screening). Mean
field calculations employing different static-screening
approximations produce different results. Unscreened
[18,19] as well as static-screening approximations based
on normal state correlations show a zero-temperature
excitonic condensate phase [20,21]whereas approximations
that incorporate condensatelike correlations in the screening

suggest a critical separation beyond which the condensate is
absent. Variational and diffusion Monte Carlo studies using
ansatz wave functions also indicate an electron-hole plasma
[20,22–25]. Similar results are also obtained in graphenelike
linear dispersion systems at large d (or large carrier density)
[26–28].
In the present work, we go beyond the simple Hartree-

Fock and static-screening approximations and quantita-
tively investigate the effect of dynamical screening using
the dynamical random phase approximation (RPA) on the
Tc by solving the Eliashberg equations [29,30] for the
anomalous interlayer Green’s functions taking into account
the corrected quasiparticle residue, while restricting to the
screening calculated from the normal state polarization.
Since Eliashberg theory is the most complete theory for
calculating Tc in superconductors, with great success in
predicting quantitatively accurate Tc [31], for many super-
conducting materials, our Letter is of great significance in
understanding electron-hole condensation in 2D bilayer
structures. In addition, we show that the diagrams con-
tained in the Eliashberg framework can be extended in the
Fermi liquid regime to show that the excitonic instability is
robust for arbitrarily weak interlayer interactions.
Our model consists of electrons (represented by ψ1 of

charge−e) in one layer (l ¼ 1) and holes (ψ2 of charge e) in
the other layer (l ¼ 2), separated by a distance d. In order to
address the question of the symmetric bilayer with no
interlayer tunneling, we assume identical quadratic dis-
persions and chemical potentials in the two layers and
ignore spin degrees of freedom (changing dispersion does
not modify any of our qualitative conclusions). The carriers
interact via the attractive (repulsive) Coulomb coupling in
the interlayer (intralayer) channel. The Hamiltonian for the
system is given by
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H ¼ H0 þHintra þHinter ð1Þ

where

H0 ¼
X

l¼1;2

Z

k
ðεk − μÞψ†

l;k⃗
ψ l;k⃗ ð2Þ

where the dispersion is given by εk ¼ ðℏ2k2=2mÞ, μ ¼ εKF

is the bare Fermi energy, KF is the Fermi wave vector andR
k1;k2;…

represents
Q

i¼1;… d2ki=ð2πÞ2.
The intralayer and interlayer interaction Hamiltonians

are

Hintra ¼
1

2

X

l¼1;2

Z

k;p;q
Vqψ

†
l;k⃗þq⃗

ψ†
l;p⃗−q⃗ψ l;p⃗ψ l;k⃗;

Hinter ¼ −
Z

k;p;q
Uqψ

†
1;k⃗þq⃗

ψ†
2;p⃗−q⃗ψ2;p⃗ψ1;k⃗: ð3Þ

The bare intralayer repulsion (Vq > 0) and interlayer
attraction (Uq > 0) are

Vq ¼
e2

2ϵ

1

q
; Uq ¼

e2

2ϵ

e−qd

q
; ð4Þ

where ϵ is the average dielectric constant. We assume that
both layers have background lattices of neutralizing
charges (e.g., gates) that cancel the Hartree terms.
A simple fermion renormalization group (RG) analysis

[32] at one loop suggests an exciton pairing instability at
any d because of the Copper pairing induced by the
interlayer electron-hole attraction which cannot be made
repulsive by any amount of screening. Starting from the
Fermi liquid fixed points of the intralayer Hamiltonians, the
effective attractive coupling Uqp > 0 between the quasi-
particles of the layers at the wave vector 2KF evolves under
RG at one loop as

where the thick lines indicate integration over a thin
momentum shell of energy between E and Eþ dE above
and below the Fermi surface. For any attractive bare
coupling between the quasiparticles of the Fermi liquid
u > 0,Uqp diverges asUqp ∼ ð1 − u lnE=8πÞ−1. We expect
this description to remain valid in the limit of large dwhere
the weak interlayer interactions may not affect the initial
RG flow from the microscopic intralayer Hamiltonian
to the vicinity of the Fermi liquid fixed points.
Consequentially, we expect the exciton instability to
survive at large d as long as u is negative. This expectation
can be validated by a more rigorous diagrammatic analysis

whose details are presented in Supplemental Material (SM)
[33], which shows that the RG expectation is valid at lowest
order in interlayer interaction U and to all orders in
intralayer interactions provided the Fermi liquid Green
function survives. The only difference is that the parameter
u is related to the bare interlayer interaction U through
some vertex corrections. The current work carries out a
careful quantitative estimate of the effect of the dynamical
screening to calculate the transition temperatures and
establishes that the expectation from RG holds true, even
when dynamical screening effects are included.
Within RPA the dynamically screened interlayer and

intralayer interactions are given by

where the sums are over the number of polarization bubbles
(Π) and also the possible types (U or V) of interaction lines
between them such that summands of Veff

q and Ueff
q contain

even and odd numbers of bare Uq interaction lines
respectively. Because of the symmetry of the layers, Π
is independent of the layer index. The dynamically
screened interactions are given by

Veff
q ¼ 1

2

X

σ¼�1

Vq þ σUq

1þ ðVq þ σUqÞΠq
;

Ueff
q ¼ 1

2

X

σ¼�1

σ
Vq þ σUq

1þ ðVq þ σUqÞΠq
: ð5Þ

We use p⃗ for 2D wave vectors, p for their magnitudes and
bold font p for the tuple ðp⃗; {ωpÞwhere ωp is the Matsubara
frequency. The bare polarization function at low temper-
ature is given by (SM [33]):

Πq ¼
m

2πℏ2

�
1 − Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 − {

ℏωq

q2ℏ2=2m

�
2

−
K2

F

q2=4

s �
; ð6Þ

which is the analytic continuation in the upper-half of the
complex ω plane of real-frequency polarization function
given in [35].
We define the normal (G) and anomalous (F ) imaginary

time Green’s functions, in the usual manner, as

Gðp⃗; τÞ ¼ −hTτψ l;p⃗ðτÞψ†
l;p⃗ð0Þi;

F ðp⃗; τÞ ¼ −hTτψ1;−p⃗ðτÞψ2;p⃗ð0Þi: ð7Þ

The symmetry between the two layers makes the normal
Green’s function identical in the layers. The normal
Matsubara Green’s function satisfies the following
Dyson equation
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Gp

G0
p
¼ 1þ 1

ℏ
ΣpGp −

1

ℏ
WpF

†
p; ð8Þ

with the normal and anomalous self-energies (Σ and W,
respectively)

Σq ¼
−1
ℏβ

X

{ωk

Z

k
Veff
q−kGk; Wq ¼

1

ℏβ

X

{ωk

Z

k
Ueff

q−kF k; ð9Þ

β ¼ 1=kBT, and Gk, F k represent the Matsubara space
functions obtained by suitable Fourier transforms of the
imaginary time functions Gðk⃗; τÞ, F ðk⃗; τÞ. The exciton
condensation is defined by a nonzero anomalous self-
energy which is related to the condensate order parameter
as Δq ∼Wq=Zq.
Using the Dyson equation, these can be expressed as a

set of coupled Eliashberg equations incorporating dynami-
cal screening in the exciton condensate formation. It is
convenient to express the normal self-energy in terms of
parts that are even and odd in frequency, parametrized by S
and Z, respectively, as Σq ¼ Sq þ {ωqð1 − ZqÞ. The
Eliashberg equations can then be expressed as

Zq ¼ 1 −
1

ℏβ

X

{ωk

Z

k
Veff
q−k

{ωk

{ωq

Zk

Λk
;

Sq ¼
1

ℏβ

X

{ωk

Z

k
Veff
q−k

1
ℏEk

Λk
;

Wq ¼
1

ℏβ

X

{ωk

Z

k
Ueff

q−k
Wk

Λk
; ð10Þ

whereΛk¼½ωkZk�2þð1=ℏ2ÞðE2
kþW2

kÞ and Ek¼ϵkþSk−μ.
The anomalous self-energy Wq is zero at high temper-

atures and becomes finite as the temperature is lowered if
there is a transition into an excitonic condensate phase. We
estimate the transition temperature Tc by numerically
solving a linearized (in W) form of the above equations
which is valid near Tc. We assume full rotational invariance
and consider only s-wave solutions, as a result of whichW,
S, and Z depend only on ðq; {ωqÞ.
Static screening—Before considering the solution to the

Eliashberg equations, we consider a static screening
approximation—we ignore corrections to Z, setting it to
the bare value 1, and ignore frequency dependences of S,
W, Veff , and Ueff . After performing the Matsubara sum-
mations in Eq. (10), we get the following mean field
equations

Σq ¼
1

2

Z

q
V0
q

�
Eq

ξq
tanh

βξq
2

− 1

�
;

Wq ¼
1

2

Z

q
U0

q

�
Eq

ξq
tanh

βξq
2

�
; ð11Þ

where Eq ¼ εq þ Σq − μ and ξ ¼ ðE2
q þW2

qÞ1=2. The stati-
cally screened interactionsV0

q andU0
q are the zero frequency

limits of the effective interactions shown in Eq. (5). Figure 1
shows the transition temperatures obtained by solving the
equations numerically, presented as a function of theWigner
Seitz interaction radius rs ¼ 2=aBKF (i.e., the dimension-
less intralayer particle separation), where aB is the Bohr
radius. We find that the transition temperatures Tc in Fermi
units (Fermi temperature TF ¼ εKF

=kB and 1=KF as units of
temperature and length, respectively) decays exponentially
as a function of d.
Equations (11) are the Hartree-Fock (HF) mean field

equations analyzed in Refs. [18,19,36], except for the use
of unscreened interactions. An unscreened approximation
can be obtained by replacing the interactions V0 and U0

with the bare Coulomb interactions [Eq. (4)]. Figure 2
shows the Tc obtained by solving the unscreened mean
field equations. Panel (a) shows Tc=TF as a function of
dKF. Panel (c) shows the similar data but with the Tc and d
in atomic units (Ry=kB ¼ ð1=kBÞðe2=8πϵaBÞ and aB as
units for temperature and length).
In both static approximations (unscreened and statically

screened HF), we find that Tc decays rapidly with increas-
ing d approximately exponentially when plotted in Fermi

(a) (b)

(c) (d)

FIG. 1. Tc from the screened HF mean field equations
(a) Tc=TF as a function of the dimensionless interlayer separation
dKF for different values of rs. Tc decreases rapidly but remains
finite even for the largest values of d. (b) Tc=TF for fixed values
of dKF increases with rs except at very large rs and dKF. (c),(d)
Similar to (a),(b) but in atomic units.
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units. The statically screened mean field equations predict a
very small Tc which is consistent with previous observa-
tions in multicomponent systems [21,37]. The Tc increases
with rs but tends to saturate at very large rs [19].

Dynamical screening—To obtain Tc we numerically
estimate the magnitude of the eigenvalue that governs
the evolution of Wq under iterations of the linearized self-
consistent Eliashberg equations treated as a recursive
relation. The eigenvalue decreases with T and is 1 at Tc.
The linearized (inW) equations for S and Z are independent
of W and can be solved first using iterations, these are
found to converge rapidly [38] and these results can be used
in the equations for W whose leading eigenvalue can be
determined by power iteration method.
Following Ref. [39], we find it convenient to decompose

the even part of the self-energy S into frequency dependent
and independent components:

Sq ¼ Sωq þ S0q ð12Þ

where the frequency dependent component

Sωq ¼ 1

ℏβ

X

{ωk

Z

k
ðVeff

k−q − V jk⃗−q⃗jÞ
Ek=ℏ
Λk

ð13Þ

is found to vanish at large wave vectors and frequencies
[39] and therefore has a finite support in the q-ω plane (the
cutoffs for this are set at q ¼ 40KF and ℏω ∼ 50εKF

in the
numerics). Same cutoffs are used for Zq which asymptotes
to 1 at large frequencies and wave vectors. Matsubara sums
are performed, in all cases at least up to ℏωk ¼ 135εKF

even at low temperatures.
The frequency independent component of S can be

written as

S0q ¼
1

ℏβ

Z

k
V jk⃗−q⃗j

X

{ωk

�
Ek=ℏ
Λk

−
1

2

�
: ð14Þ

(a) (b)

(c) (d)

FIG. 2. Tc from the unscreened HF mean field equations.
(a) Tc=TF as a function of dKF for different values of rs.
(b) Tc=TF for fixed separations dKF increases with rs. (c),(d)
Similar to (a),(b) but with axes in atomic units.

(a) (c) (e)

(b) (d) (f)

FIG. 3. Tc estimates from Eliashberg equations (a),(b) Comparison of the Tc estimated from the Eliashberg equations (blue) and the
static screening approximations. (c),(d) Tc for different rs as a function of d plotted in Fermi and atomic units. (e),(f) Tc as a function of
rs for fixed values of d. Orange lines in (e) show the results for the statically screened approximations for the corresponding values of d
and rs. Plots in a column share the same legend.
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The chemical potential μ is tuned self-consistently to satisfy
EKF

ðω ¼ 0Þ ¼ 0 keeping the Fermi wave vector fixed. S0

can be efficiently estimated to high accuracy (see SM [33]).
The gapWq vanishes at large wave vector and saturates to a
q-dependent constantW∞

q at large frequency, for which we
set a cutoff (to reach saturation) of ℏω ∼ 50εKF

.
Representative plots of S, W, and Z are shown in
Supplemental Material [33].
Figure 3 shows the Tc estimated from solving the

Eliashberg equations. Tc=TF decreases exponentially but
remains finite for all rs and d. Dynamical screening
suppresses the Tc=TF to a value smaller than the estimates
from unscreened approximations. Approximate treatment
of dynamical screening effects [40] in graphene have
indicated a first order transition as a function of distance.
Within the range of distances where we could reliably
perform our calculations we do not find such a transition.
Tc at fixed rs exponentially decays with d till the largest
value that we could study. At fixed d, and decreasing
rs, Tc again remains finite up to the smallest rs we could
access.
Eliashberg theory is known to be insufficient when the

frequency scales of the attractive interaction (along the real-
frequency axis) are comparable to the Fermi energy [29]. In
our case the dominant frequency content ofUeff correspond
to the plasmons of the 2D system which have small
frequencies on account of its ℏω=EF ∼ ffiffiffiffiffiffiffi

rsq
p

dispersion.
This is especially true at small rs and large d where the
plasmon mode diffuses into the particle-hole continuum as
the frequency is increased (see SM [33] where we show the
spectral function of Ueff averaged over the Fermi surface).
Our main findings are (1) Tc is finite always, but

exponentially small for large d; (2) Tc is lower than that
obtained from the unscreened HF theory; (3) interlayer
coherent exciton condensate exists for all parameters at
T ¼ 0. The reason for the bilayer to be always interlayer
coherent at T ¼ 0 is that the interlayer interaction is always
attractive, and this implies that there is no repulsion-
induced μ� effect in Tc as in metallic superconductors
[41]—all that intralayer interactions can do is to suppress
the effective interlayer attraction, but can never make it
vanish, implying that Tc is always finite albeit very small
for large d. This expectation is argued to be correct beyond
Eliashberg theory (i.e., including arbitrary intralayer vertex
corrections) where a bound on Tc that is comparable to the
static screening limit is obtained for the general Bethe-
Salpeter equation.
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